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Dam-break model with Characteristic-Based
Operator-Splitting Finite Element Method

Da-guo Wang1,2 and Leslie-George Tham2 and Qing-xiang Shui1

Abstract: A finite element method, which is the characteristic-based operator-
splitting (CBOS) algorithm, is adopted to solve unsteady incompressible Navier-
Stokes (N-S) equations. In each time step, the equations are split into the diffusive
part and the convective part. The convective part is discretized using the charac-
teristic Galerkin method and solved explicitly. The moving interface is captured
by the pseudo-concentration method, thus, a new dam-break model is established.
Through the validation of a dam-break onto a downstream dry bed or wet bed, it is
shown that the present model can accurately simulate the moving interface flows.
We also study dam-break in a confined reservoir and the dam-break wave impact
on a spur dike. The complexity of the interface shape occurring in the different
stages, including the gradual formation of the air bubble in the case of dam-break
in a confined reservoir, and the generation of dam-break wave, the overtopping the
spur dike and the impacting on the downstream seabed in the case of the dam-break
wave impact on a spur dike, can be obtained.

Keywords: characteristic-based operator-splitting finite element method, N-S equa-
tions, pseudo-concentration method, dam-break

1 Introduction

Dam-break flows are an important practical problem in civil engineering and their
prediction is a required element in the design of a dam and its surrounding envi-
ronment. There are two common approaches, namely Shallow Water approach and
Navier-Stokes (N-S) approach, to solve the dam-break problem. Numerical simu-
lation of the N-S approach is complex, since it involves the solution of the unsteady
incompressible N-S equations coupled with the moving interface tracking.
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There are commonly-used three numerical methods to solve the unsteady incom-
pressible N-S equations, i.e., finite difference method (FDM) [Douglas and Russell
(1982)], finite volume method (FVM) [Boivin, Cayré, and Hérard (2000); Kami and
Ossowski (2011)] and finite element method (FEM). The FEM is widely used for its
good ability in dealing with complex geometric boundaries and various finite ele-
ment methods have been developed. The traditional Galerkin finite element scheme
is equivalent to the central difference. With the increase of Reynolds number, the
convective term in the N-S equations gradually becomes more dominant. It ex-
hibits strong nonlinear characteristics, which leads to the distortion and oscillation
of numerical solutions. In order to overcome the above difficulties, many efforts
have been devoted to develop stabilized methods, which include Petrov-Galerkin
(P-G) method [Christie, Griffiths, Mitchell, and Zienkiewicz (1976)], least square
finite element method [Hughes, Franca, and Hulbert (1989)], Taylor-Galerkin (T-G)
method [Donea (1984)], characteristic-based-split (CBS) algorithm [Zienkiewicz,
Nithiarasu, Codina, Vázquez, and Ortiz (1999)] and characteristic-based operator-
splitting (CBOS) algorithm [Wang, Wang, Xiong, and Tham (2011)]. The CBOS
algorithm, which combined the advantages of the CBS algorithm and the operator-
splitting algorithm, split the N-S equations into the diffusive part and the convec-
tive part within each time step by adopting operator-splitting technique. Both the
convection dominated characteristics and diffusive property are considered by solv-
ing the two parts separately. The simple explicit characteristic time discretization,
which involves a local Taylor expansion, is referenced from the CBS algorithm and
applied to the discretization of the convective part. An additional steady streamline
diffusion term is given by the discretization equation along the characteristic. It
differs from the previous methods in which the weight function is modified by ar-
tificial or empirical factor. Thus the difficulty of choosing weight functions in P-G
method or other finite element methods is avoided.

Meanwhile, there are a lot of numerical methods advocated for solving moving in-
terface problems. They might be classified into two categories: interface tracking
approach [Hirt, Cook, and Butler (1970); Masud and Hughes (1997)] and interface
capturing approach. In the interface capturing approach, the mesh remains fixed
and the moving interface can not be directly defined by the mesh nodes. Therefore,
additional technique is necessary to define the areas occupied by fluid or gas on ei-
ther side of the interface. The marker-and-cell (MAC) method [Harlow and Welch
(1965)], the volume of fluid (VOF) method [Hirt and Nichlos (1981); Park, Kim,
Kim, and Van (2012)], the level set method (LSM) [Osher and Sethian (1988)] and
the pseudo-concentration method (PCM) [Kac̆eniauskas (2008); Aliabadi and Tez-
duyar (2000)] are well known methods using the interface capturing approach. In
the PCM, it uses a pseudo-concentration function defined in the entire domain and
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solves directly a hyperbolic equation to determine the moving interface. Some-
times pseudo-concentration function is chosen to be very close to volume fraction
function widely used in the VOF method and finite volumes. In the most cases the
PCM is more efficient than the LSM, because it uses simpler front reconstruction
techniques [Kac̆eniauskas (2008); Aliabadi and Tezduyar (2000)].

A new dam-break model, in which the CBOS algorithm is used to solve the N-
S equations and the PCM is used to capture the moving interface, is established.
The dam-break onto a downstream dry bed or wet bed is adopted to validate the
present model. In addition, we study the dam-break in a confined reservoir and
the dam-break wave impact on a spur dike. In Section 2, the governing equations
are illustrated. The numerical methods and finite element solutions are discussed in
Section 3. In Section 4, the surface tracking is described and the solution procedure
is reported in Section 5. The model verification and the model application are
carried out in Section 6 and in Section 7 respectively.

2 Governing equations

The two-dimensional unsteady viscous incompressible flows can be governed by
the N-S equations and theirs forms are expressed as
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where i, j = 1,2, xi is the Cartesian coordinates, ui is the velocity components in xi

direction, p is the pressure, t is the time, µ is the dynamic viscosity coefficient, ρ

is the density of the fluid, f1 is the external force in horizontal direction and f2 is
the external force in vertical direction.

3 Numerical methods and finite element solutions

3.1 Operator-splitting algorithm

By adopting the operator-splitting algorithm, the governing equations (1) and (2)
are split into the diffusive part ρ
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and the convective part

∂un+1
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+un+1

j
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i
∂x j

= 0, (4)

where un+θ

i is the solution of the diffusive part (3) at the n+ 1th time step and is
also the initial value of the convective part (4) at the n+1th time step, un+1

i is the
solution of the convective part (4) at the n+ 1th time step and is also the solution
of the N-S equations (1)-(2) at the n+1th time step.

3.2 Characteristic method of the convective term

The one-dimensional scalar convection equation can be written as
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The characteristic formula of Eq. (5) is
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= u (6)

Let
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Taking the differentiation of Eq. (7) gives
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, t), we have
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Along the characteristic, the convective equation can be written as
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So, φ is consistent with the characteristic
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where δ = ū∆t, ū is the averaged value of u along the characteristic, ∆t is the time
step. Approximating ū, we can obtain

ū =
un+1 + un|x−δ

2
(12)

Through the Taylor expansion, we have
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= un−∆tun ∂un
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Substituting Eq. (13) into Eq. (12) gives
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2
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where un+1/2 = un+1+un

2 . Inserting the δ into Eq. (11), we get
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In order to obtain a fully explicit scheme, un+1/2 can be approximated as

un+1/2 = un− ∆t
2
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Substituting Eq. (16) into Eq. (15) and ignoring all higher-order terms gives

φ
n+1−φ

n =−∆tun ∂φ n

∂x
+∆t2un ∂

∂x

(
un ∂φ n

∂x

)
. (17)

Extending Eq. (17) to the two-dimensional nonlinear convective equation, we ob-
tain the temporal discretization of the convective part as
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where k = 1,2. The last term in Eq. (18) is the steady diffusive term along the
streamline, which is directly derived from the convective equation.

3.3 Finite element solutions

3.3.1 Finite element solutions for the diffusive part

The temporal discretization of the diffusive part (3) is performed by the backward
difference method. Omitting the superscript of p and taking un+θ

i as ui, we have
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We take each element as quadrilateral with 9-nodes where all nine nodes are associ-
ated with velocities and only corner nodes with pressures. Employing the standard
Galerkin method, the spatial discretization of Eq. (19) can be obtained

ρuiβ

∫∫
Ω

Nβ Nα dΩ+∆tµuiβ

∫∫
Ω

(
∂Nβ

∂x j
+

∂Nβ

∂xi
δi j

)
∂Nα

∂x j
dΩ

−uiβ

∫∫
Ω

∂Nβ

∂xi
Ml dΩ−∆t pl

∫∫
Ω

Ml
∂Nα

∂xi
dΩ (20)

= ∆tµ
∫∫

Γ

∂ui

∂n
Nα dΓ+∆tρ

∫∫
Ω

fiNα dΩ−∆t
∫∫

Γ

ni pMlNα dΓ+ρun
iβ

∫∫
Ω

Nβ Nα dΩ

where Nα , Nβ are the quadratic interpolation function, Ml is the linear interpolation
function, α = 1,2, . . . ,m, β = 1,2, . . . ,m, l = 1,2, . . . ,h, m is the number of velocity
nodes of basic element and m = 9, h is the number of pressure nodes of basic
element and h = 4, δi j is the permutation operator, δi juiβ = u jβ . The pressure pn+1

and velocities un+θ

i can be obtained from Eq. (20).

3.3.2 Finite element solutions for the convective part

Similar to the diffusive part, the weak form of Eq. (18) is established by the standard
Galerkin method as follows
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Integrating the last term in the left of Eq. (21) by the partial integration method and
ignoring the influence of boundary item gives∫∫
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From Eq. (23), we have
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where Nγ and Nη are the quadratic interpolation function, γ,η = 1,2, . . . ,m. The
velocities un+1

i can be derived from Eq. (23).
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4 Surface tracking

The propagation of the moving interface is described by the PCM [Kac̆eniauskas
(2008); Aliabadi and Tezduyar (2000)] based on the interface capturing approach.
The evolution of the interface is governed by the time dependent convection equa-
tion

∂C
∂ t

+u ·∇C = 0 (24)

where C is the pseudo-concentration function serving as a marker identifying water
A and air B with densities ρA and ρB and viscosities µA and µB. Thus, in the N-S
Eqs. (1)-(2), the density and the viscosity are defined as

ρ =CρA +(1−C)ρB, (25)

µ =CµA +(1−C)µB. (26)

C = 1 for water A and C = 0 for air B. The initial conditions defined on the entire
solution domain should be prescribed for the Eq. (24).

The solution of Eq. (24) is the same as that of the convective part (4) and it can be
discretized using the characteristic Galerkin method.

5 Solution procedure

(1) The density and the viscosity in the N-S Eqs. (1)-(2) can be obtained by solving
Eqs. (25)-(26).

(2) Solve the diffusive part (3) to obtain un+θ

i and pn+1.

(3) Take un+θ

i as the initial value of the convective part (4) and solve the convective
part (4) to get un+1

i .

(4) Solve Eq. (24) to gain Cn+1.

(5) Progress with a time step and go back to step 1.

6 Model verification

Dam-break onto a downstream dry bed or a wet bed is used to validate the dam-
break model. In all the cases, including the following Section 7, the fluids involved
are water, with ρA = 1000kg/m3 and µA = 10−2Pa · S, and air, with ρB = 1kg/m3

and µB = 10−4Pa ·S. For convenience, dimensionless length, time and pressure are
defined as

x∗ = x/H, (27)
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y∗ = y/H, (28)

t∗ = t
√

g/H, (29)

p∗ = p/ρAgH, (30)

where H is the upstream water level height and g is the gravity acceleration.

6.1 Dam-break onto a dry bed

Fig. 1 depicts the problem lay-out and the mesh. All boundaries are considered as
impermeable and frictionless walls. A pressure datum is set at the upper right hand
corner, where the pressure is set to zero. The computational domain is divided into
128×48 quadrilateral elements.

 

H

H 2H

0.2H

0.25H

x

O

y

A B C

0.5H 
0.25H

0.5H 0.5H

D E

 

(a) Problem lay-out (where H  is the upstream water level height and 
0.05175mH ) 
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(b) Mesh and boundary conditions 

Figure 1: Dam-break on a dry bed case
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Fig. 2 shows the position of the water wave front and the height of the residual
water column as functions of elapsed time. Good agreement with the experimental
data and the other computational results indicates that the present model is capable
of predicting the collapse of water column accurately. In order to illustrate the
evolution of the free surface, Fig. 3 shows the free surfaces at different instant.
The water column starts to collapse from the upper right. The water wave then
accelerates rapidly along the floor in the right direction as time elapses.

(a) Position of the water wave front

(b) Height of the residual water column

Figure 2: Position of the water wave front and height of the residual water column
as functions of time (where solid lines are the results of the present model, round
dot markers are the results in [Kim and Lee (2003)] and quadrate dot markers are
the results in [Martin and Moyce (1952)])
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 (a) t*=0.1377 

        

 (b) t*=0.2754 

        

 (c) t*=0.5508 

        

 (d) t*=0.8861 

        

 (e) t*=1.1014 

        

 (f) t*=1.3768 

        

 (g) t*=1.6522 

Figure 3: Free surface profiles at different instant on a dry bed case (Left: results
in [Kim and Lee (2003)]; right: results of the present model)

Fig. 4 plots the pressure history at the control points indicated in Fig. 1. The pres-
sure near the dam site doesn’t satisfy the hydrostatic pressure. It starts increasing
as the water starts flowing in the downstream direction. Later on, it decreases. Fi-
nally, as time evolves, it approaches the hydrostatic value. This is agreement with
that found in [Quecedo, Pastor, Herreros, Merodo, and Zhang (2005)] adopted N-S
equations.
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0
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Figure 4: Evolution of the pressure at the control points (Location of the control
points shown in Fig. 1)
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6.2 Dam-break onto a wet bed

Fig. 5 presents the problem lay-out and the mesh. All boundaries are considered as
impermeable and frictionless walls. A pressure datum is set at the upper right hand
corner, where the pressure is set to zero. The computational domain is divided into
180× (40+5) quadrilateral elements.
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(a) Problem lay-out (where H  is the upstream water level height and 
0.1mH ) 
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(b) Mesh and boundary conditions 

Figure 5: Dam-break on a wet bed case

Fig. 6 depicts the evolution of the surface after dam failure. At the initial instant
after failure, the vertical and horizontal velocities at the point M (Shown in Fig. 5)
are of the same order of magnitude, so it will produce the upper-right surge wave
(Shown in Figs. 6(a-d)). Later on, the vertical velocity becomes progressively mi-
nor compared to the horizontal component, but the height of the surge wave in-
creases constantly (Shown in Figs. 6(e-f)). As time passes, the vertical velocity is
almost zero, the height of the surge wave hardly increases (Shown in Figs. 6(g-p)).
Around t∗= 1.287, under gravity, the front of the surge wave begins to move down-
ward and a curved surface is gradually formed. At t∗= 2.2572, the front impacts on
the water of the downstream wet bed. This result is also found in [Quecedo, Pastor,
Herreros, Merodo, and Zhang (2005)] adopted the N-S equations. Meanwhile, at
the initial time of failure, the water wave front of the present model is behind the
one of the Shallow Water approach (Shown in Fig. 6(h)), but as time elapses, the
difference reduces to become negligible (Shown in Fig. 6(p)), which results from
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the hydrostatic pressure distribution assumed by the Shallow Water approach. This
is agreement with that found in [Quecedo, Pastor, Herreros, Merodo, and Zhang
(2005)] and in [Mohapatra, Eswaran, and Bhallamudi (1999)].
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(d) t*=0.792 

 
(e-1) 

 
(e-2) 

(e) t*=0.9702 

 
(f) t*=1.089 

 
(g) t*=1.287 

 
(h-1) 

 
(h-2) 



Dam-break model 367

 
(h-3) 

(h) t*=1.4355 
 

(i) t*=1.584 

 
(j) t*=1.7325 

 
(k-1) 

 
(k-2) 

 
(k-3) 

(k) t*=1.9008 

 
(l) t*=2.079 

 
(m) t*=2.2275 

 
(n) t*=2.2572 

 
(o) t*=2.4255 

 
(p-1) 

 
(p-2) 

 
(p-3) 

(p) t* =2.5938 
Figure 6: Free surface profiles on a wet bed case (where Figs. (a-2), (b), (c-2), (d), (e-2), (f), (g), (h-2), (i), (j),
(k-2), (l), (m), (n), (o) and (p-2) are the results of the present model; Figs. (a-1), (c-1), (e-1), (h-1), (k-1) and (p-1)
are the results in [Quecedo, Pastor, Herreros, Merodo and Zhang (2005)] adopted the N-S equations; Figs. (h-3),
(k-3), (p-3) are the results in [Quecedo, Pastor, Herreros, Merodo, and Zhang (2005)] adopted the Shallow Water
equations)
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Fig. 7 depicts the evolution of the pressure at the ten control points indicated in
Fig. 5. It should be pointed out that the pressure of the downstream bed suddenly
increases while the front of the surge wave impacts on the downstream wet bed.
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Figure 7: Evolution of the pressure at the control points (Location of the control
points shown in Fig. 5)

7 Model application

7.1 Dam-break in a confined reservoir

Fig. 8 presents the problem lay-out and the mesh. No-slip boundary condition
is imposed on the top wall, and the other sides are slip boundary conditions. A
pressure datum is set at the upper right hand corner, where the pressure is set to
zero. The computational domain is divided into 120×40 quadrilateral elements.

Fig. 9 shows the time evolution of the surface after dam failure in a confined reser-
voir. The complexity of the interface shape occurring in the different stages can be
easily captured. Figs. 9(c), 9(d), 9(e) illustrate the behaviour of the flow in the right
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corner at the top wall. The backward moving wave fold gradually over and a small
amount of air is trapped in Figs. 9(f), 9(g), 9(h), 9(i), 9(j), 9(k) and 9(l). Figs. 9(j),
9(k) and 9(l) depict that another small amount of air is gradually trapped.

 

2H 

x

O

y

3H 3H

 

(a) Problem lay-out ( H  is the upstream water level height and 0.015mH ) 

 

0v

0, 0u v

0u0u
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(b) Mesh and boundary conditions 

Figure 8: Dam-break in a confined reservoir

    

    (a) t*=0.7672                       (b) t*=2.5573 

    

(c) t*=3.5803                      (d) t*=4.1429 

    

 (e) t*=5.0380                       (f) t*=5.7284 
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  (g) t*=6.6235                       (h) t*=6.7258 

    

  (i) t*=6.8025                        (j) t*=7.0838 

    

  (k) t*=7.2885                       (l) t*=7.5697 

Figure 9: Free surface profiles in a confined reservoir (where t∗ is dimensionless
time and defined in Eq. (29))

7.2 Dam-break wave impact on a spur dike

Dam-break wave has a powerful impact on the downstream dam and seriously
threaten the safety of the downstream dam. In the paper, the dam is assumed as
a rigid spur dike and the downstream bed is considered initially dry. Fig. 10 depicts
the problem lay-out and the mesh. All boundaries, including the top and the sides
of the spur dike, are considered impermeable and frictionless walls. A pressure
datum is set at the upper right hand corner, where the pressure is set to zero. The
computational domain is divided into 6436 quadrilateral elements, and the length
and the width of each element is H3/16. For convenience, dimensionless length,
time and pressure are defined as

x∗ = x/H3 = 50x, (31)

y∗ = y/H3 = 50y, (32)

t∗ = t
√

g/H3 = 22.15t, (33)

p∗ = p/ρAgH3 = 0.005p. (34)

Fig. 11 depicts the free surfaces at different instant. Figs. 11(a), 11(b) and 11(c)
illustrate the generation of the dam-break wave. The dam-break wave overtopping
the spur dike is shown in Figs. 11(d), 11(e), 11(f) and 11(g). Figs. 11(h) and 11(i)
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represent the wave impinging on downstream seabed. Fig. 12 depicts the evolution
of the pressure calculated at the control points indicated in Fig. 10. The pressures,
including acting on the downstream seabed and the spur dike, suddenly increase
under the dam-break wave over the spur dike impacting on the downstream seabed.
In addition, it should be pointed out that at point located at the top of the spur dike,
the pressure decreases even up to negative values, which may be the reason that the
center of curvature of the free surface is below the free surface in [Quecedo, Pastor,
Herreros, Merodo, and Zhang (2005)].
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Figure 10: Dam-break wave impact on a spur dike (where H3 is the height of spur
dike and H3 = 0.02m, H1 is the upstream water level height and H1/H3 = 2.5,
and HY +H1 = 2.625H3, H2 is the water level height between the failure dam site
and the spur dike and H2 = 0.9375H3, L1 the length of the upstream riverbed and
L1 = 2.5H3, L2 is the length between the failure dam site and the spur dike and
L2 = 2.0H3, L3 is the width of the spur dike and L3 = 0.125H3, Lx is the length
between point J and the spur dike and Lx = 1.625H3 in the case of the paper, and
the J is the maximum pressure point that dam-break wave overtopping the spur
dike impacts on the downstream riverbed)
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(a) t*=0.0222 

 

(b) t*=0.7753 

 

(c) t*=1.329 

 

(d) t*=1.5062 

 

(e) t*=2.215 

 

(f) t*=2.658 

 

(g) t*=3.3325 

 

(h) t*=4.3193 

 

 (i) t*=4.873 

Figure 11: Dam-break wave overtopping a spur dike
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Figure 12: Evolution of the pressure at the control points (Location of the control
points shown in Fig. 10)

8 Conclusions

A new dam-break model, in which the CBOS algorithm is used to solve the N-S
equations and the PCM is used to capture the moving interface, has been developed.

Dam-break onto a downstream dry bed or wet bed is conducted to verify the present
model and it is shown that the present results agree well with the existing solutions
or experimental data, so the present model can accurately simulate the moving
interface flows.

The complexity of the interface shape occurring in the different stages in the case
of dam-break in a confined reservoir, including the gradual formation of the air
bubble, can be captured.

For the case of the dam-break wave impact on a spur dike, we successfully repro-
duce the complex flow process of the dam-break wave over the spur dike, including
the generation of dam-break wave, the overtopping the spur dike and the impacting
on the downstream seabed. It should be pointed out that:

(i) The pressures, including acting on the downstream seabed and the spur dike,
suddenly increase while the dam-break wave over the spur dike impacts on
the downstream seabed.

(ii) The pressure at the top of the spur dike decreases even up to negative values,
which may be the reason that the centre of curvature of the free surface is
below the free surface in [Quecedo, Pastor, Herreros, Merodo, and Zhang
(2005)].
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