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Mixed-mode Fracture Mechanics Analysis of Large-scale
Cracked Structures Using Partitioned Iterative Coupling

Method
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Abstract: For large-scale fracture mechanics simulation, a partitioned iterative
coupling method is investigated. In this method, an analysis model is decomposed
into two domains, which are analyzed separately. A crack is introduced in one
small domain, whereas the other large domain is a simple elastic body. Problems
concerning fracture mechanics can be treated only in the small domain. In order
to satisfy both geometric compatibility and equilibrium on the domain boundary,
the two domains are analyzed repeatedly using an iterative solution technique. A
benchmark analysis was performed in order to validate the method and evaluate its
computational performance. The computed stress intensity factors were as accurate
as those obtained using the conventional method and the theoretical solution, and
the computational performance was comparable. Based on a benchmark, a cracked
structural component model having three million degrees of freedom was analyzed.
Mode-I, mode-II, and mode-III stress intensity factors were successfully obtained
after several iteration steps.

Keywords: Computational fracture mechanics, finite element method, stress in-
tensity factor, three-dimensional, iterative method.

1 Introduction

Large-scale computational fracture mechanics is required in order to analyze cracked
structures in the real world. Several practical studies were performed in order to
analyze a real three-dimensional structure with a crack [Ural, Heber, Wawrzynek,
Ingraffea, Lewicki, and Neto (2005); Schöllmann, Fulland, and Richard (2003);
Diamantoudis and Labeas (2005); Richard, Sander, Fulland, and Kullmer (2008);
Barlow and Chandra (2005)]. For an uncracked structure, massively parallel finite
element analyses (FEA) were performed on supercomputers or personal computer
(PC) clusters [Ogino, Shioya, Kawai, and Yoshimura (2005); Bhardwaj, Pierson,
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Reese, Walsh, Day, Alvin, Peery, Farhat, and Lesoinne (2002)]. Various approaches
have been proposed for analyzing large-scale three-dimensional fracture problems.
Some problems associated with these approaches were under a mixed-mode stress
state. Ural, Heber, Wawrzynek, Ingraffea, Lewicki, and Neto (2005) used both a
finite element method (FEM) and a boundary element method (BEM), and their
solvers were run on a PC cluster. A crack was introduced on a complex-shaped
free surface and a crack propagation problem was analyzed. Schöllmann, Fulland,
and Richard (2003) used a sub-modeling approach, which is also referred to as a
global–local zooming method. In their study, stress analysis of a global model was
first conducted using tetrahedral finite elements, and the analysis results were then
mapped into a small sub-model with hexahedral finite elements. Stress intensity
factors (SIFs) and crack propagation criteria are evaluated using the sub-model.
The global model was then remeshed with the propagated crack shape. Diaman-
toudis and Labeas (2005) also used the zooming method to analyze a structure with
mode-I semi-elliptical cracks. Since the global model used in their study contained
no cracks, cracks were introduced in the local domains of several parts. In the
zooming method, the one-way mapping means that either geometric compatibility
or equilibrium cannot be satisfied between the two domains. Richard, Sander, Ful-
land, and Kullmer (2008) used the FEM, and Barlow and Chandra (2005) adopted
the BEM. They analyzed structural components with a propagation problem of sur-
face ellipse-like cracks. Kamaya, Miyokawa, and Kikuchi (2010) used s-version
FEM (SFEM) [Fish (1992)] for a problem of interacting surface cracks. In the
SFEM, the global model and the local model (the sub-model) are connected by La-
grange multipliers, and the two models are solved monolithically. Lagrange mul-
tipliers are known to increase the condition number, which is the maximum eigen-
value divided by the minimum eigenvalue of a generated stiffness matrix. In con-
jugate gradient (CG) method, which is frequently used for large-scale FEA, a large
condition number degrades its convergence property. Sukumar, Chopp, and Moran
(2003) adopted extended FEM (XFEM) [Moës, Dolbow, and Belytschko (1999)]
for a three-dimensional crack propagation problem. In the XFEM, a Heaviside
function representing a crack is superposed on finite element interpolation func-
tions. An uncracked mesh with a crack function is solved monolithically, and thus
XFEM modeling also causes ill-conditioned stiffness matrix, which is not friendly
to large-scale analyses. The finite element alternating method (FEAM) [Nishioka
and Atluri (1983)] uses a theoretical solution and FEM for a crack and for an un-
cracked global model, respectively, which are solved alternately. The FEAM was
afterward extended to SGBEM–FEM alternating method for a non-planar crack
and mixed-mode non-planar crack propagation using BEM, instead of using the
theoretical solution [Nikishkov, Park, and Atluri (2001); Han and Atluri (2002)].
In the SGBEM–FEM, a global uncracked FEM mesh and a local cracked SGBEM
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mesh are solved alternately to satisfy equilibrium using forces on a mesh boundary
and forces on a crack surface. Several three-dimensional numerical experiments
using the SGBEM–FEM and using the XFEM showed that the SGBEM–FEM can
allow a much more coarse global mesh to obtain accurate stress intensity factors
than the XFEM [Dong and Atluri (2013)]. Tetrahedral-element-based virtual crack
closure-integral methods (VCCMs) [Okada and Kamibeppu (2005); Okada, Kawai,
and Araki (2008)], which are SIF evaluation methods, were proposed for large-
scale three-dimensional computational fracture mechanics. Tetrahedral elements
are more popular in large-scale FEA than hexahedral elements because automatic
mesh generation techniques can be used.

There are a number of problems that must be addressed with regard to large-scale
FEA with fracture mechanics. The first problem is related to mesh generation. It
is difficult to generate a three-dimensional mesh that represents a complex shape
that is also adapted to a crack tip singularity. The second problem is nonlinearity.
Several nonlinear phenomena, such as plasticity, creep, large strain, contact, and
friction, tend to occur near cracks, whereas the field far from the crack remains
linear-elastic or has weak nonlinearity. In order to address these problems, we
adopted a partitioned iterative coupling method, which was imported from the field
of fluid–structure interaction coupling [Matthies and Steindorf (2003); Yamada and
Yoshimura (2008); Minami and Yoshimura (2010)]. In the method, an analysis
model is decomposed into a domain near a crack tip (a local domain: Ω L) and a
domain far from the crack (a global domain: Ω G) as in Fig. 1. Troublesome issues
concerning fracture mechanics can only be treated on the local domain. The two
domains are analyzed separately with assumed boundary conditions of uΓ and fΓ

on the domain boundary Γ . In order to satisfy the geometric compatibility and
equilibrium on the domain boundary, these domains are analyzed repeatedly with
the assumed boundary conditions successively updated using an iterative solution
technique. A converged solution that satisfies both compatibility and equilibrium
can finally be obtained.

In the present paper, the partitioned iterative coupling method is described in the
next section, and several mixed-mode fracture mechanics analyses using the method-
ology are presented. In the analysis, stress intensity factors were evaluated only on
a local mesh, whereas a global mesh was a simple elastic body without a crack.
A benchmark problem was analyzed in order to validate the proposed method and
compare the proposed method with the conventional FEM. A cracked structural
component model with a quarter-circular corner crack was analyzed. Conclusions
are finally given after the numerical experiments.
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Figure 1: Decomposed analysis model and assumed boundary conditions on the
domain boundary.

2 Methods

2.1 Model Decomposition

An analysis model is decomposed into two domains, as shown in Fig. 1. In the
present study, decomposition patterns are determined using the following strate-
gies.

1. A crack must be introduced in the local domain.

2. The size and scale of the local domain should be small.

3. On each domain, the volume of finite elements should not vary widely be-
cause wide distribution of the volume increases the condition number of the
stiffness matrix.

2.2 Partitioned Coupling

Since the two domains are analyzed separately in partitioned coupling methods,
geometric compatibility and equilibrium on the domain boundary are not satisfied
in general. However, in the partitioned iterative coupling method, they become
satisfied by using an iterative solution technique. A local analysis is represented as

f(k+1)
Γ

=−KL

(
u(k)

Γ

)
(1)

and a global analysis is represented as

u(k+1)
Γ

= KG

(
f(k+1)
Γ

)
(2)
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where k is an iteration step, uΓ is a displacement vector on the domain boundary
Γ , fΓ is a force vector on Γ , KL is a function in which a local analysis is performed
with enforced displacement boundary conditions uΓ on Γ that returns a reaction
force vector −fΓ , and KG is also a function in which a global analysis is performed
with external force boundary conditions fΓ on Γ that returns uΓ . Note that the sign
of the external force is opposite that of the reaction force. From Eqs. 1 and 2,

u(k+1)
Γ

= KG

(
−KL

(
u(k)

Γ

))
(3)

can be obtained. A residual vector r is defined as

r(k+1) = u(k)
Γ
−u(k+1)

Γ
= u(k)

Γ
−KG

(
−KL

(
u(k)

Γ

))
. (4)

If geometric compatibility on the domain boundary is satisfied, the residual vector
should become

r(k+1) = 0. (5)

This is the equation to be solved using the iterative algorithm described in the next
subsection. In addition, based on Eqs. 1, 4, and 5, that equilibrium also becomes
satisfied as

f(k+1)
Γ

− f(k+2)
Γ

=−KL

(
u(k)

Γ

)
+KL

(
u(k+1)

Γ

)
=−KL

(
u(k+1)

Γ
+ r(k+1)

)
+KL

(
u(k+1)

Γ

)
= 0. (6)

2.3 Iterative Solution Algorithm

In the partitioned iterative coupling method, the two domains are solved using an
iterative solution technique. The Block Gauss–Seidel method, line extrapolation
method, Newton method, or Broyden method is frequently used to solve fluid–
structure interaction coupling problems [Matthies and Steindorf (2003); Yamada
and Yoshimura (2008); Minami and Yoshimura (2010)]. In the present study, as
a solid–solid interaction coupling problem, the block Gauss–Seidel method with
Aitken relaxation is used to solve Eq. 5. The Block Gauss–Seidel method is a
fixed-point iteration method, in which one domain is first solved with assumed ex-
ternal force boundary conditions on the domain boundary, and displacements on the
domain boundary are obtained. The other domain is then solved with enforced dis-
placement boundary conditions of the obtained displacements, and reaction forces
are obtained. The obtained reaction forces are used for new assumed external force
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boundary conditions at the next iteration step. These processes are repeated, and a
converged solution is finally obtained. Both compatibility and equilibrium would
be satisfied by the converged solution. In order to avoid a rigid-body mode of a
local model, a local model is determined to be analyzed with assumed enforced
displacement boundary conditions on the domain boundary, while a global model
is analyzed using assumed external displacement boundary conditions.

In order to stabilize and accelerate the convergence of block Gauss–Seidel itera-
tion, the Aitken extrapolation method [Minami and Yoshimura (2010)] is used for
relaxation. When displacements uΓ on the domain boundary are mapped from one
domain to another domain, uΓ is relaxed by a relaxation parameter ω as follows:

u(k+1)
Γ

= u(k)
Γ
−ω

(
u(k)

Γ
− ũ(k+1)

Γ

)
. (7)

Note that k is an iteration step and ũΓ is a displacement vector on the domain
boundary before the relaxation. The relaxation parameter is calculated at every
iteration step using the Aitken extrapolation method as

ω
(k+1) =−ω

(k) r(k)T (r(k+1)− r(k)
)

||r(k+1)− r(k)||2
(8)

where rΓ is a residual vector. The Aitken method is based on one-dimensional
quasi-Newton method.

The algorithm of the block Gauss–Seidel method with Aitken relaxation is summa-
rized in the following pseudo code.

k← 0; τ ← 10−3; ω(0)← 0.1
f(0)
Γ
← 0; u(0)

Γ
← 0; ũ(0)

Γ
← KG

(
f(0)
Γ

)
; r(0)←−ũ(0)

Γ

while ||r(k)||/||r(0)||> τ do
f(k+1)
Γ

←−KL

(
u(k)

Γ

)
ũ(k+1)

Γ
← KG

(
f(k+1)
Γ

)
r(k+1)← u(k)

Γ
− ũ(k+1)

Γ

ω(k+1)←−ω(k) r(k)T(r(k+1)−r(k))
||r(k+1)−r(k)||2

u(k+1)
Γ

← u(k)
Γ
−ω(k+1)r(k+1)

k← k+1
end while

In the algorithm, KG is a function of input assumed external force boundary condi-
tions fΓ and output displacements ũΓ . Here, KL is also a function of input assumed
enforced displacement boundary conditions uΓ and output reaction forces−fΓ . Fi-
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nally, τ is a tolerance parameter. In the present study, the tolerance τ and the initial
relaxation factor ω(0) are always set to 10−3 and 0.1, respectively.

3 Results and Discussion

3.1 Analysis of the Benchmark Model

A benchmark problem involving a 45-deg oblique circular crack embedded in an in-
finite body subjected to uniform tension was analyzed in order to validate our solver
and to compare the proposed method with a conventional FEM solver. The infinite
body was modeled as a finite cube, as shown in Fig. 2. Its mesh is shown in Fig. 3,
which was visualized using ADVENTURE AutoGL [Kawai (2006)]. For symme-
try, the mesh is a half model, and its finite elements are isoparametric quadratic
tetrahedral elements. A crack, whose surface is shown on the right, is introduced to
the local mesh. The numbers of elements, nodes, and degrees of freedom (DOFs)
are, respectively, 6,796, 10,845, and 32,535 for the global mesh, and are, respec-
tively, 57,056, 79,579, and 238,737 for the local mesh. The numbers of nodes and
DOFs are 617 and 1,851, respectively, for the domain boundary. Although the local
mesh is larger in scale than the global mesh in such a simple benchmark model, the
local mesh becomes much smaller in the real model described in the next subsec-
tion.

Figure 2: A 45-deg oblique circular crack embedded in a finite cube.
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Figure 3: A decomposed half-model mesh for the benchmark analysis and its crack
surface mesh.

Mode-I, mode-II, and mode-III stress intensity factors were computed using a vir-
tual crack closure-integral method based on quadratic tetrahedral elements [Okada,
Kawai, and Araki (2008)]. Figure 4 shows the computed SIFs of the proposed
method, the conventional FEM, and the theoretical solution. The horizontal axis
represents a normalized angle 2φ/π of crack front coordinates, while the vertical
axis represents normalized SIFs FI, FII and FIII. The theoretical solution is a super-
position of an embedded circular crack in an infinite body subjected to pure tension
and subjected to pure shearing. The former solution was introduced by Irwin in
1962, and the latter solution was introduced by Kassir and Sih in 1966 [Murakami,
Aoki, Hasebe, Itoh, Miyata, Miyazaki, Terada, Tohgo, Toya, and Yuuki (1987)].
The theoretical solution for normalized stress intensity factors is as follows:

FI =
KI

σ0
√

πa
=

2
π
, (9)

FII =
KII

τ0
√

πa
=

4sinφ

(2−ν)π
(10)

and

FIII =
KIII

τ0
√

πa
=

4(1−ν)cosφ

(2−ν)π
. (11)

KI, KII, and KIII are mode-I, mode-II, and mode-III SIFs, respectively. σ0 = 50 MPa
is tensile loading, and τ0 = 50 MPa is shear loading. π is a circular constant, a =
10 mm is the crack radius, φ is the angle of the crack front coordinates, and ν = 0.3
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Figure 4: Computed stress intensity factors of the benchmark analysis.

is Poisson’s ratio. In Fig. 4, the numerical solutions obtained by the proposed
method and the conventional FEM are in very good agreement and are also in good
agreement with the theoretical solution.

Figure 5 shows the convergence history of the partitioned iterative coupling algo-
rithm. The horizontal axis represents the iteration count k, and the vertical axis
represents the relative residual 2-norm ||r(k)||/||r(0)||. A converged solution was
successfully obtained after eight iteration steps. Using the PC described in Tab. 1,
the computation time and memory usage were measured, and the results are pre-
sented in Tab. 2. Intel Math Kernel Library PARDISO, which is a direct linear
system solver, was used for matrix factorization (Cholesky LDL factorization) and
triangular solution (forward and backward substitutions). The partitioned iterative
coupling solver required 36 s to solve the benchmark, whereas the conventional
FEM solver required 35 s. In the proposed method, since the coupling iteration fre-
quently calls the phase of triangular solution, the proposed method requires more
computation time than the conventional method. However, in general, matrix fac-
torization dominates the computation time because of its high-order computational
complexity. The solver of the present study is not as slow as the conventional FEM
solver. On the other hand, the measured memory usage was comparable for the two
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solvers.
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Figure 5: Convergence history of the benchmark analysis.

Table 1: Specifications of the personal computer used in the present study.

CPU Intel Core i7-3930K (Sandy Bridge)
RAM DDR3 SDRAM PC3-12800, 64 GB

OS Debian GNU/Linux 6.0 (squeeze)
Compiler Intel C Compiler 12.1

Intel Math Kernel Library 10.2

Table 2: Measured computation time and memory usage of the benchmark analysis.

Present Convention
Measured Computation Time

Total Elapsed Time 36 s 35 s
Matrix Generation 1 s + 7 s 8 s

Matrix Factorization 2 s + 18 s 23 s
Triangular Solution 5 s ≈ 0 s

Other Processes 3 s 4 s
Measured Memory Usage
Total Memory Usage 2.2 GB 2.3 GB
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3.2 Analysis of a Structural Component Model with a Quarter-circular Corner
Crack

A structural component model of a curved pipe with a nozzle in which a quarter-
circular corner crack is introduced was analyzed using the partitioned iterative cou-
pling method. The model is shown in Fig. 6, and its mesh is shown in Fig. 7. In
Fig. 7, the left-hand and center images in the figure represent both show a global
mesh and a local mesh. The crack surface mesh is magnified and shown on the
right. The numbers of elements, nodes, and DOFs of the global mesh are 758,656,
1,079,880, and 3,239,640, respectively, and the numbers of elements, nodes, and
DOFs of the local mesh are 23,960, 34,865 and 104,595, respectively. The ratio of
the global number of DOFs to the local number of DOFs is 31:1, which means that
the local mesh is much smaller in size and scale than the global mesh. The stress
analysis results are shown in Fig. 8. The deformation is magnified by a factor of
10, and the color contour represents von Mises’ equivalent stress.

Figure 6: A curved pipe with a nozzle in which a quarter-circular corner crack is
introduced.

Stress intensity factors of KI, KII and KIII were evaluated on the local mesh using
the stress analysis results. The computed SIFs are shown in Fig. 9. The horizontal
axis represents a normalized angle of quarter-circular crack coordinates, whereas
the vertical axis represents the computed SIFs.
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Figure 7: Two views of a decomposed mesh for the structural component analysis
and its crack surface mesh.

Figure 8: A stress analysis result of the structural component analysis. Its defor-
mation is magnified by 10, and its color contour represents von Mises’ equivalent
stress, the unit of which is Pa.

The computational performance was measured using a PC (see Tab. 1). Figure 10
shows the convergence history. The horizontal axis shows the iteration count, and
the vertical axis shows the relative residual norm. A converged solution was ob-
tained after eight iterations. The total computation time was 1,440 s, where matrix
factorization on the global mesh required 1,182 s. The details of the computation
time and memory usage are listed in Tab. 3. In the present study, a direct linear
solver of Intel Math Kernel Library PARDISO was used for a problem involving
three million DOFs. However, for more than tens of millions of DOFs, direct lin-
ear solvers become useless because of the long computation time and excessive
memory usage. Iterative solvers based on the conjugate gradient method are com-
monly used for large-scale parallel FEA [Ogino, Shioya, Kawai, and Yoshimura
(2005); Bhardwaj, Pierson, Reese, Walsh, Day, Alvin, Peery, Farhat, and Lesoinne
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Figure 9: Computed stress intensity factors of the structural component analysis.
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Figure 10: A convergence history of the structural component analysis.

(2002)]. In the CG method, the convergence property is strongly influenced by the
condition number of the stiffness matrix. Since the condition number is increased
by a large difference of element volume, the element volume distribution was in-
vestigated, as shown in Fig. 11. In the histogram, the horizontal axis shows the
element volume, and the vertical axis shows the normalized frequency. The maxi-
mum and minimum values of the global mesh are 1.23×10−5 m3 and 4.63×10−9
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Figure 11: Element volume distribution of the structural component model mesh.
The maximum and minimum values of the global mesh are 1.23× 10−5 m3 and
4.63× 10−9 m3, respectively. The maximum and minimum values of the local
mesh are 6.66×10−8 m3 and 1.94×10−11 m3, respectively.

Table 3: Measured computation time and memory usage of the structural compo-
nent analysis.

Present Convention
Measured Computation Time

Total Elapsed Time 1,440 s 1,414 s
Matrix Generation 89 s + 3 s 96 s

Matrix Factorization 1,182 s + 4 s 1,268 s
Triangular Solution 126 s 16 s

Other Processes 36 s 34 s
Measured Memory Usage
Total Memory Usage 55.2 GB 56.5 GB

m3, respectively, and the maximum and minimum values of the local mesh are
6.66× 10−8 m3 and 1.94× 10−11 m3, respectively. If a conventional FEM solver
was selected, the ratio of the maximum volume to the minimum volume would
be (1.23× 10−5 m3)/(1.94× 10−11 m3) = 6.34× 105. On the other hand, in the
case of the proposed method, the volume ratio becomes (1.23×10−5 m3)/(4.63×
10−9 m3)= 2.66×103 and (6.66×10−8 m3)/(1.94×10−11 m3)= 3.43×103. The
volume ratio digit is reduced to two thirds in the mesh. For larger-scale prob-
lems than the mesh, the volume ratio digit remains constant or sometimes becomes
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larger. This is because the maximum element volume value of the global mesh may
become large according to its mesh patterns, whereas other values remain approxi-
mately constant. In addition, the shape, size, and scale of the local model would be
approximately the same for any problem.

4 Conclusions

In the present study, three-dimensional mixed-mode stress intensity factor analyses
were performed using the partitioned iterative coupling method. In this method,
an analysis model is decomposed into two domains, which are analyzed separately
and repeatedly using an iterative solution technique. The stress intensity factors are
evaluated on one small domain, while the other large domain becomes an uncracked
elastic body. A benchmark problem of a 45-deg oblique circular crack embedded
in a finite cube was analyzed. In the benchmark analysis, the computed SIFs were
as accurate as those computed using the conventional method and the theoretical
solution. The number of iteration steps and the computation time were measured
in order to compare the proposed method with the conventional FEM. The compu-
tation time was comparable for the two methods. A structural component model of
a curved pipe with a nozzle, in which a quarter-circular corner crack is introduced,
was then analyzed. Mixed-mode SIFs were successfully computed using a model
having three million degrees of freedom.

In the future, a crack propagation problem and a nonlinear fracture problem, like the
mixed-mode problem investigated herein, are important problems for real cracked
structures and must be investigated using the partitioned iterative coupling method.
In such problems, problems concerning fracture mechanics would also occur only
in the local domain. In addition, the global mesh and the local mesh are conforming
at the domain boundary in the present study. The proposed method can be extended
for nonconforming meshing with carefully interpolating nodal reaction forces.
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