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Iterative coupling between the TBEM and the MFS Part II
- Elastic wave propagation

Julieta António1, António Tadeu1,2 and Patrícia Ferreira3

Abstract: The first of these two companion papers addressed the iterative cou-
pling between a formulation based on the normal derivative of the integral equation
(TBEM) and the method of fundamental solutions (MFS), which was used to solve
scattering problems involving the propagation of acoustic waves in the vicinity of
multiple thin barriers and domes. This second part extends these results to the more
complicated case of in-plane wave propagation and presents their application to
scattering problems involving SV-P waves. The formulation is first presented and
verified by computing the number of iterations required and measuring the CPU
time. Afterwards the formulation is used to simulate the propagation of waves
generated by a blast load in the vicinity of a cavity driven in a cracked medium.

Keywords: elastic wave propagation, TBEM/MFS iterative coupling, cracked
medium.

1 Introduction

The first of these two companion papers [Tadeu et al. (2013)] presented an itera-
tive coupling between a formulation based on the normal derivative of the integral
equation (TBEM) and the method of fundamental solutions (MFS) to solve the
propagation of acoustic waves in the vicinity of multiple thin barriers and domes.
This second part extends this method to the more complicated case of elastic wave
propagation.

The applicability of the proposed formulation is illustrated by solving physical sys-
tems, involving varying numbers of inclusions (cracks), and the CPU time taken is
compared with the times needed for a full coupling technique.
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The next section sets out the iterative coupling formulation applied to multiple
cracks and cavities embedded in an unbounded elastic medium. The TBEM is used
to model empty cracks while the MFS simulates the cavities. The performance of
the iterative coupling formulation is verified against solutions obtained using a full
TBEM/MFS coupling formulation, which are used as reference solutions.

The number of iterations and the CPU time taken to compute the numerical re-
sponses when varying numbers of inclusions are subjected to different steady state
line blast sources are used to evaluate the computational efficiency of the proposed
iterative coupling formulation.

Finally, the applicability of the proposed iterative method is shown by means of
a numerical example that simulates the propagation of elastic waves generated by
a line source when a set of circular empty cracks are embedded in the vicinity of
an empty circular cavity in an unbounded elastic medium. Time signatures are
computed to illustrate the main propagation features.

2 Iterative TBEM/MFS coupling formulation

The iterative process follows the procedure used for the acoustic problem [Tadeu et
al. (2013)]. At each iteration step, each inclusion is solved individually, assuming
there are no other inclusions present. The incident field is the scattered field gen-
erated by all the other previously solved inclusions. At the first iteration, the direct
incident field generated by the source and exciting the field, needs also to taken into
account. This procedure is briefly described next, using two inclusions.

Consider two empty irregular two-dimensional cylindrical inclusions, a crack and
a cavity, embedded in a homogeneous elastic medium (Medium 1) with density ρ

(Figure 1) and allowing longitudinal (P-wave) and shear waves (S-wave) to travel
at velocities α and β , respectively.

It is further assumed that this system is subjected to a dilatational line source placed
at xs, (xs, ys). The incident wave field generated by this source can be expressed in
the frequency domain, ω , by means of the classic dilatational potential:

ϕ inc (x,ω) =−AH0 (kαr1) (1)

Thus, the displacement field in direction i, at x, (x, y), can be expressed as

ui_inc (x,xs,ω) = AkαH1 (kαr1)
∂ r1

∂xi
(2)

where the subscript inc represents the incident field, r1 =

√
(x− xs)

2 +(y− ys)
2, A

the wave amplitude, kα = ω

α
and Hn (. . .) correspond to second Hankel functions of

order n.
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Iteration 0 - Step 1: The incident field only illuminates the crack, and the second
inclusion is assumed to be absent (see Figure 2a)

The displacement field in an infinite, homogeneous and isotropic elastic medium is
governed, in the frequency domain, by the expression,

(λ +2µ)∇(∇•u)−µ∇× (∇×u) =−ω
2
ρu (3)

where u represents the displacement vector, and λ and µ are the Lamé constants.
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Figure 1: The geometry of the problem

The boundary element method (BEM) formulation fails when modeling the scat-
tered wave field in the vicinity of thin empty inclusions, such as cracks. The trac-
tion boundary element method (TBEM) is often proposed to get over that difficulty
[2,3]. This formulation can be expressed by the following equation:

au(0)i (x0,ω) = −
∫
S1

u(0)j (x,ω) H i j (x,nn1,nn2,x0,ω) ds+ui_inc (x0,nn2,xs,ω) (4)

This equation can be seen as resulting from the application of dipoles (dynamic
doublets). In this equation, i, j = 1, 2 correspond to the normal and tangential di-
rections relative to the inclusion surface. In these equations, nn2 is the unit out-
ward normal to the boundary S1 at the collocation points x0, (x0,y0), whilenn1
is the unit outward normal along boundary S1, at x, defined by the vector nn1 =
(cos θn1, sin θn1). The Green’s functions H̄i j (x,nn1,nn2,x0,ω) are defined by ap-
plying the traction operator to Hi j (x,nn1,x0,ω) , which can be obtained by com-
bining the derivatives of the former Green’s functions, in order to x and y, so as
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to obtain stresses [Amado Mendes and Tadeu (2006)]. Hi j (x,nn1,x0,ω) define the
fundamental solutions for tractions (Green’s functions [Tadeu and Kausel (2000)]),
in direction j on the boundary S1 at x, caused by a unit point force in direction i
applied at the collocation point, x0. u(0)j (x,ω) corresponds to displacements in di-

rection j at x. The superscript used in u(iter)
j indicates the number of the iteration.

The incident field, ui_inc (x0,nn2,xs,ω), can be evaluated in a similar way to the
evaluation of H̄i j, in terms of stresses. As noted by Guiggiani (1998) the coeffi-
cient a is zero for piecewise straight boundary elements.

The boundary integral equation (4) can be solved by discretizing the boundary into
straight boundary elements, with one nodal point in the middle of each element.
A set of integrations therefore needs to be calculated, and this is done by apply-
ing a Gaussian quadrature scheme to elements that are not the loaded elements. If
the elements happen to be the loaded ones, hyper-singular integrals arise and they
are evaluated. These hyper-singular integrals are evaluated by means of an indi-
rect approach that represents the dynamic equilibrium of a semi-cylinder, detached
immediately above the boundary element [Amado Mendes and Tadeu (2006)].

The use of N boundary elements leads to a system of [2N ×2N] equations (Bu(0) =

u(0)inc),[
−H̄kl

i j

][
u(0)lj

]
=
[
−u(0)ki_inc

]
(5)

where k, l = 1,N, H̄kl
i j =

∫
Cl

H i j (xl,nn1,nn2,xk,ω)dCl , Cl is the length of each bound-

ary element and u(0)ki_inc = ui_inc (xk,nn2,xs,ω).

The solution of this system of equations gives the nodal displacements u(0)j along
the boundary S1, which allows the scattered displacement field to be defined at any
receiver xrec,

ui,01 (xrec,ω) = −
∫
S1

u(0)j (x,ω) Hi j (x,nn1,nn2,xrec,ω) ds (6)

In this equation, the subscripts 01 in u(0)i,01 (xrec,ω) define the iteration order (0) and
identify the inclusion structure that produces it (1).

Iteration 0 - Step 2: The cavity is subjected to the direct incident field and illu-
minated by the scattered field generated at the crack after being submitted to the
incident field (step 1) (see Figure 3a).

The cavity is modeled using the MFS. The MFS assumes that the response of this
neighbouring inclusion is found as a linear combination of fundamental solutions
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simulating the displacement field generated by NS virtual sources. These virtual
loads are distributed along the inclusion interface S2 at a distance δ from that
boundary, towards the interior (line Ĉ(1) in Fig. 3b), in order to prevent singu-
larities. Sources inside the inclusion have unknown amplitudes a(iter)

n j,n_ext (the super-
script (iter) indicates the number of the iteration). In the exterior elastic medium
the scattered displacement fields are given by:

u(0)i (x,ω) =
NS

∑
n=1

2

∑
j=1

[
a(0)n j,n_extG ji(x,xn_ext ,ω)

]
(7)

where G ji(x,xn_ext ,ω) are the fundamental solutions which represent the displace-
ments at points x in the medium, in direction i, caused by a unit point force in
direction j applied at positions xn_ext . n_ext are the subscripts that denote the load
order number placed along line Ĉ(1).
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Figure 2: Iteration 0, step 1: a) geometry of the problem; b) discretization of the
crack: nodal points and boundary elements

The amplitudes of the unknown virtual loads a(iter)
n j,n_ext can only be evaluated if null

tractions are imposed along the boundary S2 along the NS collocation points xcol .
This must be done taking into account the scattered field generated at inclusion 1,
the crack, which can be viewed as an incident field that strikes the second inclusion
u(0)i,12 (xcol,nn2,ω) = −

∫
S1

u(0)j (x,ω) H i j (x,nn1,nn2,xcol,ω) ds. So Eq. (7) needs to
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Figure 3: Iteration 0, step 2: a) geometry of the problem; b) cavity: nodal points
and boundary elements

be modified accordingly,

u(0)i,12 (xcol,nn2,ω)+ui_inc (xcol,nn2,xs,ω)

+
NS

∑
n=1

2

∑
j=1

[
a(0)n j,n_extG ji(xcol,nn2,xn_ext ,ω)

]
= 0 (8)

The Green’s functions G ji(xcol,nn2,xn_ext ,ω) are defined by applying the traction
operator to G(1)

i j (x,y,xcol,ycol,ω), which can be obtained by combining the deriva-
tives of the former Green’s functions, in order to x and y, so as to obtain the stresses
[Castro and Tadeu (2012)]. In these equations, nn2 is the unit outward normal to
the boundary S2 at the collocation points xcol .

This leads to a system of [2NS×2NS] equations (Ca(0) = u(0)inc), which allows the

unknown amplitudesa(0)n j,n_ext to be defined.[
−Gnn

ji
][

a(0)n j,n_ext

]
=
[
−u(0)i_inc

]
(9)

where n = 1,NS, u(0)i_inc = u(0)i,12 (xcol,nn2,ω)+ui_inc (xcol,nn2,xs,ω).

The scattered field at xrec can be computed as

ui,02 (xrec,ω) =
NS

∑
n=1

2

∑
j=1

[
a(0)n j,n_extG ji(xrec,xn_ext ,ω)

]
(10)
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At the end of this iteration the total displacement field at the receiver would be

ui (xrec,ω) = ui_inc(xrec,xs,ω)+
M

∑
m=1

ui,0m (xrec,ω) (11)

In this case M = 2 (the number of inclusions).

Iteration k - Step 1: The first inclusion is only illuminated by the field scattered
by the second inclusion in the conditions defined in the iteration k-1 at Step 2 (see
Figure 4a).

The incident field is the scattered field generated in the previous iteration by the
second inclusion

u(k−1)
i,21 (x0,nn2,xn_ext ,ω) =

NS

∑
n=1

2

∑
j=1

[
a(k−1)

n j,n_extG ji(x0,nn2,xn_ext ,ω)
]

(12)

which leads to

au(k)i (x0,ω) = −
∫
S1

u(k)j (x,ω) H i j (x,nn1,nn2,x0,ω) ds+u(k−1)
i,21 (x0,nn2,xn_ext ,ω)

(13)

A system of [2N ×2N] equations similar to the previous one at iteration 0 is re-
quired to solve Eq. (13), where only the constant matrix needs to be modified
(Bu(k) = u(k)inc). Thus, if during iteration 0 the system has been solved by defining
its inverse matrix B−1, the new solution does not require the system to be solved,

u(k) = B−1u(k)inc.

The scattered pressure field at the receiver xrec can then be calculated as

ui,k1 (xrec,ω) = −
∫
S1

u(k)j (x,ω) Hi j (x,nn1,nn2,xrec,ω) ds (14)

Iteration k - Step 2: The second inclusion is now only illuminated by the field
scattered by the first inclusion at Step 1 (see Figure 4b).

The stress field generated by the first inclusion at Step 1 is the only incident field
that strikes the cavity u(k)i,12 (xcol,nn2,ω)= −

∫
S1

u(k)j (x,ω) H i j (x,nn1,nn2,xcol,ω) ds,

which leads to

u(k)i,12 (xcol,nn2,ω)+
NS

∑
n=1

2

∑
j=1

[
a(k)n j,n_extG ji(xcol,nn2,xn_ext ,ω)

]
= 0 (15)
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Figure 4: Iteration k: a) step 1; b) step 2

This leads to the system of [2NS×2NS] equations (Ca(k) = u(k)inc), similar to the one
defined before in equation (9) where only the constant matrix needs to be replaced
by u(k)i_inc = u(k)i,12 (xcol,nn2,ω). The values a(k)n j,n_ext can thus be obtained as a(k) =

C−1u(k)inc.

The new scattered field produced by this inclusion at xrec is then

ui,k2 (xrec,ω) =
NS

∑
n=1

2

∑
j=1

[
a(k)n j,n_extG ji(xrec,xn_ext ,ω)

]
(16)

At the end of iteration k the total displacement field at the receiver would be

ui (xrec,ω) = ui_inc(xrec,xs,ω)+
k

∑
iter=0

M

∑
m=1

ui,iter m (xrec,ω) (17)

The iterative process continues until the contribution of the scattered field to the
displacement at a certain receiver reaches a predefined threshold.

The proposed iterative coupling requires only the solution of the individual inclu-
sions’ linear system of equations. Given the example used to illustrate the algo-
rithm procedure, the two individual systems of [2N ×2N] and [2NS×2NS] equa-
tions would only need to be solved once. The full coupling would require solving
a system of [2(N +NS)×2(N +NS)] equations. This process would be more rel-
evant if there were a large number of inclusions, when the size of the system of
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equations used by the full coupling would be larger than the systems associated
with each inclusion, as used in the proposed iterative coupling.

3 Performance of the proposed iterative coupling formulation

The performance of the proposed iterative coupling algorithm (MFS/TBEM) was
checked by applying it to solve the elastic field produced by a steady state blast line
load emitting different excitation frequencies and placed in the presence of circular
empty cracks embedded in the vicinity of an empty cavity in an unbounded elastic
medium.

The CPU time is computed and compared with the times obtained for a full cou-
pling formulation.

The null-thickness, 90◦ arc-shaped cracks, are centered at (5.0m, 20.0m), have
radii of 6.00 m and each has a length of 3 π m. They are equally spaced when
all three cracks are in place at the same time. The empty cavity is centered at
(20.0m, 9.0m) and has a radius of 4.0 m (see Fig. 5).

Three separate problems are solved by combining the number of the crack inclu-
sions, viz. one crack inclusion (Case 1), two crack inclusions (Case 2) and three
crack inclusions (Case 3).

Each crack is discretized as an open line and loaded with dipole loads (200 TBEM
boundary elements), while the cavity boundary is modeled using 160 virtual sources
placed at 0.8 m from the inclusion surface.

The host medium, with a density of 2200 kg/m3, allows P-wave and S-wave veloc-
ities of 1651.4 m/s and 1011.3 m/s, respectively. This system is illuminated by a
wave field generated by a dilatational line load placed within the subdomain defined
by the three cracks, at (0.0 m, 20.0m).

The resulting displacement is obtained over a grid of 18268 receivers arranged
along the x and y directions at equal intervals and placed from x = −5.0m to x =
25.0 m and from y =−10.0 m to y = 30.0 m.

For each case the real and imaginary parts of the x and y−displacement field ob-
tained using the full coupling formulation are computed and the associated CPU
time is registered at each receiver.

The number of iterations and the CPU time required at each receiver is also cal-
culated with the proposed iterative coupling formulation. The definition of the
number of iterations results from the imposition of a convergence criterion at each
receiver, by which the difference between the displacement obtained at two succes-
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sive iterations satisfies the following condition∣∣∣∣∣ k

∑
iter=0

M

∑
m=1

ui,iter m(xrec,ω)−
k−1

∑
iter=0

M

∑
m=1

ui,iter m(xrec,ω)

∣∣∣∣∣/
∣∣∣∣∣ k

∑
iter=0

M

∑
m=1

ui,iter m(xrec,ω)

∣∣∣∣∣
≤ 1E − 05. (18)

The computations have been performed for two excitation frequencies, f = 4.0 Hz
and f = 200.0 Hz, with a small imaginary part of the form ωc = ω − iη (in which
η = 0.7∆ω = 0.7x2πx4). As can be seen in Figures 6 – 8, the number of iterations
varies with the position of each receiver.

The number of iterations needed for each case is higher when the excitation fre-
quency is higher.

The CPU time and the number of iterations increase the greater the number of
cracks, as expected. In all cases the iterative coupling performs better than the full
coupling. However, the iterative coupling seems to work better when the number
of cracks to be modeled is higher.

Additional simulations have been performed using the same frequencies but with
different imaginary parts (not illustrated). As in Part I it was found that as the
frequency increment increases the number of iterations and CPU time decrease,
while the opposite occurs for decreasing frequency increments. This is because a
smaller ∆ω is associated with a larger time window, which accounts for a larger
number of multi-reflections.

4 Time responses using the proposed iterative coupling formulation

The usefulness of the proposed iterative coupling algorithm (TBEM/MFS) is illus-
trated by solving the elastic field produced by a blast line load placed in the pres-
ence of circular empty cracks embedded in the vicinity of an empty cavity in an
unbounded elastic medium with the geometry described for Case 3. The properties
assumed for the elastic medium are the same as described above.

Each crack is discretized as an open line using the TBEM and discretization uses
a number of boundary elements that changes from frequency to frequency. A ratio
of 8 between the wavelength and the length of the boundary element was used.
In any case a minimum number of 80 boundary elements was set to model each
crack. The cavity boundary is modeled by the MFS, using virtual loads/collocation
points that changed from frequency to frequency according to the ratio between
the wavelength and the distance between collocation points, which was set at 8. A
minimum of 160 virtual loads/collocation points were used. In the present example,
the virtual loads are placed 0.8 m from the cavity’s boundary.
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Figure 5: Geometry of the problem

This system is illuminated by a wave field generated by a dilatational line load
placed in the subdomain defined by the three cracks, at (0.0 m, 20.0m), modeled
as a Ricker wavelet with a characteristic frequency of 500Hz. The computations
are performed in the frequency domain for frequencies ranging from 4.0 Hz to
2048.0 Hz, with a frequency increment of 4.0 Hz, which determines a total time
window of 0.25 s.

The resulting displacement is obtained over a grid of receivers arranged as de-
scribed before.

A set of snapshots taken from computer animations is presented in Fig. 9 to il-
lustrate the resulting wave field at different time instants in terms of x- and y- dis-
placement components (ux and uy). These displacement fields correspond to the
incident field generated by the 2D source plus the scattered field generated by the
thin cracks and empty inclusion.

The color scale adopted ranges from blue (lower displacement values) to red (higher
displacement values).

The waves excited by the dilatational source first hit the surface of the crack that
is furthest to the left. The waves are all reflected back as P- and S-waves, but
they are as yet indistinguishable as they overlap. At t = 1.83 ms (see Figure 9a)
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Figure 6: Elastic problem – one crack



Iterative coupling between the TBEM and the MFS 349
  4.0 Hzf   200.0 Hzf   

Fu
ll 

co
up

lin
g 

R
ea

l p
ar

t 

 

Im
ag

. p
ar

t 

 
1.132 saverage CPU time  1.465 saverage CPU time   

Ite
ra

tiv
e 

co
up

lin
g 

 
0.694 saverage CPU time  1.006 saverage CPU time   

 

Figure 7: Elastic problem – two cracks
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the diffracted wavefield is evident around the top of the crack. At t = 5.49ms the
wavefront has reached the other two cracks. Additional diffractions can be seen
at the edges of the cracks as well additional reflections at their surface (see Figure
9b). The wave front has reached the rightmost gap between the cracks.

The wave energy trapped within the subdomain defined by the concave part of the
cracks generates a complex wave field due to the multiple reflections, whereas the
energy diffracted at the edges of the cracks spreads out through the gaps between
the cracks, propagates away and reaches the surface of the empty cavity, whence
it is reflected back (see Figure 9c at t = 13.12ms). Very well-developed P- and S-
waves can be observed propagating and travelling at different velocities through the
unbounded elastic medium.

As time passes, the wavefield becomes more and more intricate due to the in-
teraction of the different diffracted and reflected waves, as can be observed at
t = 24.41ms in Figure 9d.

5 Conclusions

The TBEM and the MFS have been coupled using an iterative formulation to solve
elastic scattering problems within a domain that incorporates cavities and cracks.
The MFS was used to model the cavities, thus avoiding the discretization of the
boundary and the need of integrals, as required by boundary element methods.
The TBEM was used to model the cracks where the classical formulation of the
boundary element method fails and the application of the MFS requires the domain
decomposition. The iterative procedure allows the scattered field created by a large
number of inclusions to be computed by using a series of systems of equations that
are smaller than those required when a full coupling is applied.

The effectiveness of the proposed iterative coupling formulation was checked by
computing the CPU time required and comparing it with that used by a full coupling
formulation. The number of iterations has also been calculated with the iterative
formulation. The CPU time and the number of iterations both increase for higher
excitation frequencies and when the number of inclusions increases. In all cases
the iterative coupling requires less CPU time than the full coupling. The iterative
coupling has proven to be more advantageous when the number of cracks to be
modeled is greater. The applicability of the proposed iterative formulation has been
illustrated by computing the responses generated by the elastic wave propagation
in the vicinity of a cavity and cracks.
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Figure 8: Elastic problem – three cracks
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d) 

 
Figure 9: Time domain displacements ux (left column) and uy (right column) for
Case 3 for a characteristic frequency of 500 Hz a) t = 1.83 ms; b) t = 5.49ms; c)
t = 13.12 ms; d) t = 24.41 ms

References

Amado Mendes, P.; Tadeu, A. (2006): Wave propagation in the presence of empty
cracks in an elastic medium. Computational Mechanics, vol. 38, no. 3,pp. 183-199.

Castro, I.; Tadeu, A. (2012): Coupling the BEM/TBEM and the MFS for the nu-
merical simulation of elastic wave propagation Engineering Analysis with Bound-
ary Elements, vol. 36, pp. 169-180.

Guiggiani M. (1998): Formulation and numerical treatment of boundary integral
equations with hypersingular kernels. In: Sladek V, Sladek J, editors. Singular In-
tegrals in Boundary Element Methods. Southampton and Boston: Comput. Mech.
Publications.

Prosper D.; Kausel E. (2001): Wave scattering by cracks in laminated media. In:
Atluri SN, Nishioka T, Kikuchi M (eds), CD: Advances in Computational Engi-
neering and Sciences. Proceedings of the international Conference on Computa-
tional Engineering and Science ICES’01, Puerto Vallarta, Mexico,19-25/08/2001.
Tech Science Press

Tadeu A.; Kausel E. (2000): Green’s Functions for Two-and-a-half Dimensional
Elastodynamic Problems. J. Eng. Mech. vol. 126, no. 10, pp. 1093-1097.



354 Copyright © 2013 Tech Science Press CMES, vol.91, no.5, pp.337-354, 2013

Tadeu, A.; António, J.; Ferreira, P. (2013): Iterative coupling between the
BEM/TBEM and the MFS. Part I - Acoustic wave propagation. Computer Mod-
eling in Engineering & Sciences vol.91, no. 3, pp.153–176.


