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A finite-volume method based on compact local integrated
radial basis function approximations for second-order

differential problems
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Abstract: In this paper, compact local integrated radial basis function (IRBF)
stencils reported in [Mai-Duy and Tran-Cong (2011) Journal of Computational
Physics 230(12), 4772-4794] are introduced into the finite-volume / subregion -
collocation formulation for the discretisation of second-order differential problems
defined on rectangular and non-rectangular domains. The problem domain is sim-
ply represented by a Cartesian grid, over which overlapping compact local IRBF
stencils are utilised to approximate the field variable and its derivatives. The gov-
erning differential equation is integrated over non-overlapping control volumes as-
sociated with grid nodes, and the divergence theorem is then applied to convert
volume integrals into surface/line integrals. Line integrals are evaluated by means
of the middle point rule (i.e. second-order integration scheme) and three-point
Gaussian quadrature rule (i.e. high-order integration scheme). The accuracy of
the proposed method is numerically investigated through the solution of several
test problems including natural convection in an annulus. Numerical results indi-
cate that (i) the proposed method produces accurate results using relatively coarse
grids and (ii) the three-point integration scheme is generally more accurate than the
middle point scheme.

Keywords: Integrated radial basis functions, Compact local stencils, High-order
approximations, Finite volume method, Natural convection.

1 Introduction

Radial basis functions (RBFs) are known as a powerful high-order approximation
tool for scattered data [Kansa (1990a); Haykin (1999)]. The application of RBFs
for the solution of partial differential equations (PDEs) has received a great deal
of attention over the last twenty years [Fasshauer (2007)]. One can construct the
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RBF approximations through differentiation (DRBFs) [Kansa (1990b); Zerroukat,
Power, and Chen (1998); Fornberg and Flyer (2005)] or integration (IRBFs) [Mai-
Duy and Tran-Cong (2001a,b)]. For the former, a function is decomposed into a
set of RBFs. For the latter, RBFs are employed to represent highest-order deriva-
tives under consideration and then integrated to yield approximate expressions for
lower-order derivatives and the function itself. IRBFs have the ability to avoid the
reduction of convergence rate caused by differentiation and also to improve the nu-
merical stability of a discrete solution. In recent years, research effort has been
focused on constructing the RBF approximations in local form (to obtain sparse
system matrices) [Shu, Ding, and Yeo (2003); Lee, Liu, and Fan (2003); Sarler
(2005); Mai-Duy and Tran-Cong (2009)] and in compact local form (to obtain both
sparse system matrices and high rates of convergence of the approximate solution)
[Tolstykh and Shirobokov (2005); Wright and Fornberg (2006); Mai-Duy and Tran-
Cong (2011); Thai-Quang, Le-Cao, Mai-Duy, and Tran-Cong (2012); Hoang-Trieu,
Mai-Duy, and Tran-Cong (2012)]. It is known that the width of RBFs (shape pa-
rameter) strongly affects the quality of the approximations [Kansa (1990a); Rippa
(1999); Fornberg and Wright (2004); Larsson and Fornberg (2005)]. In local forms,
RBFs can work with a wide range of the RBF width and their solution accuracy can
thus be effectively controlled by means of the spatial discretisation size and/or the
RBF width.

Finite volume methods (FVMs), which conserve mass, momentum and energy over
any control volume and can work effectively with complex geometry problems, are
widely used in computational fluid dynamic (CFD) [Patankar (1980); Eymard, Gal-
louet, and Herbin (2000); Huilgol and Phan-Thien (1997); Pereira, Kobayashi, and
Pereira (2001)]. It should be pointed out that the accuracy of a finite-volume so-
lution is decided not only by the way to approximate the field variable but also by
numerical integration schemes used for evaluating line/surface integrals in the for-
mulation. Epperson (2002) has shown that, given exact nodal function values, us-
ing a n-point Gaussian quadrature rule can lead to a solution whose error is O(h2n),
where h is the discretisation size. As a result, the error is of order up to h2 only if
one uses the middle point rule (i.e. one point Gaussian quadrature rule). Moroney
and Turner (2006) proposed a FVM method, where differentiated RBFs are em-
ployed as a means of local gradient interpolation and the underlying line integrals
are evaluated using the three-point Gaussian quadrature rule. Numerical results
showed that the method yields accuracy several orders of magnitude better than
simpler methods based on shape functions for both linear and nonlinear diffusion
problems.

In this paper, compact local integrated RBF stencils [Mai-Duy and Tran-Cong
(2011)] are incorporated into the FV formulation to discretise second-order differ-
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ential equations in one (1D) and two (2D) dimensions. Two numerical integration
schemes, namely the middle point rule and 3-point Gaussian quadrature rule, are
employed and their effects on the solution accuracy are investigated. We also study
the accuracy behaviour against the RBF width. Results obtained are compared with
standard FVMs as well as point collocation methods employed with compact local
IRBF stencils. The remainder of this paper is organised as follows. A brief review
of integrated RBFs including compact local approximations is given in Section 2.
The proposed method is described for 1D and 2D problems in Section 3 and then
verified in Section 4. Section 5 concludes the papers.

2 Brief review of integrated RBFs

Consider a function u(x). The integral formulation starts with the decomposition of
highest-order derivatives under consideration into a set of RBFs. For second-order
differential problems, one has

∂ 2u(x)
∂η2 =

n

∑
i=1

wiI
(2)
i (x), x ∈Ω, (1)

where η is used to denote a component of the position vector x (e.g. η can be x for
1D problems, and x or y for 2D problems); Ω is the domain of interest; {wi}n

i=1 is

the set of unknown RBF coefficients; and
{

I(2)i[η ](x)
}n

i=1
is the set of RBFs. We will

implement (1) with the multiquadric RBF (MQ)

I(2)i (x) =
√

(x− ci)2 +a2
i , (2)

where ci and ai are the centre and the width of the ith MQ, respectively.

Approximate expressions for first-order derivatives and the function u itself are then
obtained by integrating expression (1)

∂u(x)
∂η

=
n

∑
i=1

wiI
(1)
i (x)+C[η ]

1 , (3)

u(x) =
n

∑
i=1

wiI
(0)
i (x)+ηC[η ]

1 +C[η ]
2 , (4)

where I(1)i (x) =
∫

I(2)i (x)dη ; I(0)i (x) =
∫

I(1)i (x)dη ; and C[η ]
1 and C[η ]

2 are the “con-
stants” of integration. C[η ]

1 and C[η ]
2 will be constants for 1D problems, functions

in one variable for 2D problems, and in two variables for 3D problems. These
functions are unknown and can be approximated as linear combinations of basis
functions.
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The approximations (1)-(4) are called a global IRBF scheme if one employs these
expressions over the entire domain, a 1D-IRBF scheme if they are employed along
grid lines, and a local IRBF scheme if they are employed over small overlapping
subregions. Global schemes can yield a high rate of convergence, but their matrices
are fully populated and thus very costly for solving large-scale problems. On the
other hand, local schemes result in sparse matrices that can be handled in a very
efficient way, but their accuracies are deteriorated significantly. Several treatments
were proposed to improve the solution accuracy of local IRBF schemes. One sim-
ple but effective way is to incorporate, through the constants of integration, nodal
values of the governing equation or of first/second derivatives into the local approx-
imations. Such approximations are called a compact local IRBF scheme. It was
shown numerically that compact local IRBF schemes are superior to local IRBF
ones regarding both the computational cost and the accuracy in the context of point-
collocation formulation. In the present work, compact local IRBF stencils are in-
troduced into the subregion-collocation/finite-volume formulation for the solution
of second-order differential problems defined on rectangular and non-rectangular
domains.

3 Proposed method

The proposed finite-volume method, which is based on compact local IRBF sten-
cils, (CLIRBF-FVM) is first described for 1D problems and then extended to 2D
problems.

3.1 One dimensional problems

Consider a 1D problem governed by

d2u(x)
dx2 +

du(x)
dx

+u(x) = f (x), x ∈Ω, (5)

where u(x) and f (x) are continuous and prescribed functions, respectively. The do-
main Ω is subdivided into a set of non-overlapping line segments (control volumes)
that are associated with grid nodes. Figure 1 shows a full control volume for an in-
terior grid node xi, (i ∈ {2,3, . . . ,n−1}) and a half control volume for a boundary
node xi (i ∈ {1,n}). Integrating (5) over the full control volume Ωi results in

∫
Ωi

(
d2u(x)

dx2 +
du(x)

dx
+u(x)

)
dΩi =

∫
Ωi

f (x)dΩi, (6)
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or

du(xi+1/2)

dx
−

du(xi−1/2)

dx
+u(xi+1/2)−u(xi−1/2)+

∫ xi+1/2

xi−1/2

u(x)dx =∫ xi+1/2

xi−1/2

f (x)dx. (7)

The integrals on the left and right sides of equation (7) are evaluated using the
middle point rule and also the three point Gaussian quadrature rule.

Figure 1: A schematic diagram for the CV formulation in 1D.

For the former, the integrals are expressed as∫ xi+1/2

xi−1/2

u(x)dx = u(xi)∆x, (8)∫ xi+1/2

xi−1/2

f (x)dx = f (xi)∆x, (9)

where ∆x = xi+1/2− xi−1/2.

For the latter, the integrals are expressed as∫ xi+1/2

xi−1/2

u(x)dx =
∆x
2

3

∑
k=1

γku(
xi+1/2− xi−1/2

2
ζk +

xi+1/2 + xi−1/2

2
), (10)

∫ xi+1/2

xi−1/2

f (x)dx =
∆x
2

3

∑
k=1

γk f (
xi+1/2− xi−1/2

2
ζk +

xi+1/2 + xi−1/2

2
), (11)

{γk}3
k=1 =

{
5
9
,
8
9
,
5
9

}
, {ζk}3

k=1 =

{
−
√

3
5
,0,+

√
3
5

}
, (12)

where γk and ζk are the weights and Gauss points, respectively.
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We now approximate the field variable u and its derivatives in equations (7), (8)
- (11) using compact local IRBFs. Over a 3-node stencil [xi−1,xi,xi+1] associated
with grid node xi, the relation between the physical space and the RBF weight space
can be established as

ui−1
ui

ui+1
fi−1
fi+1

=

[
H (0)

K

]
︸ ︷︷ ︸

C


w1
w2
w3
c1
c2

 , (13)

where nodal values of the governing equation at grid nodes xi−1 and xi+1 (i.e. fi−1
and fi+1) are also included, C is the conversion matrix, and H (0) and K are
submatrices defined as

H (0) =

 I(0)1 (xi−1), I(0)2 (xi−1), I(0)3 (xi−1), xi−1, 1
I(0)1 (xi), I(0)2 (xi), I(0)3 (xi), xi, 1

I(0)1 (xi+1), I(0)2 (xi+1), I(0)3 (xi+1), xi+1, 1

 ,
K =

[
G1(xi−1), G2(xi−1), G3(xi−1), xi−1 +1, 1
G1(xi+1), G2(xi+1), G3(xi+1), xi+1 +1, 1

]
,

in which Gk(x) = I(2)k (x)+ I(1)k (x)+ I(0)k (x) with k ∈ {1,2,3}. It is noted that the
subscripts i−1, i and i+1 are used to represent the nodes of the stencil in a global
definition, while 1,2 and 3 denote the nodes of the stencil in a local definition.

Solving (13) yields
w1
w2
w3
c1
c2

= C−1


ui−1
ui

ui+1
fi−1
fi+1

 . (14)

Values of the field variable and its derivatives at an arbitrary point on the stencil
can thus be calculated in the physical space as

u(x) =
[

I(0)1 (x), I(0)2 (x), I(0)3 (x), x, 1
]
C−1

(
û
f̂

)
, (15)

du(x)
dx

=
[

I(1)1 (x), I(1)2 (x), I(1)3 (x), 1, 0
]
C−1

(
û
f̂

)
, (16)

d2u(x)
dx2 =

[
I(2)1 (x), I(2)2 (x), I(2)3 (x), 0, 0

]
C−1

(
û
f̂

)
, (17)
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where xi−1 < x < xi+1, û = (ui−1,ui,ui+1)
T , and f̂ = ( fi−1, fi+1)

T .

We consider two types of boundary conditions

(i) Dirichlet boundary conditions: Since values of u are given at x1 and xn, the
discretisation is carried out for full control volumes only.

(ii) Dirichlet and Neumann boundary conditions: Since the first derivative du/dx
instead of the field variable u is given at a boundary node, one needs to generate one
additional algebraic equation for the value of u at that node. This can be achieved
by conducting the discretisation over a half control volume associated with the
boundary node.

3.2 Two dimensional problems

3.2.1 Poisson equation

The governing equation here takes the form

∇
2u(x) = f (x), x ∈Ω. (18)

Rectangular domains:
We discretise the problem domain using a Cartesian grid of density nx×ny. Control
volumes associated with grid nodes are of rectangular shapes that do not overlap
each other. Consider an interior node xi, j (2 ≤ i ≤ nx − 1;2 ≤ j ≤ ny− 1). Its
associated 9-node stencil is defined globally as xi−1, j+1 xi, j+1 xi+1, j+1

xi−1, j xi, j xi+1, j
xi−1, j−1 xi, j−1 xi+1, j−1

,

and locally as x3 x6 x9
x2 x5 x8
x1 x4 x7

,

where the grid nodes are numbered from bottom to top and from left to right. Figure
2 shows a schematic diagram for a full control volume associated with an interior
node and a half control volume associated with a boundary node.

Integrating (18) over a full control volume Ωs yields∫
Ωs

∇
2u(x)dΩs =

∫
Ωs

f (x)dΩs. (19)

By means of the divergence theorem, (19) reduces to∮
Γs

∇u(x) · n̂dΓs =
∫

Ωs

f (x)dΩs, (20)
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Figure 2: A schematic diagram for the CV formulation in 2D.

or

∫ yn

ys

∂u(x)
∂x

∣∣∣∣
e
dy−

∫ yn

ys

∂u(x)
∂x

∣∣∣∣
w

dy+
∫ xe

xw

∂u(x)
∂y

∣∣∣∣
n

dx−
∫ xe

xw

∂u(x)
∂y

∣∣∣∣
s
dx

=
∫

Ωs

f (x)dΩs, (21)

where Γs is the interface of the control volume, n̂ is the outward unit normal vector,
and |e, |w, |n and |s denote the east, west, north and south faces of the control
volume, respectively.

If the middle point rule is applied to (20), one obtains(
∂u(xe)

∂x
− ∂u(xw)

∂x

)
∆y+

(
∂u(xn)

∂y
− ∂u(xs)

∂y

)
∆x = ∆x∆y f (x), (22)

where the subscripts e,w,n and s are used to indicate the intersections of the grid
lines with the east, west, north and south faces of the control volume, respectively;
∆x = xe− xw and ∆y = yn− ys.
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If the three-point Gaussian quadrature rule is applied to (20), one obtains

∆y
2

3

∑
j=1

γ j
∂u(y(ζ j))

dx

∣∣∣∣∣
e

− ∆y
2

3

∑
j=1

γ j
∂u(y(ζ j))

dx

∣∣∣∣∣
w

+
∆x
2

3

∑
i=1

γi
∂u(x(ζi))

dy

∣∣∣∣∣
n

−∆x
2

3

∑
i=1

γi
∂u(x(ζi))

dy

∣∣∣∣∣
s

=
∆x∆y

4

3

∑
i=1

3

∑
j=1

γiγ j f (x(ζi),y(ζ j)) , (23)

where γi and ζi are defined as before.

Now we approximate gradients in (22) and (23) using compact local IRBF approx-
imations defined over overlapping 3× 3 stencils. The conversion matrix for each
stencil is constructed as

û
0̂
f̂

=

 H
(0)

x , O

H
(0)

x , −H
(0)

y

Kx, Ky


︸ ︷︷ ︸

C

(
ŵx

ŵy

)
(24)

where 0̂ and O are a zero vector and zero matrix, respectively; û and 0̂ are vectors
of length 9; ŵx and ŵy are the RBF coefficient vectors of length 15; O,H

(0)
x ,H

(0)
y

are matrices of dimensions 9× 15, and Kx and Ky are matrices of dimensions
4× 15. Equations û = H

(0)
x ŵx are employed to collocate the variable u over the

stencil; equations H
(0)

x ŵx−H
(0)

y ŵy = 0̂ are employed to enforce nodal values of
u obtained from the integration with respect to x and y to be identical; equations
Kxŵx +Kyŵy = f̂ are employed to represent values of the PDE (18) at selected
nodes;

û = (u1, · · · ,u9)
T ,

ŵx =
(

w[x]
1 , · · · ,w[x]

9 ,c[x]1 (y1),c
[x]
1 (y2),c

[x]
1 (y3),c

[x]
2 (y1),c

[x]
2 (y2),c

[x]
2 (y3)

)T
,

ŵy =
(

w[y]
1 , · · · ,w[y]

9 ,c[y]1 (x1),c
[y]
1 (x4),c

[y]
1 (x7),c

[y]
2 (x1),c

[y]
2 (x4),c

[y]
2 (x7)

)T
,
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H
(0)

x =



I(0)[x]1(x1), · · · , I(0)[x]9(x1), x1, 0, 0, 1, 0, 0

I(0)[x]1(x2), · · · , I(0)[x]9(x2), 0, x2, 0, 0, 1, 0

I(0)[x]1(x3), · · · , I(0)[x]9(x3), 0, 0, x3, 0, 0, 1

I(0)[x]1(x4), · · · , I(0)[x]9(x4), x1, 0, 0, 1, 0, 0

I(0)[x]1(x5), · · · , I(0)[x]9(x5), 0, x2, 0, 0, 1, 0

I(0)[x]1(x6), · · · , I(0)[x]9(x6), 0, 0, x3, 0, 0, 1

I(0)[x]1(x7), · · · , I(0)[x]9(x7), x1, 0, 0, 1, 0, 0

I(0)[x]1(x8), · · · , I(0)[x]9(x8), 0, x2, 0, 0, 1, 0

I(0)[x]1(x9), · · · , I(0)[x]9(x9), 0, 0, x3, 0, 0, 1



,

H
(0)

y =



I(0)[y]1(x1), · · · , I(0)[y]9(x1), y1, 0, 0, 1, 0, 0

I(0)[y]1(x2), · · · , I(0)[y]9(x2), y2, 0, 0, 1, 0, 0

I(0)[y]1(x3), · · · , I(0)[y]9(x3), y3, 0, 0, 1, 0, 0

I(0)[y]1(x4), · · · , I(0)[y]9(x4), 0, y4, 0, 0, 1, 0

I(0)[y]1(x5), · · · , I(0)[y]9(x5), 0, y5, 0, 0, 1, 0

I(0)[y]1(x6), · · · , I(0)[y]9(x6), 0, y6, 0, 0, 1, 0

I(0)[y]1(x7), · · · , I(0)[y]9(x7), 0, 0, y7, 0, 0, 1

I(0)[y]1(x8), · · · , I(0)[y]9(x8), 0, 0, y8, 0, 0, 1

I(0)[y]1(x9), · · · , I(0)[y]9(x9), 0, 0, y9, 0, 0, 1



.

In this study, selected nodes for Kxŵx +Kyŵy = f̂ are chosen as (x2,x4,x6,x8) so
that

Kx =


I(2)[x]1(x2), · · · , I(2)[x]9(x2), 0, 0, 0, 0, 0, 0

I(2)[x]1(x4), · · · , I(2)[x]9(x4), 0, 0, 0, 0, 0, 0

I(2)[x]1(x6), · · · , I(2)[x]9(x6), 0, 0, 0, 0, 0, 0

I(2)[x]1(x8), · · · , I(2)[x]9(x8), 0, 0, 0, 0, 0, 0

 ,

Ky =


I(2)[y]1(x2), · · · , I(2)[y]9(x2), 0, 0, 0, 0, 0, 0

I(2)[y]1(x4), · · · , I(2)[y]9(x4), 0, 0, 0, 0, 0, 0

I(2)[y]1(x6), · · · , I(2)[y]9(x6), 0, 0, 0, 0, 0, 0

I(2)[y]1(x8), · · · , I(2)[y]9(x8), 0, 0, 0, 0, 0, 0

 .



Compact Local IRBF-FVM 495

Solving (24) yields(
ŵx

ŵy

)
= C−1

(
û, 0̂, f̂

)T
, (25)

or ŵx = C−1
x (û, 0̂, f̂ )T and ŵy = C−1

y (û, 0̂, f̂ )T , where C−1
x and C−1

y are the first
and the last 15 rows of matrix C−1. Substitution of ŵx and ŵy into (3) defined over
the stencil leads to

∂u(x)
∂x

= H
(1)

x (x)C−1
x (û, 0̂, f̂ )T , (26)

∂u(x)
∂y

= H
(1)

y (x)C−1
y (û, 0̂, f̂ )T , (27)

where

H
(1)

x (x) =
[
I(1)[x]1(x), · · · , I

(1)
[x]9(x),J[y]1(y),J[y]2(y),J[y]3(y),0,0,0

]
, (28)

H
(1)

y (x) =
[
I(1)[y]1(x), · · · , I

(1)
[y]9(x),J[x]1(x),J[x]2(x),J[x]3(x),0,0,0

]
, (29)

in which {J[y]1(y),J[y]2(y),J[y]3(y)} and {J[x]1(x),J[x]2(x),J[x]3(x)} are sets of basis

functions used for the approximation of integration “constants” C[x]
1 (y) and C[y]

1 (x)
in equations (3)-(4), respectively

C[x]
1 (y) = c[x]1 (y1)J[y]1(y)+ c[x]1 (y2)J[y]2(y)+ c[x]1 (y3)J[y]3(y), (30)

C[y]
1 (x) = c[y]1 (x1)J[x]1(x)+ c[y]1 (x4)J[x]2(x)+ c[y]1 (x7)J[x]3(x). (31)

In a similar way, values of the field variable and its second derivatives are obtained
by substituting ŵx and ŵy into (4) and (1), respectively.

It can be seen that the approximations for u and its derivatives are expressed in
terms of nodal values of the field variable and of the governing equation. For
Dirichlet boundary conditions only, the discretisation is carried out over full con-
trol volumes associated with interior grid nodes. For Neumann boundary condi-
tions, extra equations are needed and they are generated from half control volumes
associated with the boundary nodes.

Non-rectangular domains:
We embed the problem domain in a rectangular domain and then discretise it using
a Cartesian grid of density nx× ny. Only Dirichlet boundary conditions are con-
sidered here. There are three types of nodes, namely (i) the boundary nodes (the
intersections of the grid lines and the boundary); (ii) normal interior nodes, where
their associated stencils lie within the problem domain entirely; and (iii) special
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Figure 3: A schematic diagram for the CV formulation in 2D, where the stencil is
cut by the boundary.

interior nodes, where their associated stencils are cut by the boundary. For the
third type, which is typically illustrated in Figure 3, some special treatments are re-
quired. We employ nodes [x1,x2′ ,x3,x4,x5′ ,x6,x7,x8] for the IRBF approximations
with respect to the x direction, and [x1,x2,x3,x4,x5,x6,x7,x8] for the y direction.
Furthermore, in the conversion process (24), the governing equation is collocated
at regular grid nodes only (e.g. x3 and x7). Note that the intersections of the x
and y grid lines are considered as regular nodes, while the intersections of the grid
lines and the non-rectangular boundaries are considered as irregular nodes. The
remaining tasks here are similar to those of the rectangular-domain case.
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3.2.2 Natural convection flow

The dimensionless governing equations for natural convection flow can be written
in terms of the streamfunction ψ , vorticity ω , and temperature T as

∂T
∂ t

+
√

RaPr
(

∂ (uT )
∂x

+
∂ (vT )

∂y

)
=

∂ 2T
∂x2 +

∂ 2T
∂y2 , (32)

−ω =
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 , (33)

∂ω

∂ t
+

√
Ra
Pr

(
∂ (uω)

∂x
+

∂ (vω)

∂y
− ∂T

∂x

)
=

∂ 2ω

∂x2 +
∂ 2ω

∂y2 , (34)

where u =
∂ψ

∂y
and v = −∂ψ

∂x
, Ra is the Rayleigh number, and Pr is the Prandtl

number. Integrating (32)-(34) over a control volume Ωs results in

∂

∂ t

∫
Ωs

T dΩs +
√

RaPr
∫

Ωs

(
∂ (uT )

∂x
+

∂ (vT )
∂y

)
dΩs =∫

Ωs

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
dΩs, (35)

−
∫

Ωs

ωdΩs =
∫

Ωs

(
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2

)
dΩs, (36)

∂

∂ t

∫
Ωs

ωdΩs +

√
Ra
Pr

∫
Ωs

(
∂ (uω)

∂x
+

∂ (vω)

∂y
− ∂T

∂x

)
dΩs =∫

Ωs

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
dΩs. (37)

Assume that T and ω are linear over the time interval (t(k−1), t(k)), the time deriva-
tive terms in (35) and (37) reduce to

∂

∂ t

∫
Ωs

T dΩs =

∫
Ωs

T (k)dΩs−
∫

Ωs
T (k−1)dΩs

∆t
, (38)

∂

∂ t

∫
Ωs

ωdΩs =

∫
Ωs

ω(k)dΩs−
∫

Ωs
ω(k−1)dΩs

∆t
, (39)

where the superscript (k) is used to indicate the current time level. Using the middle
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point rule, expressions (38) and (39) further reduce to

∂

∂ t

∫
Ωs

T dΩs =
A
∆t

(
T (k)−T (k−1)

)
, (40)

∂

∂ t

∫
Ωs

ωdΩs =
A
∆t

(
ω

(k)−ω
(k−1)

)
, (41)

where A is the area of Ωs.

We calculate the convection terms in the form

∫
Ωs

(
∂ (uT )

∂x
+

∂ (vT )
∂y

)
dΩs =

∫ xe

xw

(vT )
∣∣∣∣
n

dx−
∫ xe

xw

(vT )
∣∣∣∣
s
dx

+
∫ yn

ys

(uT )
∣∣∣∣
e
dy−

∫ yn

ys

(uT )
∣∣∣∣
w

dy, (42)∫
Ωs

(
∂ (uω)

∂x
+

∂ (vω)

∂y
− ∂ (T )

∂x

)
dΩs =

∫ xe

xw

(vω)

∣∣∣∣
n

dx−
∫ xe

xw

(vω)

∣∣∣∣
s
dx

+
∫ yn

ys

(uω−T )
∣∣∣∣
e
dy−

∫ yn

ys

(uω−T )
∣∣∣∣
w

dy, (43)

and treat the diffusion terms in the same way as for Poisson equation in Section
3.2.1.

Boundary conditions for the vorticity equation (34) are not given explicitly. One
can compute them through equation (33) using given derivative boundary con-
ditions for the streamfunction. In the case of rectangular boundaries, values of
∂ψ/∂n are incorporated into the computational boundary conditions for ω by
means of the integration constants [Mai-Duy (2005); Mai-Duy and Tanner (2005)].
In the case of irregular boundaries, we apply the equations reported in [Le-Cao,
Mai-Duy, and Tran-Cong (2009)]

ωb =−

[
1+
(

tx
ty

)2
]

∂ 2ψb

∂x2 −qy, (44)

ωb =−

[
1+
(

ty
tx

)2
]

∂ 2ψb

∂y2 −qx, (45)

where tx = ∂x/∂ s, ty = ∂y/∂ s, s is the tangential direction of boundary, and qx,qy

are the known quantities defined as
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qx =−
ty
t2
x

∂ 2ψb

∂y∂ s
+

1
tx

∂ 2ψb

∂x∂ s
, (46)

qy =−
tx
t2
y

∂ 2ψb

∂x∂ s
+

1
ty

∂ 2ψb

∂y∂ s
. (47)

The solution procedure involves the following steps

1. Solve equation (36) for ψ , subject to Dirichlet conditions

2. Compute the velocity components u and v, and the boundary values for the
vorticity ω

3. Solve equation (35) for T , subject to Dirichlet and Neumann boundary condi-
tions for natural convection in a square slot (Example 4.4.1), and to Dirichlet
boundary conditions for natural convection in an annulus (Example 4.4.2)

4. Solve equation (37) for ω , subject to Dirichlet conditions

5. Repeat the above steps until the solution has reached the steady state.

4 Numerical examples

The proposed CLIRBF-FVM is verified in a series of 1D and 2D problems. If the
exact solution is available, the accuracy of the approximate solution is measured
using the relative discrete L2 norm

Ne(u) =

√
n
∑

i=1
(ui−ue

i )
2√

n
∑

i=1
(ue

i )
2

, (48)

where n is the number of collocation nodes, and ui and ue
i are the computed and

exact solutions, respectively. We simply choose the MQ width as ai = βh, where β

is a given number, and h is a grid spacing. Results by the standard FVM [Patankar
(1980)] and the point-collocation method employed with compact local IRBF sten-
cils (CLIRBF-PCM) [Mai-Duy and Tran-Cong (2011)] are also included to provide
the base for the assessment of the performance of the present method.
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4.1 Example 1 (1D problem)

Consider the following ODE

∂ 2u
∂x2 +

∂u
∂x

+u =−exp(−5x) [9979sin(100x)+900cos(100)] , 0≤ x≤ 1. (49)

The exact solution to this problem is taken as ue(x) = exp(−5x)sin(100x). We
discretise the domain using {71,73, . . . ,591} uniformly distributed nodes. The so-
lution accuracy and the matrix condition number versus the grid size are shown in
Figure 4 for Dirichlet boundary conditions only and in Figure 5 for Dirichlet and
Neumann boundary conditions.

It can be seen that the proposed CLIRBF-FVM (1 Gauss point) outperforms the
standard FVM, and the proposed CLIRBF-FVM (3 Gausss point) outperforms
CLIRBF-PCM regarding both the solution accuracy and convergence rate. High
rates of convergence are obtained with CLIRBF-FVM employed with the 3-point
Gaussian quadrature rule as expected. The control-volume formulation is much
more accurate than the point-collocation formulation, especially for the case of
Neumann boundary conditions. Regarding the numerical stability, the condition
numbers of the system matrix by the present method are similar to those by the
standard FVM and CLIRBF-PCM for the case of Dirichlet boundary conditions
only, but much lower than those by CLIRBF-PCM for the case of Dirichlet and
Neumann boundary conditions.

4.2 Example 2 (2D problem, rectangular domain)

We take the following Poisson equation to verify the present method

∂ 2u
∂x2 +

∂ 2u
∂y2 = 4(1−π

2)sin(2πx)sinh(2y)+16(1−π
2)cosh(4x)cos(4πy), (50)

where−0.5≤ x,y≤ 0.5. Its exact solution is given by ue(x,y)= sin(2πx)sinh(2y)+
cosh(4x)cos(4πy). The calculation is carried out with several grid densities {7×
7,9× 9, . . . ,71× 71}. The solution accuracy and condition number by CLIRBF-
FVM and CLIRBF-PCM are shown in Figures 6 and 7. The former is for Dirichlet
boundary conditions, while the latter is for Dirichlet and Neumann boundary con-
ditions, where u is specified on the left and right boundaries (x =−0.5 and x = 0.5)
and ∂u/∂x is prescribed on the bottom and top boundaries (y =−0.5 and y = 0.5).
Remarks here are similar to the 1D problems, using the middle-point rule is able
to lead to a solution O(h2), while the 3-point Gaussian quadrature rule results in a
solution with a very high rate of convergence, up to O(h5.03).

Figure 8 shows the influence of the MQ width measured via β on the solution
accuracy, which is investigated on three grids {31× 31,41× 41,51× 51}. It can
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Figure 4: Example 1, ODE, Dirichlet boundary conditions: Relative L2 errors of
the solution u (top) and condition numbers of the system matrix (bottom) against
the grid size by the standard FVM, CLIRBF-PCM, CLIRBF-FVM (1 Gauss point)
and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h2.03),
O(h4.72), O(h2.30) and O(h4.81) for the solution accuracy, and O(h2.00), O(h2.00),
O(h2.00) and O(h2.00) for the matrix condition number.
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Figure 5: Example 1, ODE, Dirichlet and Neumann boundary conditions: Relative
L2 errors of the solution u (top) and condition numbers of the system matrix (bot-
tom) against the grid size by the standard FVM, CLIRBF-PCM, CLIRBF-FVM
(1 Gauss point) and CLIRBF-FVM (3 Gauss points). Their behaviours are, re-
spectively, O(h1.93), O(h3.83), O(h2.22) and O(h3.88) for the solution accuracy, and
O(h2.00), O(h2.50), O(h2.00) and O(h2.00) for the matrix condition number.
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Figure 6: Example 2, PDE, rectangular domain, Dirichlet boundary condition: Rel-
ative L2 errors of the solution u (top) and condition numbers of the system matrix
(bottom) against the grid size by the CLIRBF-PCM, CLIRBF-FVM (1 Gauss point)
and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h4.42),
O(h2.00) and O(h4.72) for the solution accuracy, and O(h2.00), O(h2.00) and O(h2.00)
for the matrix condition number.
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Figure 7: Example 2, PDE, rectangular domain, Dirichlet and Neumann boundary
conditions: Relative L2 errors of the solution u (top) and condition numbers of the
system matrix (bottom) against the grid size by the CLIRBF-PCM, CLIRBF-FVM
(1 Gauss point) and CLIRBF-FVM (3 Gauss points). Their behaviours are, re-
spectively, O(h4.82), O(h2.42) and O(h5.03) for the solution accuracy, and O(h1.93),
O(h1.93) and O(h1.93) for the matrix condition number.
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Figure 8: Example 2, PDE, rectangular domain, {31× 31,41× 41,51× 51}: the
effect of the MQ width on the solution accuracy.

be seen that the present scheme can work well for a wide range of β . However, the
optimal value of β and its stable range (e.g. 20 to 60 in this particular example)
are problem-dependent. Generally, one needs to choose small values of β when the
solution involves steep gradients.

4.3 Example 3 (2D problem, non-rectangular domain)

Figure 9: Non-rectangular domain: circular domain and its discretisation
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Figure 10: Example 3, PDE, non-rectangular domain, Dirichlet boundary condi-
tion: Relative L2 errors of the solution u and condition numbers of the system
matrix against the grid size by the CLIRBF-PCM , CLIRBF-FVM (1 Gauss point)
and CLIRBF-FVM (3 Gauss points). Their behaviours are, respectively, O(h4.03),
O(h2.44) and O(h3.98) for the solution accuracy, and O(h2.85), O(h2.39) and O(h2.37)
for the matrix condition number.



Compact Local IRBF-FVM 507

Consider the same PDE as in Example 2. However, the domain of interest is of
circular shape of radius 1/2 and the boundary conditions are of Dirichlet type.
Results obtained are presented in Figure 10. It shows that the numerical solution
converges fast - apparently as O(h4) - for both CLIRBF-PCM and CLIRBF-FVM
(3 Gauss points), and CLIRBF-FVM is more stable than CLIRBF-PCM. It also
shows that the 1-point Gaussian quadrature scheme results in larger error than 3-
point scheme. The error of the former is of order h2 only at fine grids.

4.4 Example 4: Thermally-Driven Cavity Flow Problem

4.4.1 Natural convection in square slot

Consider a flow in a stationary unit square cavity (0≤ x,y≤ 1), where the two side
walls are heated with T = 1 at x = 0 and T = 0 at x = 1, while the top and the
bottom walls are insulated (∂T/∂y = 0 at y = 0 and y = 1) (Figure 11). The no-slip
boundary conditions lead to ψ = 0 and ∂ψ/∂n = 0 on the four walls.

Figure 11: Geometry and boundary conditions for natural convection in a square
slot.

Some important measures associated with this type of flow are

• Maximum horizontal velocity umax on the vertical mid-plane and its location

• Maximum vertical velocity vmax on the horizontal mid-plane and its location

• The average Nusselt number throughout the cavity, which is defined as

Nu =
∫

0

1
Nu(x)dx, (51)

Nu(x) =
∫

0

1
(

uT − ∂T
∂x

)
dy, (52)
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Table 1: Natural convection in a square slot: Maximum velocities on the middle
planes and the average Nusselt number by the present CLIRBF-FVM (3 Gauss
points) and by some other methods.

Ra Density umax x vmax y Nu Nu1/2 Nu0

103 11×11 3.612 0.814 3.693 0.177 1.121 1.117 1.120
21×21 3.648 0.813 3.698 0.179 1.118 1.118 1.117
GRBFa - - - - 1.118 1.119 1.117
LBMb 3.648 0.810 3.697 0.180 1.116 - -
FDMc 3.649 0.813 3.697 0.178 1.118 1.118 1.117

104 31×31 16.059 0.823 19.612 0.118 2.247 2.240 2.246
41×41 16.164 0.823 19.643 0.119 2.247 2.245 2.247
GRBFa - - - - 2.247 2.248 2.244
LBMb 16.138 0.820 19.602 0.120 2.230 - -
FDMc 16.178 0.823 19.617 0.119 2.243 2.243 2.238

105 41×41 34.61 0.854 68.98 0.065 4.535 4.530 4.527
51×51 34.73 0.855 68.93 0.066 4.527 4.526 4.509
GRBFa - - - - 4.529 4.530 4.521
LBMb 34.459 0.855 68.551 0.065 4.488 - -
FDMc 34.73 0.855 68.59 0.066 4.519 4.519 4.509

106 61×61 64.44 0.851 222.73 0.0372 8.833 8.821 8.809
71×71 64.59 0.850 222.12 0.0375 8.849 8.840 8.840
GRBF a - - - - 8.864 8.865 8.827
LBMb 63.413 0.848 219.708 0.036 8.745 - -
FDMc 64.63 0.8507 219.36 0.0379 8.800 8.799 8.817
SMd 64.83 0.850 220.6 0.038 8.825 8.825 -

107 91×91 155.057 0.864 749.835 0.021 16.555 16.536 16.815
GRBFa - - - - 16.661 16.661 -

SMd 148.595 0.879 699.179 0.021 16.523 16.523 -

a Galerkin-RBF method [Ho-Minh, Mai-Duy, and Tran-Cong (2009)]
b Thermal BGK lattice Boltzmann model [Hao-Chueh, Kuen-Hau, Cheng-Hsiu, and Chao-
An (2010)]
c Finite difference method [Davis (1983)]
d Spectral method [Quere (1991)]
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Figure 12: Natural convection in a square slot, 71× 71: Contour plots for the
streamfunction (left), vorticity (middle), and temperature (right) for several Ra
numbers.
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in which (uT −∂T/∂x) is the local heat flux in the horizontal direction

• The average Nusselt number on the vertical plane at x = 0 (left wall) and at
x = 1/2 (middle cross-section), which are defined by

Nu0 = Nu(x = 0,y)

Nu1/2 = Nu(x = 1/2,y)

A wide range of Ra, (103,104, . . . ,107), and Pr = 0.71 are considered. The initial
solution is taken from the computed solution at the lower and nearest value of Ra.
For Ra = 103, the simulation starts with the fluid at rest.

Table 1 shows results obtained by the present method using the 3-point Gaussian
quadrature rule, the benchmark solutions provided by G. De Vahl Davis [Davis
(1983)] for 103 ≤ Ra ≤ 106, and by P. Le Quere [Quere (1991)] for Ra ≥ 106,
and some other numerical results. It can be seen that (i) very good agreement is
achieved between these results; and (ii) the present solutions are in better agreement
with the benchmark ones than those obtained by the Galerkin-RBF approach [Ho-
Minh, Mai-Duy, and Tran-Cong (2009)], and the thermal BGK lattice Boltzmann
[Hao-Chueh, Kuen-Hau, Cheng-Hsiu, and Chao-An (2010)]. Figure 12 displays the
distribution of the streamfunction, vorticity and temperature over the flow domain.
They look feasible in comparison with those reported in the literature.

4.4.2 Natural convection in a concentric annulus between an outer square cylin-
der and an inner circular cylinder

Figure 13: Geometry and boundary conditions for natural convection in a concen-
tric annulus between an outer square cylinder and an inner circular cylinder.
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Table 2: Natural convection in an annulus defined by concentric outer square and
inner circular cylinders: the average Nusselt number on the outer (Nuo) and inner
(Nui) cylinders by the present CLIRBF-FVM (1 Gauss point) and by some other
methods (RBF, FVM and DQM).

Ra 104 5×104 105 5×105 106

Grid Nuo

32×32 3.22 3.98 4.78 7.30 8.67

42×42 3.22 4.01 4.83 7.38 8.63

52×52 3.22 4.04 4.88 7.52 8.77

62×62 3.22 4.04 4.88 7.51 8.93

1D-IRBF a 3.22 4.04 4.89 7.43 8.70

LMLS-IRBF b 3.23 4.05 4.91 7.43 8.67

FVM c 3.24 4.86 8.90

DQM d 3.33 5.08 9.37

Grid Nui

32×32 3.21 3.97 4.77 7.49 8.89

42×42 3.21 4.00 4.83 7.45 8.78

52×52 3.22 4.02 4.86 7.55 8.98

62×62 3.22 4.03 4.88 7.51 8.90

1D-IRBF a 3.21 4.04 4.89 7.51 8.85

LMLS-IRBF b 3.23 4.06 4.92 7.55 8.90

FVM c 3.24 4.86 8.90

DQM d 3.33 5.08 9.37

a One dimensional integrated-RBF [Le-Cao, Mai-Duy, and Tran-Cong (2009)]
b Local moving least square - one-dimensional IRBF [Ngo-Cong, Mai-Duy, Karunasena,
and Tran-Cong (2012)]
c Finite volume method [Moukalled and Acharya (1996)]
d Differential quadrature method [Shu and Zhu (2002)]
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Figure 14: Natural convection in a concentric annulus between an outer square
cylinder and an inner circular cylinder, 62×62: Contour plots for the streamfunc-
tion (left), vorticity (middle), and temperature (right) for several Ra numbers.
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The geometry and boundary condition of the problem are displayed in Figure 13.
We take the ratio between the radius R of the inner cylinder and the side length L
of the outer square to be 0.2. The Prandtl number is fixed at 0.71 and the Rayleigh
number is varied in a range of (104,5×104,105,5×105,106). The average Nusselt
number is defined by

Nu =−1
k

∮
∂T
∂n

ds, (53)

where k is the thermal conductivity.

Results concerning the average Nusselt number at the outer walls Nuo and at the
inner walls Nui are presented in Table 2. They agree well with other results ([Le-
Cao, Mai-Duy, and Tran-Cong (2009); Moukalled and Acharya (1996); Shu and
Zhu (2002); Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2012)]).

Figure 14 shows the contours of the streamfunction, vorticity, and temperature of
the flow for several values of the Rayleigh number. At Ra = 104, their distribu-
tions are nearly symmetric about the horizontal axis across the cylinder centre.
These distributions become more unsymmetric with increasing Ra (higher convec-
tion strength).

5 Concluding remarks

This paper presents a new finite-volume method for the simulation of heat trans-
fer and fluid flow problems on rectangular and nonrectangular domains. The use
of compact local IRBF approximations instead of the usual linear interpolations to
represent the field variable and the employment of high-order integration schemes
rather than the middle-point rule can lead to a significant improvement in accuracy
for a finite-volume solution. The method is verified in analytic test problems for
which high rates of convergence of the solution are achieved and in natural con-
vection flows for which a convergent and accurate solution at high Ra number is
obtained.
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