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Multiple-damage detection using the best achievable
flexibility change

Q.W.Yang1, J.K.Liu2, C.H. Li3

Abstract: A method based on best achievable flexibility change is presented in
this paper to localize and quantify multiple damages in structures. The key pro-
cess of the damage localization approach is the computation of the Euclidean dis-
tances between the measured flexibility change and the best achievable flexibility
changes. The location of damage can be identified by searching for a value that
is considerably smaller than others in these distances. For the multiple-damage
case, a sequential damage localization approach is proposed to locate the damage
sites one by one. With the suspected damaged elements determined, the flexibility
sensitivity method is employed to calculate the damage extents. Three numerical
examples are used to demonstrate the efficiency of the method. Results show the
good efficiency and stability of the presented method on the identification of single
damage or multiple damages.

Keywords: damage detection; flexibility change; best achievable; multiple dam-
ages

1 Introduction

Structural damage detection using measured dynamic data has emerged as a new
research area in civil, mechanical and aerospace engineering communities in recent
years. The basic idea of this technique is that modal parameters are functions of
the physical properties of the structure (mass, damping, and stiffness). Therefore,
changes in the physical properties will cause changes in the modal properties. Re-
cent surveys on the technical literature, such as on Doebling S. W., Farrar C. R.,
Prime M. B., and Shevitz D. W. (1996) and Chang F. K. (1997), among others, show
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that extensive efforts have been developed to find reliable and efficient numerical
and experimental models to identify damage in structures.

One of the approaches in detecting damage has been to use changes in the stiffness
matrix of a structure. Mannan M. A. and Richardson M. H. (1990) utilized the d-
ifference in the stiffness matrices of the intact and the damaged structures to detect
and locate structural cracks. Lim T. W. and Kashangaki T.A.L. (1994) referred to
a best achievable eigenvector as a damage indicator. Park Y. S., Park H. S., and
Lee S. S. (1988) used a stiffness error matrix method based on the difference be-
tween analytical stiffness and measured modal properties to search for damages in
a structure. Gysin H. P. (1986) point out that the error matrix method is effective
only when all modes of the structure are include or at least those modes that are
influenced most by the damage. Based on governing equations of structural dy-
namics, Lin C. S. (1990) has observed that higher modal frequencies contribute to
the stiffness matrix values to a greater extent. Hence, to obtain a good estimate of
the stiffness matrix, one needs to measure all the modes of the structure, especially,
the high frequency modes. For obvious limitations of experimental instrumenta-
tion, it is increasingly difficult to measure higher frequency response data. This
presents a severe constraint on the success of techniques based on an estimation of
the stiffness matrix (Pandey A. K. and Biswas M., 1995).

Another important class of damage identification methods is based on the change
in the flexibility matrices of the undamaged and the damaged structures. The ad-
vantage of using flexibility instead of stiffness is that the flexibility matrix can be
accurately estimated using only a few of the lower frequency modes and is very sen-
sitive to damage. Pandey A. K. and Biswas M. (1994, 1995) developed a method
for locating damage in beam type structures using changes in the flexibility matrix
of the structure. Zhao J. and DeWolf J. T. (1999) demonstrated that the algorithms
using modal flexibility, derived from frequencies and mode shapes, are very sen-
sitive to local damage. Bernal D. and Gunes B. (2002a, 2002b, 2004) computed a
set of load vectors from the flexibility matrix change, designated as damage loca-
tion vectors to localize damage. Jaishi B. and Ren W. X. (2005, 2006) presented
a damage detection method by finite element model updating using modal flexi-
bility residual. Stutz L. T., Castello D. A., and Rochinha F. A. (2005) presents a
flexibility-based continuum damage identification approach. Yan A. and Golinval
J. C. (2005) studied a damage localization method by combining flexibility and s-
tiffness methods. Necati Catbas F., Brown D., and Emin Aktan A. (2006) made use
of modal flexibility for damage detection on two real-life bridges. Duan Z., Yan
G., Ou J., and Spencer B. F. (2007) studied damage detection in ambient vibration
using proportional flexibility matrix with incomplete measured degrees of freedom.
Koo K. Y., Sung S. H., Park J. W., and Jung H. J. (2010, 2011) presents a vibration-
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based damage detection and quantification methods for shear buildings using the
damage-induced deflections estimated by modal flexibility from ambient vibration
measurements. Li Y., Zhou B., and Zhou X. (2011) presented the curvature matrix
of change in flexibility as a new index of nondestructive damage detection, which is
derived from change in structural flexibilities calculated from before damaging and
after damaging by means of difference calculation twice, firstly to columns, and
then to rows. By the matrix eigen-decomposition and flexibility sensitivity analy-
sis, Yang Q. W. and Liu J. K. (2009) approaches the damage identification problem
in a decoupled fashion: determining the number of damaged elements, localizing
the damaged elements and quantifying the damage extents. Perera R., Ruiz A., and
Manzano C. (2007, 2008) used the modal flexibility as one objective function in
formulation of the multiple objective damage identification problems. Yang Q. W.
(2009) derived the sensitivity of flexibility matrix using Neumann series expansion
and presented a mixed sensitivity method to identify structural damage by combin-
ing the eigenvalue sensitivity with the flexibility sensitivity.

In this paper, using the concept of best achievable flexibility change, a method is
developed to determine both the locations and magnitudes of structural multiple
damages. The method approaches the damage location and extent problem in a
decoupled fashion. The key point of the damage location algorithm lies in the for-
mulation of the best achievable flexibility change. The damages are located by
calculating the Euclidean distances between the measured flexibility change and
the calculated best achievable flexibility changes. For the multiple-damage case,
a sequential damage localization approach is proposed to locate the damage sites
one by one. With location determined, the flexibility sensitivity method is used to
determine the extents of damages. Three numerical examples is used to validate the
developed technique. The results show that the locations and magnitudes of local
damages can be identified by the proposed method using the noisy and incomplete
modes. In the following theoretical development, it is assumed that structural dam-
ages only reduce the system stiffness matrix and structural refined FEM has been
developed before damage occurrence.

2 Damage localization using the best achievable flexibility change

2.1 Single damage

For the intact and the damaged structures, the global stiffness and flexibility matri-
ces will satisfy the following relationship:

Fu ·Ku = Fd ·Kd = I (1)

where Fu and Ku are the n× n flexibility and stiffness matrices of the undamaged
structure, Fd and Kd are the n×n matrices of the damaged structure, I is the n×n
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identity matrix. It is noted that both translational and rotational degrees of freedom
are considered in the flexibility and stiffness matrices here. As is well known,
damage reduces the stiffness and increases the flexibility of structures. Let ∆F
and ∆K be the exact perturbation matrices that reflect the nature of the structural
damage. Then the undamaged model matrices and the damaged model matrices are
related as follows:

Fd = Fu +∆F (2)

Kd = Ku−∆K (3)

In practice, the exact ∆F cannot be obtained due to the limitation of the modal
survey. But ∆F can be approximated by the first few low-frequency modes as
(Pandey A. K. and Biswas M., 1994, 1995)

∆F =
m

∑
j=1

1
λd j

φd jφ
T
d j−

m

∑
j=1

1
λu j

φu jφ
T
u j (4)

where m is the number of measured modes in modal survey, λu j(φu j) andλd j(φd j)
are the eigenparameters of the undamaged and damaged structures, respectively.
The modes of the damaged structure can be obtained by a modal survey on it, and
the modal data of the undamaged structure can be obtained by solving a generalized
eigenvalue problem of the undamaged FEM or through a modal test on the intact
structure. A detailed discussion of modal analysis techniques is beyond the scope
of this paper, and interested readers are referred to the references (Ewins D. J.
(1984), Juang J. N. (1994), Maia N. M. M. and Silva J. M. M. (1997)). Substituting
equations (2) and (3) into (1), one has

∆F ·Kd = Fu∆K (5)

Rewriting equation (5) yields

∆F = Fu∆KFd (6)

When damage has occurred in the structure, the stiffness matrix perturbation ∆K
can be expressed as a sum of each elemental stiffness matrix multiplied by a dam-
age coefficient, that is

∆K =
N

∑
i=1

αiKi, (0≤ αi ≤ 1) (7)

where Ki is the ith elemental stiffness matrix, αi is its damage parameter, N is the
total number of elements. The value of αi is 0 if the ith element is undamaged
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and αi is 1 or less than 1 if the corresponding element is completely or partially
damaged. In equation (7), it is assumed that in case of damage, all the elements in
the stiffness matrix Ki will be affected by same ratio αi. This assumption is used for
mathematical simplicity since the practical damage is very complex. Substituting
equation (7) into (6), one has

∆F =
N

∑
i=1

αiFuKiFd (8)

According to equation (8), the changes in the flexibility could be caused by damage
at a single member or at multiple members. Assume, for the time being, that the
damage is caused by a single member. Without loss of generality, assume that only
the ith element is damaged (αi 6= 0), then equation (8) reduces to

∆F = αiFuKiFd (9)

Let the jth column of ∆F and Fd be represented by ∆ f j and fd j, respectively. That
is, ∆F = [∆ f1 · · ·∆ f j · · ·∆ fn] and Fd = [ fd1 · · · fd j · · · fdn]. From equation (9), we
have

∆ f j = αiFuKi fd j,( j = 1∼ n) (10)

Let

Ei = FuKi (11)

γi j = αi fd j (12)

Then equation (10) simplifies to

∆ f j = Eiγi j,( j = 1∼ n) (13)

The implication of equation (13) is very important. According to the theory of
Linear algebra (Herstein I. N. and Winter D. J. (1988), Datta B. N. (1995)), equation
(13) is valid only if the vector ∆ f j is a linear combination of the columns of Ei. In
other words, ∆ f j must lie in the subspace spanned by the columns of Ei. That is
to say, if the ith element is damaged, then the vector ∆ f j will lie exactly in the
subspace spanned by the columns of Ei. If not, ∆ f j would not lie in the subspace
spanned by the columns of Ei. According to the matrix theory, we can use the
concept of the best achievable vector to evaluate whether or not ∆ f j lies in the
subspace spanned by the columns of Ei. The best achievable vector of ∆ f j can be
computed by

∆ f a
i j = Ei(Ei)

+
∆ f j,( j = 1∼ n) (14)
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where Ei is the matrix Ei where the zero columns have been removed to enhance
computational efficiency, and the superscript + denotes the generalized inverse. For
j = 1∼ n, equation (14) can be assembled as

∆Fa
i = Ei(Ei)

+
∆F (15)

where ∆Fa
i = [∆ f a

i1 · · ·∆ f a
i j · · ·∆ f a

in]. The matrix ∆Fa
i is defined as the best achiev-

able flexibility change. If the damage is caused by the ith element, then the matrices
∆Fa

i and ∆F will be identical. If not, the two matrices will be different. We can
use the Euclidean distance between the two matrices to evaluate whether or not
∆Fa

i equals ∆F . The distance between the two matrices can be computed using the
Frobenious norm

di = ‖∆F−∆Fa
i ‖F (16)

where ‖·‖F represents the Frobenious norm. If the perfect data are presented, the
damaged element will has zero distance (di = 0) and all others will have nonzero
values. For a structure that has N structural members, a damage localization vector,
of length N, can be defined as

d =

[
d1

dmax
, · · · , di

dmax
, · · · dN

dmax

]T

(17)

where dmax is the largest value in all distances, i.e., dmax = max(d1, · · · ,di, · · ·dN).
For the measured data with truncation and noise, di

dmax
will be equal or close to zero

if damage is located in element i and all other coefficients will be populated with
nonzero entries. As a result, the location of damage can be determined by searching
for a value that is considerably smaller than others in the vector d.

2.2 Multiple damages

When there is more than one damaged element in the structure, the examination
of the vector d in equation (12) may not provide a clear indication of the damaged
members. If the vector d does not indicate the damaged member clearly, it may
imply that there are multiple damaged members. To examine multiple damages, a
sequential damage localization approach is proposed. In this approach, damaged
members are detected one at a time in a screening process. For convenience of
the following discussion, without loss of generality, two-damage case is used to
illustrate the screening process (other multiple damage cases are also valid).

The first step is to select the single most probable damaged member by searching
for a value that is considerably smaller than others in the vector d of equation (12).
Without loss of generality, the ith element is assumed to be the damaged member
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obtained in the first step and the rest are candidate members. If the rth element is
another damaged member, equation (8) reduces to

∆F = αiFuKiFd +αrFuKrFd (18)

where Kr is the rth elemental stiffness matrix and αr is its damage parameter. The
following derivation is similar to the process between equation (9) and equation
(17). From equation (18), the jth column of ∆F can be expressed as

∆ f j = αiFuKi fd j +αrFuKr fd j,( j = 1∼ n) (19)

Let

Er = FuKr (20)

γr j = αr fd j (21)

Substituting equations (11), (12), (20) and (21) into (19), one has

∆ f j = Eiγi j +Erγr j,( j = 1∼ n) (22)

Removing the zero columns in the matrices Ei and Er and the corresponding entries
in the vector γi j and γr j, equation (22) reduces to

∆ f j = Eiγ
′
i j +Erγ

′
r j (23)

Equation (23) can be rearranged as

∆ f j = Eirγir j (24)

where the matrix Eir and the vector γir j are given as

Eir = [ Ei Er ] (25)

γir j =

{
γ
′
i j

γ
′
r j

}
(26)

As before, equation (15) is valid only if the vector ∆ f j is a linear combination of
the columns of Eir. In other words, ∆ f j must lie in the subspace spanned by the
columns of Eir. That is to say, if the ith and rth elements are damaged, then the
vector ∆ f j will lie exactly in the subspace spanned by the columns of Eir. If not,
∆ f j would not lie in the subspace spanned by the columns of Eir. Again, we can
use the concept of the best achievable vector to evaluate whether or not ∆ f j lies in
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the subspace spanned by the columns of Eir. The new best achievable vector of ∆ f j

can be computed by

∆ f a
ir j = Eir(Eir)

+
∆ f j,( j = 1∼ n) (27)

For j = 1∼ n, equation (27) can be assembled as

∆Fa
ir = Eir(Eir)

+
∆F (28)

If the damages are caused by the ith and rth elements, then the matrices ∆Fa
ir and ∆F

will be identical. If not, the two matrices will be different. Using the Frobenious
norm, the distance between the two matrices can be computed

dir = ‖∆F−∆Fa
ir‖F (29)

If the exact data are used, the damaged elements will has zero distance (dir = 0)
and all others will have nonzero values. For the other N−1 structural members ex-
cept the ith damaged element identified in the first step, a new damage localization
vector, of length N−1, can be defined as

d
′
=

[
di1

dimax
, · · · , dir

dimax
, · · · ,

di(N−1)

dimax

]T

(30)

where dimax is the largest value in all distances, i.e., dimax =max(di1, · · · ,dir, · · · ,di(N−1)).
For the measured data, dir

dimax
will be equal or close to zero if damage are located in

elements i and r, and all other coefficients will be populated with nonzero entries.
As a result, another single most probable damaged element can be selected using
the new d

′
vector. For other multiple damage cases, the above screening process is

continued until all the damaged members are located. The numerical examples in
section 4 will illustrate how this approach is used to locate multiple damages.

3 Damage quantification using the best achievable flexibility change

By using the above described localization approach, the possible damaged elements
have been determined. It is sometimes necessary to determine the extent of struc-
tural damage. In this part, the flexibility sensitivity is used to quantify damage.
Without loss of generality, supposing that the number of the possible damaged el-
ements is q and the corresponding damage factors are α1,α2, · · · ,αq, respectively.
Then equation (7) reduces to

∆K =
q

∑
i=1

αiKi, (0≤ αi ≤ 1) (31)



Multiple-damage detection 321

Substituting equation (2) into (6), one has

∆F = Fu∆KFu +Fu∆K∆F (32)

Neglecting the high-order term in equation (32), one obtains

∆F = Fu∆KFu (33)

Substituting equation (31) into (33) yields

∆F =
q

∑
i=1

αi(FuKiFu) (34)

From equation (34), the unknown damage parameters αi can be readily computed
by manipulating the matrix equation (34) into a set of linear equations. As will be
shown is Section 4, the suspected damaged elements can be assessed again using
the damage quantification scheme to determine the true sites and the extents of
damage.

4 Numerical Examples

4.1 Example 1

Figure 1: A space truss structure for example 1
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The space truss structure used in this example is shown in Figure 1. The structure
was modeled using 26 truss rod elements and 12 nodes (4 restrained), for a total of
24 DOF (every node has three DOFs). The basic parameters of the structure are as
follows: Young’s modulus E = 200GPa, density ρ = 7.8× 103Kg/m3, and cross-
sectional area A = 0.004m2. Two damage cases are considered in the example. The
first one is a single-damage case that element 24 is damaged with a stiffness loss
of 15%. The second case has two damages in which both elements 11 and 24 have
20% reduction in stiffness.

Table 1 presents the resulting comparative Euclidean distances (i.e., the vectord) of
the single-damage case obtained by two sets of modal data: the complete and exact
modes, and the first four modes with 5% noise. Measurement noise was simulated
by adding proportional noise to each of the simulated measured mode shapes in the
following way (Perera R., Ruiz A. , and Manzano C. (2007)):

φ
k
i j = φi j(1+ηζ

k
i j) (35)

where φ k
i j is the jth component of the ith mode contaminated with noise for the kth

measurement, η is the degree of noise and ζ k
i j is a random number in the range [-1,

1]. Such simulations were carried out 6 times and the average of these simulations
is used for damage detection.

When the complete and exact modes are used in damage identification, inspection
of column 2 in Table 1 indicates that a single damage occurred in the element 24
because it has zero distance. When only the first four modes with 5% noise are used
in the calculation, examination of column 3 in Table 1 shows that there are possi-
bilities of damage at element 24, element 11, or both element 24 and 11 because
the distances at these locations are consistently smaller than the others. Determi-
nation of the damaged element(s) will not be made until the damage magnitudes
are computed for the suspicious damaged members. As will be seen more for oth-
er damage cases, a situation like this occurs frequently when the incomplete and
noisy modes are used for damage detection. To determine the damaged element(s)
for the single-damage case when the incomplete and noisy modes are used, the fol-
lowing damage quantification procedure is employed. Assuming that elements 24
and 11 are both damaged, their corresponding damage extents are computed using
equation (34). The resulting magnitudes of damage are as follows: α24 = 0.1801
and α11 = 0.0107. This means that a single damage occurred at element 24 and the
calculated damage extent has slight deviation from the true value (0.15) because of
the modal truncation, noise, and approximate process in equation (32). Thus, the
damage detection process is completed.

In order to study the impact of the order of the model on the efficiency, Table 2
gives the comparative Euclidean distances for the single-damage case using the
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Table 1: The comparative Euclidean distances (d) when element 24 is damaged
(Example 1)

Element
number

The complete and ex-
act modes

The first four modes
with 5% noise

1 0.9922 0.994
2 0.99 0.9959
3 0.9253 0.9283
4 0.9731 0.9834
5 0.9783 0.9715
6 0.94 0.9442
7 0.9317 0.9442
8 0.8852 0.8957
9 0.8823 0.9142
10 0.9009 0.9194
11 0.558 0.5759
12 0.9991 0.999
13 0.9029 0.8998
14 0.9994 0.9969
15 0.9997 0.9968
16 0.9997 0.9987
17 0.9675 0.9548
18 0.9263 0.9349
19 0.9534 0.9737
20 0.9293 0.9624
21 0.9675 0.9871
22 0.9755 0.9908
23 0.9967 0.9993
24 0 0.3638
25 1 1
26 0.8185 0.8627

first two modes and the first six modes. When only the first two modes are used,
it is obvious from column 2 in Table 2 that elements 11 and 24 are both probable
damaged locations because of their relatively smaller index. Using equation (34),
their damage extents can be computed as α24 = 0.1228 and α11 = 0.0629. The
above results show that element 11 was wrongly detected to be damaged member
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when only the first two modes are used. For the case of using the first six modes,
inspection of column 3 in Table 2 clearly indicated that element 24 was the most
probable damaged member for its index is far less than the others. Again, the
damage extents of elements 24 and 11 can be computed as α24 = 0.1781 and α11 =
0.0105. Compared with the results obtained by the first four modes, it is obvious
that the damage detection results become more accurate as the number of modes
used in the calculation increases.

Table 3 shows the damage localization results for the multiple damage case using
the first six modes with 5% noise. Inspection of column 2 in Table 3 indicated that
element 24 was the most probable damaged member for its index is less than the
others. So element 24 is selected to be the damaged member in this step. Then the
other elements are combined with element 24 in turn to calculate the new Euclidean
distances and the resulting new damage localization vector d

′
is given in column

3 of Table 3. Now element 11 is clearly identified as another damaged member
for its index is far less than the others. The magnitudes of damage are computed
for elements 11 and 24 as α11 = 0.2296 and α24 = 0.2386, which have 14.8% and
19.3% relative errors, respectively. Elements 11 and 24 are thus confirmed to be
the damaged members.

To compare the localization performance of the proposed method and the tradition-
al flexibility difference method, Figure 2(a) and (b) present the results obtained by
the flexibility difference method using the complete and exact modes for locating
damage. The flexibility difference method was proposed by Pandey and Biswas
(Pandey A. K. and Biswas M. (1994)), which consists in calculating the flexibility
change matrix and then observing the maximum value of each column:

∆ =
{

δi j
}
= Fd−Fu, δ j = max

i

∣∣δi j
∣∣ (36)

However, as shown in the reference of Pandey A. K. and Biswas M. (1994), dam-
age localization using δ j depends on geometrical condition of the structure. For
instance, damage in a cantilever beam is located at the point where δ j just appear
different from zero, while damage in a simply supported beam is located at the point
corresponding to the maximum of δ j. So human experience and judgment may be
necessary for a general application. For this example, Figure 2 only shows that the
variations of flexibility have the maximums at the DOF corresponding to the dam-
age element, but it is difficult to indicate exact damage location and the number of
damaged elements even if the complete and exact modes are used. It appears that
damage localization directly based on flexibility change is heuristic and applicable
only for particular types of structures (such as beam-like structures), with some
post-calculations sometimes being necessary for a general application.
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Table 2: The comparative Euclidean distances (d) when element 24 is damaged
(Example 1)

Element
number

The first two modes
with 5% noise

The first six modes
with 5% noise

1 0.9856 0.9861
2 0.9831 0.9857
3 0.9013 0.922
4 0.9722 0.9594
5 0.9805 0.98
6 0.9259 0.9372
7 0.8986 0.9121
8 0.8403 0.8778
9 0.9001 0.8617
10 0.913 0.8878
11 0.5835 0.5315
12 0.9997 0.9989
13 0.8423 0.8968
14 0.9996 1
15 0.9991 0.9993
16 0.9987 0.9993
17 0.9801 0.9748
18 0.9381 0.9281
19 0.9382 0.9454
20 0.8732 0.919
21 0.9326 0.9623
22 0.9698 0.9692
23 0.9876 0.9962
24 0.5861 0.1631
25 1 0.9999
26 0.8141 0.7949
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Table 3: Damage localization results when elements 11 and 24 are damaged (Ex-
ample 1)

Element
number

The vector d The vector d
′
(obtained

after the damage at el-
ement 24 has been de-
tected)

1 0.9899 0.9963
2 0.9895 0.9995
3 0.9172 0.9902
4 0.9712 0.9982
5 0.9744 0.9946
6 0.9245 0.9755
7 0.917 0.9794
8 0.8703 0.9811
9 0.8717 0.9881
10 0.8902 0.9874
11 0.3422 0.3167
12 0.9985 0.999
13 0.8853 0.9754
14 0.9994 1
15 0.9996 0.9999
16 0.9996 0.9999
17 0.9642 0.9963
18 0.9209 0.9953
19 0.9466 0.9922
20 0.9192 0.9879
21 0.9623 0.9936
22 0.972 0.9964
23 0.9953 0.9973
24 0.2512 /
25 1 1
26 0.7898 0.9612
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(a) The flexibility change using the complete and exact modes when element 24 is damaged
(Example 1)

(b) The flexibility change using the complete and exact modes when elements 11 and 24 are
damaged (Example 1)

Figure 2:
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4.2 Example 2

Figure 3: A two-storey frame structure for Example 2

The second example is a two-storey frame structure as shown in Fig.3 with a rect-
angular cross-section of 0.14m× 0.24m. This frame was modeled with 48 equal
elements of 0.2m in length. Every node has three DOFs, an axial displacement, a
transverse displacement and a rotation. The properties of this structure are: cross-
sectional area A = 0.0336m2; moment of inertia I = 1.6128× 10−4m4; Young’s
modulus E = 200GPa; shearing modulus of elasticity G = 1.3461× 1010N/m2;
Poisson’s ratio v = 0.3; density ρ = 2500kg/m3. Only horizontal modal displace-
ments are assumed to be ‘measured’ in the columns while for the beams only the
vertical components of mode shapes are ‘measured’. In other words, only the first
six modes and 22 out of 66 DOFs are used in the present study to simulate incom-
plete modal data in the real situation.

Multiple damages are simulated in elements 2 and 5 with stiffness losses both of
20%. Table 4 shows the damage localization results for the multiple damage case
using the first six modes with 5% noise. Measurement noise was simulated in
the same way of Example 1. Inspection of column 2 in Table 4 indicated that
element 5 was the most probable damaged member for its index is far less than
the others. Consequently element 5 is selected to be the damaged member in this
step. And then the other elements are combined with element 5 in turn to calculate
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the new Euclidean distances and the resulting new damage localization vector d
′

is given in column 3 of Table 4. Now element 2 can be detected to be another
damaged member for its index is less than the others. To avoid missing the other
potential damaged members, element 1 is also selected to be suspected damaged
member for it has the second smallest index in column 3 of Table 4. Using equation
(22), the magnitudes of damage are computed as α1 = −0.0016, α2 = 0.2371and
α5 = 0.2384. From the results, elements 2 and 5 are thus confirmed to be the
damaged members.

Table 4: Damage localization results when elements 2 and 5 are damaged (Example
2)

Element number The vector d The vector d
′
(obtained after the damage

at element 5 has been detected)
1 0.2737 0.402
2 0.1968 0.178
3 0.3818 0.5393
4 0.3951 0.6902
5 0.0782 /
6 0.3158 0.9937
7 0.3657 0.9894
8 0.2826 1
9 0.7636 0.6976
10 0.9036 0.8461
11 0.7157 0.9211
12 0.6059 0.8653
13 0.7633 0.8796
14 0.9744 0.8955
15 0.9527 0.9379
16 0.765 0.9687
17 0.6438 0.9567
18 0.8156 0.9644
19 1 0.976
20 0.8799 0.9733
21 0.5804 0.9214
22 0.5697 0.935
23 0.3677 0.933
24 0.4032 0.9173
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4.3 Example 3

Figure 4: Thirty-one-bar truss structure for example 3

The 31-bar truss structure used in this example is shown in Figure 4, which is used
to verify the proposed method for the symmetric structure. The basic parameters
of the symmetric structure are as follows: Young’s modulus E = 200GPa, density
ρ = 7.8×103Kg/m3, and cross-sectional area A = 0.004m2. Multiple damages are
simulated in elements 12 and 23 with stiffness losses both of 15%. Measurement
noise of mode shapes was simulated in the same way of Example 1. And the
measurement noise of natural frequencies was also simulated in the similar way:

λ
k
j = λ j(1+ηζ

k
j ) (37)

where λ k
j is the jth eigenvalue (the square of frequency) contaminated with noise

for the kth measurement, η is the degree of noise and ζ k
j is a random number in the

range [-1, 1]. It is widely recognized that the natural frequencies are least contam-
inated by measurement noise and can generally be measured with good accuracy.
Messina A., Williams J. E., and Contursi T. (1998) suggest a standard error of
±0.15% as a benchmark figure for natural frequencies measured in the laboratory
with the impulse hammer technique. In contrast, mode shape estimates have error
levels as much as 20 times worse than those in the corresponding natural frequency
estimates. So the degree of frequency noise in equation (25) is assumed to be 0.15
(η = 0.15). As before, such simulations were carried out 6 times and the aver-
age of these simulations is used for damage detection. Figure 5 presents the result
obtained by the flexibility difference method using the first six modes with noise.
From Figure 5, similar conclusion can be drawn that it is difficult to indicate exact
damaged elements. Using the proposed best achievable flexibility change method,
Table 5 shows the damage localization results for the multiple damage case using
the first six modes. Inspection of column 2 in Table 5 indicated that element 12 was
the most probable damaged member for its index is far less than the others. Conse-
quently element 12 is selected to be the damaged member in this step. And then the
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other elements are combined with element 12 in turn to calculate the new Euclidean
distances and the resulting new damage localization vector d

′
is given in column 3

of Table 5. Now element 23 can be detected to be another damaged member for its
index is less than the others. To avoid missing the other potential damaged mem-
bers, element 24 is also selected to be suspected damaged member for it has the
second smallest index in column 3 of Table 5. Using equation (22), the magnitudes
of damage are computed as α12 = 0.1747, α23 = 0.1712and α24 =−0.0013. From
the results, elements 12 and 23 are thus confirmed to be the damaged members. It
has been shown that the proposed method performs well for the symmetric struc-
ture even if the errors in frequencies and mode shapes inevitably make the damage
assessment more difficult.

Figure 5: The flexibility change using the first six modes with noise when elements
12 and 23 are damaged (Example 3)



332 Copyright © 2013 Tech Science Press CMES, vol.91, no.4, pp.313-335, 2013

Table 5: Damage localization results when elements 12 and 23 are damaged (Ex-
ample 3)

Element
number

The vector d The vector d
′
(obtained

after the damage at el-
ement 12 has been de-
tected)

1 0.9366 0.9989
2 0.8498 1.0000
3 0.7997 0.9915
4 0.6117 0.9742
5 0.8791 0.9879
6 0.7900 0.9887
7 0.4355 0.9893
8 0.8333 0.9968
9 0.5786 0.9988
10 0.9846 0.9951
11 0.7761 0.9985
12 0.1052 /
13 0.9902 0.9458
14 0.8203 0.9893
15 0.6378 0.9757
16 0.7475 0.9968
17 0.3509 0.9206
18 0.7209 0.9976
19 0.9996 1.0000
20 0.7402 0.9402
21 0.8096 1.0000
22 0.5895 0.9732
23 0.5271 0.3988
24 0.8209 0.7850
25 1.0000 0.9926
26 0.7825 0.9954
27 0.9123 0.9886
28 0.6312 0.8940
29 0.8461 0.9837
30 0.8037 0.8853
31 0.9512 0.9980
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5 Conclusions

A new method for structural damage identification was developed in this study,
which is based on the best achievable concept. The best achievable flexibility
change is a projection of a measured flexibility change onto the subspace that is
defined by the undamaged analytical model. Damage location can be determined
by the Euclidean distance between the measured flexibility change and the best
achievable flexibility change. With location identified, the magnitude of damage
can be computed by the flexibility sensitivity method. The first advantage of the
proposed method is that it can directly determine the damage locations at the el-
ement level rather than at the structural DOF level. The second advantage of the
method is that the number of variables is very reduced in the stage of damage quan-
tification, since only the elements belonging to the zones identified previously as
damaged are now assumed to be damaged. Three numerical examples are used to
exercise this process and measurement noise is also simulated in damage detection.
The results show that the proposed method can determine accurately both the loca-
tion and magnitude of structural damage with the incomplete and noisy modes. It
has been shown that the proposed procedure may be a promising method in struc-
tural damage detection. Future research on the technique should be carried out to
demonstrate the procedure using experimentally measured data.
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