
Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Compact Local IRBF and Domain Decomposition Method
for solving PDEs using a Distributed termination detection

based parallel algorithm

N. Pham-Sy1, C.-D. Tran1, T.-T. Hoang-Trieu1, N. Mai-Duy1, T. Tran-Cong1

Abstract: Compact Local Integrated Radial Basis Function (CLIRBF) methods
based on Cartesian grids can be effective numerical methods for solving partial
differential equations (PDEs) for fluid flow problems. The combination of the do-
main decomposition method and function approximation using CLIRBF methods
yields an effective coarse-grained parallel processing approach. This approach has
enabled not only each sub-domain in the original analysis domain to be discretised
by a separate CLIRBF network but also compact local stencils to be independently
treated. The present algorithm, namely parallel CLIRBF, achieves higher through-
put in solving large scale problems by, firstly, parallel processing of sub-regions
which constitute the original domain and, secondly, accelerating the convergence
rate within each sub-region using groups of CLIRBF stencils in which function ap-
proximations are carried out by parallel processes. The procedure is illustrated with
several numerical examples of PDEs and lid-driven cavity problem using Message
Passing Interface supported by MATLAB.

Keywords: Integrated RBFs, Compact Local Stencils, Domain Decomposition
Method, Parallel Algorithm, Distributed Termination Detection.

1 Introduction

Radial Basis Functions (RBFs) have traditionally been used to provide a continuous
interpolation of scattered data sets (Franke, 1982; Kansa, 1990). The Differential
RBF (DRBF) based methods have been successfully used to solve a wide variety
of differential equations. For this approach, once the field variables are known,
its derivatives can be calculated through differentiation (Kansa, 1990; Zerroukat,
Power, and Chen, 1998; Tran-Canh and Tran-Cong, 2004). Another approach
namely the Integrated RBF (IRBF) method, which was proposed by Mai-Duy and

1 Computational Engineering and Science Research Centre, Faculty of Engineering and Surveying,
The University of Southern Queensland, Toowoomba, QLD 4350, Australia.

2 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Tran-Cong (2001), is based on the approximation of the highest-order derivatives of
the ODE/PDE using RBF at the first step, and subsequently its lower-order deriva-
tives and the dependent variable itself are obtained by integration. The IRBF based
methods can outperform other approximation methods based on the DRBF owing
to its ability to produce very accurate solutions using relatively small number of
data nodes.

Although full-domain IRBF methods are highly flexible and exhibit high conver-
gence rates in their basic implementation, the associated fully-populated system
matrices can lead to poor numerical conditioning as the scale of a problem in-
creases (Mai-Duy and Tran-Cong, 2008). The problem becomes critical with in-
creasingly large data sets. Many techniques have been developed to reduce the
effect of the problem, including domain decompositions (Ingber, Chen, and Tan-
ski, 2004; Tran, Phillips, and Tran-Cong, 2009), adaptive selection of data centres
(Ling, Opfer, and Schaback, 2006), RBF preconditioners (Brown, 2005) and RBF
based compact local stencil methods (Mai-Duy and Tran-Cong, 2011). While a
reliable method of controlling numerical ill-conditioning and particularly compu-
tational cost, as problem scale increases, can be based on domain decomposition
method (DDM), the use of compact local approximations facilitates the solution of
a differential equation without having to deal with large systems of global equa-
tions. In this work, a parallel algorithm based on Compact Local Integrated RBF
(CLIRBF) and DDM is developed for the solution of Boundary Value Problems
(BVP). A large problem is firstly decomposed into many smaller problems each of
which is analysed in parallel, and secondly the acceleration of the convergence rate
within each sub-region using groups of CLIRBF stencils is carried out by paral-
lel processes. For ease of presentation, in this paper the terms node, subdomain,
process are used interchangeably.

One common problem associated with distributed computing is global termination
of nodes over the system. This problem occurs more frequently when dealing with
asymmetric problems, in which one node may converge faster than the others. In
fact, this situation was first noticed by Francez (1980) and independently by Di-
jkstra and Scholten (1980), and named Distributed Termination Detection (DTD).
In general, the goal of DTD is to detect whether a system is in its quiescent state.
Quiescence is defined as a state, in which no node is active and no message is
in transmission. As the system is distributed, there is no shared clock or mem-
ory involved. Moreover, if the system is required to be synchronous, the existed
problem becomes more complex. In our parallel approach, DDM is used to divide
the computational work among computer nodes. These nodes are distributed and
synchronous because the result obtained from each node must be consistent within
the whole domain, i.e. all nodes must stop at the same step. In this paper, we

Compact Local IRBF and Domain Decomposition method 3

propose a bitmap DTD algorithm which possesses some important advantages (i)
it allows any node to detect termination (symmetry); (ii) it does not require any
central control agent (decentralisation); and (iii) the message complexity of the
proposed algorithm is nearly optimal.

This paper is organised as follows. In section 2, a brief review of a CLIRBF method
is presented. The domain decomposition method as well as DTD are described in
section 3 and section 4 respectively. Numerical examples are then discussed in
section 5 with a conclusion in section 6.

2 Review of the IRBF collocation method

Consider a second-order ODE with boundary conditions as follows.

L u = f , x ∈Ω (1)

Bu = g, x ∈ ∂Ω (2)

where L is a second order differential operator; B - an operator imposed as bound-
ary conditions such as Dirichlet, Neumann or a mixture of both; u - an unknown
function; f and g - given functions; Ω and ∂Ω - the domain under consideration
and its boundary. For brevity, the 1D-IRBF scheme for discretisation of ODEs is
presented.

2.1 1D-IRBF collocation method

The function u along an x-gridline is represented in the IRBF form (Mai-Duy and
Tran-Cong, 2001) as

d2u
dx2 =

N

∑
i=1

wigi =
N

∑
i=1

wiG
[2]
i , (3)

where {wi}N
i=1 is the set of RBF weights; and {gi(x)}N

i=1 the set of RBFs. In this
work, the Multiquadric (MQ) RBF is used and given by (Haykin, 1999)

Gi(x) =
(
(x− ci)

2 +a2
i
)1/2

,

where {ci}N
i=1 is a set of centres and {ai}N

i=1 a set of MQ-RBF widths.

The corresponding first-order derivative and function are then determined through
integration as follows.

du
dx

=
N

∑
i=1

wiG
[1]
i +C1, (4)

4 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

u =
N

∑
i=1

wiG
[0]
i +C1x+C2, (5)

where G[1]
i (x) =

∫
G[2]

i (x)dx, G[0]
i (x) =

∫
G[1]

i (x)dx and C1 and C2 are unknown con-
stants of integration. The superscript [.] is used to indicate the associated derivative
order.

Collocating equations (3) - (5) at a set of grid points {xi}N
i=1 yields the following

set of algebraic equations

d2ũ
dx2 = G̃[2]w̃, (6)

dũ
dx

= G̃[1]w̃, (7)

ũ = G̃[0]w̃, (8)

where

G̃[2] =

G[2]

1 (x1) G[2]
2 (x1) · · · G[2]

N (x1) 0 0
G[2]

1 (x2) G[2]
2 (x2) · · · G[2]

N (x2) 0 0
...

...
. . .

...
...

...
G[2]

1 (xN) G[2]
2 (xN) · · · G[2]

N (xN) 0 0

 ,

G̃[1] =

G[1]

1 (x1) G[1]
2 (x1) · · · G[1]

N (x1) 1 0
G[1]

1 (x2) G[1]
2 (x2) · · · G[1]

N (x2) 1 0
...

...
. . .

...
...

...
G[1]

1 (xN) G[1]
2 (xN) · · · G[1]

N (xN) 1 0

 ,

G̃[0] =

G[0]

1 (x1) G[0]
2 (x1) · · · G[0]

N (x1) x1 1
G[0]

1 (x2) G[0]
2 (x2) · · · G[0]

N (x2) x2 1
...

...
. . .

...
...

...
G[0]

1 (xN) G[0]
2 (xN) · · · G[0]

N (xN) xN 1

 ,

w̃ = (w1,w2, · · · ,wN ,C1,C2)
T ,

ũ = (u1,u2, · · · ,uN)
T ,

dkũ
dxk =

(
dku1

dxk ,
dku2

dxk , · · · , dkuN

dxk

)T

,

Compact Local IRBF and Domain Decomposition method 5

where ui = u(xi) with i = 1,2, · · · ,N.

Because of the presence of integration constants of the IRBF based approxima-
tion, the system of equations (8) will become under-determined. In this case, one
can beneficially introduce in the algebraic equation system additional constraints
such as nodal or derivative values. Thus, the algebraic equation system (8) can be
reformulated as follows.(

ũ
h̃

)
=

[
G̃[0]

L̃

]
w̃ = C̃ w̃, (9)

where h̃ = L̃w̃ are additional constraints. The conversion of the network-weight
space into the physical space yields

w̃ = C̃−1
(

ũ
h̃

)
, (10)

where C̃−1 is the conversion matrix. By substituting equation (10) into equations
(6) and (7), the second and first-order derivatives of u are expressed in terms of
nodal variable values as follows.

d2ũ
d2x

= D̃2ũ+ k̃2,

dũ
dx

= D̃1ũ+ k̃1,

ũ = D̃0ũ+ k̃0,

(11)

where D̃2, D̃1 and D̃0 are known matrices of dimension N×N; and k̃2, k̃1 and k̃0
are known vectors of length N.

2.2 Compact local IRBF methods

The 1D IRBF approximation, presented in section 2.1, is now developed into com-
pact local 3–point stencils to discretise differential equations, following Mai-Duy
and Tran-Cong (2011).

Consider local stencils LSi = [xi−1,xi,xi+1] associated with grid point xi (2 ≤ i ≤
n− 1) in a typical global 1D Cartesian grid line. Equations (3) - (5) will be col-
located at a stencil with N = 3 grid points. In the context of the present 3-point
local stencils, we choose additional constraints to be the imposition of the govern-
ing equation at certain nodes. Thus, Eq. (9) includes (i) a set of three equations
representing nodal values of u over the LSi and (ii) a set of two algebraic equations
obtained by evaluating the governing differential equation (1) at xi−1 and xi+1. As
a result, values of function u and its derivatives at an arbitrary point x on the sten-
cil are calculated in the physical space as Eq. (11) where ũ = (ui−1,ui,ui+1)

T

h̃ = (fi−1, fi+1)
T .

6 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

3 Overlapping Domain Decomposition Method

Although the compact local IRBF methods are expected to (i) enhance the compu-
tational accuracy and convergence rate, and (ii) reduce the computational time, they
could suffer from the problem of numerical ill-condition for large scale problems.
In order to deal with this issue, a combination of the present CLIRBF approach and
a DDM is used to solve differential equations.

DDM aims to split the domain under consideration into smaller subdomains while
guaranteeing the continuity at the splitting boundary. DDM algorithms can be
grouped into two classes: (i) non-overlapping methods and (ii) overlapping meth-
ods (Smith, Bjorstad, and Gropp, 1996).

For the Multiplicative Schwarz overlapping method, since the artificial boundary
values of each subdomain are updated from the most recent results of its neigh-
bouring subdomains (NS), the subdomains have to be solved sequentially. Thus,
it has little potential for parallel programming. One way to make it parallelisable
is by grouping subdomains through black-white colouring technique (Quarteroni,
1999), so that all the NSs have different colours. By this way, in the first half-step
only one group, for example the white one, executes simultaneously because they
do not share any common boundary. In the next half-step, the other group (the
black one) executes in the same manner.

For the Additive Schwarz overlapping (ASO) method, the values of artificial bound-
ary in each subdomain at step n+1 are updated from the results of its NS’s at step
n. Since the data of each subdomain are independent of others during the compu-
tational process, the approach is naturally parallel-capable and its implementation
is quite straightforward. In this paper, the additive overlapping method is imple-
mented on the domain under consideration. We will present this method in more
detail below.

3.1 Additive Schwarz overlapping method

For illustrative purposes, the domain Ω is divided into two subdomains Ω1 and Ω2.
Let ∂Ω1 and ∂Ω2 be boundaries and Γ1, Γ2 the artificial boundaries (ABs) of Ω1
and Ω2 respectively (Fig. 1). The boundary condition imposed on artificial bound-
aries can be Dirichlet-Dirichlet, Dirichlet-Neumann or otherwise. The so-called
interface is the overlapping area between two subdomains. For example, in Fig.
1 the interface consists of three points two points u1, u2 are the artificial bound-
aries and the middle point would be the interface between the two subdomains in
a non-overlapping DD. The width of the overlapping area is one of several fac-
tors that affect the convergence rate of DDM. According to Smith, Bjorstad, and
Gropp (1996) this width must lie in a range from 10 to 20 percent, of the width of

Compact Local IRBF and Domain Decomposition method 7

Figure 1: 1D Domain Decomposition with two subdomains Ω1 and Ω2

a subdomain. In our work, we choose the lower limit of this range, which is 10
percent.

In this work, the boundary condition imposed on Γ1, Γ2 is chosen to be Dirichlet-
Dirichlet type because of its simple implementation. As the algorithm is iterative,
equation (1) is written for the subdomains Ω1 and Ω2 respectively at a step n as
follows.

L un
1 = f , x ∈Ω1

Bun
1 = g, x ∈ ∂Ω1\Γ1 (12)

un
1 = un−1

1Ω2
,x ∈ Γ1

and

L un
2 = f , x ∈Ω2

Bun
2 = g, x ∈ ∂Ω2\Γ2 (13)

un
2 = un−1

2Ω1
,x ∈ Γ2

where un−1
iΩ j

(i, j ∈ {1,2}, i 6= j) is the value of artificial boundary u in Ωi obtained
from the solution in Ω j at the step n−1 (see Fig. 1).

One important character of parallel DDMs is shared memory. In such systems
all nodes have access to a shared memory and each node has to update its own
record in that memory. Because of the nature of shared memory, as the number
of nodes increases, memory access generates a bottleneck of the whole system.
Another drawback of this approach is its high message complexity. Each node has
to access the share memory at least once per iteration to update its state, which
causes at least (i× n) (i - the number of iteration and n - the number of nodes)
control messages to be communicated over the network. In order to overcome

8 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

above disadvantages, a shared bitmap that describes the termination status of the
whole system is introduced. This idea will be discussed in section 4.

3.2 Algorithm of the present procedure

The present method can now be described in a more detailed algorithm whose
flowchart is shown in Fig. 2 and consists of four main steps

Figure 2: Parallel domain decomposition with 2 subdomains: CM - convergence
measure; DDTol - predefined tolerance.

1. Divide the analysis domain into a number of subdomains. Guess initial
boundary condition at artificial boundaries (ABs);

Compact Local IRBF and Domain Decomposition method 9

2. Solve the boundary value problem in each and every subdomain using Com-
pact Local IRBF method;

3. Exchange the field variables or derivatives across ABs;

4. Check for the convergence on the interface.

For the case of two subdomains, it is quite easy to determine subdomains’ neigh-
bour and corresponding artificial boundary. However, with more than two subdo-
mains, more effort is required as follows.

1. Enumerate subdomains;

2. Convert flat-index (Lab-index) into subdomain index (matrix index);

3. Determine the neighbours;

4. Determine real and artificial boundaries.

An example of this procedure is provided in Fig. 3

Figure 3: Enumeration in a system within Nx = 4×Ny = 3 subdomains: subdo-
mains are enumerated from 1 to 12 and are geometrically indexed as in a matrix
from bottom to top, left to right. In general, lab (i, j) has lab (i, j− 1) as its left
neighbour if (j− 1) > 0, lab (i, j + 1) as its right neighbour if (j + 1) ≤ Ny, lab
(i+1, j) as its top neighbour if (i+1) ≤ Nx, and lab(i−1, j) as its bottom neigh-
bour if (i−1)> 0.

10 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

4 Parallel algorithm based on Distributed Termination Detection (DTD)

In a general distributed system, any node will terminate after finishing its job and
the system is fully terminated only when all nodes have terminated. However, when
solving a PDE using DDM based parallel algorithm, as the result obtained from all
subdomains must be consistent, all nodes are required to terminate strictly at the
same step. Clearly, if one node terminates while some other nodes are still active,
those active nodes cannot exchange information with their terminated neighbours.
Consequently, the system will end up with communication errors. A bitmap based
DTD method is employed in the current parallel algorithm to synchronise the ac-
tivity of the system and is described in this section.

During the DTD process, a shared data called bitmap is spread throughout the sys-
tem and reflects the current state of all nodes. The use of bitmap makes the present
algorithm symmetric because any node can detect the termination at any time. Fur-
thermore, the algorithm requires neither a central node nor a spanning tree/graph to
monitor the state of the system.

4.1 Terminology

Figure 4: Terminology of bitmap DTD: StopCode, ReadyCode and a general
bitmap for the sixth subdomain in a system of 32 subdomains

Bitmap is a map of binary bits (see Fig. 4). Each bit has two states true or false,
which are correspondingly equivalent to two states of a node ready or not-ready
to terminate. The length of a bitmap is equal to the number of nodes in the parallel
work. For example, in order to encode states of 32 nodes, it is sufficient to use a

Compact Local IRBF and Domain Decomposition method 11

bitmap of 32 bits of data. In this example, the bitmap could have any value in the
range from 0 to (232−1). For ease of presentation, we define some technical terms
as follows.

• LabIndex: The index of a node in system. This index is also corresponding
to the position of a bit, reflecting the state of that node, in the bitmap;

• StopCode: A bitmap with all bit 1, i.e. all nodes are ready. When StopCode
is achieved the termination is detected;

• ReadyCode: A node-specific bitmap with only one bit 1. This bitmap is
used when that specific node becomes READY;

• Step-To-End (STE): is the number of iterations left for each node to execute
before termination.

4.2 Mechanism of bitmap DTD

The present DTD algorithm consists of two components: (i) Termination Detection
and (ii) Synchronised Termination. The Termination Detection’s role is to detect
whether the system is in its quiescent state, i.e., all the nodes are ready to terminate.
When that state is achieved, the Synchronised Termination is activated to get all
nodes terminated simultaneously at the same step.

Figure 5: Message format in a system of 32 subdomains

The termination detection process runs along with the main computation as the
data (including bitmap, see Fig. 5) are communicated between nodes. Each node
keeps a record of its current bitmap which is initially empty. When a node receives
a bitmap from one of its neighbours it updates its own bitmap by doing a binary
union between its bitmap and the received bitmap. At a stage, a node detects ter-
mination if its bitmap is equal to the StopCode. Otherwise, this node continues
to exchange its data and bitmap with neighbours. The Termination Detection al-
gorithm is expressed by a flowchart in Fig. 6. When the termination condition is
detected, the phase of Synchronous Termination is started. In this phase, the STE is

12 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

introduced to keep track of whether a node can actually terminate. The rule is sim-
ple, all STEs are initially set to (−1). Once the termination condition is detected by
a node, its STE is set to a value n+m−2 (m,n: dimension of the matrix index, see
section 3.2) which is decreased by one after each iteration or message exchange.
The STE and other data (Fig. 5) are then transferred to its neighbours. The node’s
job will be terminated when its STE reaches zero.

Figure 6: Bitmap Distributed Termination Detection algorithm on Ω1

Compact Local IRBF and Domain Decomposition method 13

5 Numerical results

The proposed parallel method based on the combination of a CLIRBF method and
parallel DDM to solve PDEs is verified using 1D and 2D problems with different
boundary conditions. The capability and efficiency of the present method are then
demonstrated with the simulation of the lid driven cavity (LDC) flow of a viscous
fluid.

5.1 One dimensional problem

Consider the following second-order ODE.

d2u
dx2 +

du
dx

+u =−exp(−5x) [9979sin(100x)+900cos(100x)] , 0≤ x≤ 1, (14)

with an analytic solution u = exp(−5x)sin(100x).

This problem is solved using the present method with two different types of bound-
ary condition. The domain is partitioned into 2 subdomains and a wide range of
grids (201,303, . . . ,501) is considered.

Dirichlet boundary condition
The Dirichlet conditions are u(0) = 0 and u(1) = sin(100)exp(−5).

The results show that the present method achieves the same accuracy level as the
CLIRBF method. In fact, the relative L2 error of the present method is O(hα),
showing a convergence rate α = 4.12 while that for the CLIRBF is 4.26 (see Fig. 7
(bottom figure)). Figure 7 (top figure) depicts a comparison of the results obtained
by the present method, the CLIRBF and the analytic one.

Dirichlet and Neumann boundary conditions
The Dirichlet condition is imposed on the left end u(0) = 0 and the Neumann con-
ditions on the right end du(1)

dx = 5exp(−5) [20cos(100)− sin(100)] = 0.598.

While the result described in Fig. 8 (top) by the present method is in very good
agreement with the analytic solution, the convergence rate displayed in Fig. 8 (bot-
tom) shows that the present parallel method yields a higher accuracy in comparison
with the CLIRBF method. Generally, the 1D example shows that the present paral-
lel scheme based on CLIRBF and DD method can attain the numerical accuracy of
corresponding schemes using single domain.

5.2 Two dimensional problem

Consider the following 2D problem

∂ 2u
∂x2 +

∂ 2u
∂y2 = 4(1−π

2)sin(2πx)sinh(2y)+16(1−π
2)cosh(4x)cos(4πy). (15)

14 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Figure 7: Second order problem with Dirichlet boundary condition: Solutions ob-
tained by the 3-node CLIRBF method, the present parallel method and and the
analytic solution (top figure); Relative L2 errors of the solution u against the grid
density by the 3-node CLIRBF method and the present method (bottom figure).

This problem is solved in the analysis domain and with the Dirichlet and Dirich-
let/Neumann boundary conditions given in Fig. 9. The analytic solution is given
by u(x,y) = sin(2πx)sinh(2y)+ cosh(4x)cos(4πy) and presented in Fig. 10(a).

A range of uniform grids (77×77, 113×113, 149×149, 185×185, 237×237) and
subdomains (2×2, 3×3, 4×4, 5×5) are considered in the simulation. The results
show that the numerical solution by the present parallel method whose computa-
tional parameters are given in Tables 1 and 2 is in very good agreement with the
analytic solution (see Fig. 10). Indeed, Figure 10 presents the numerical solution
of field variable u by the present parallel method with Dirichlet-Dirichlet boundary
condition (Fig. 10(b)) and Dirichlet-Neumann boundary condition (Fig. 10(c)) us-
ing a grid of 77×77 collocation points and 2×2 subdomains in comparison with
the analytic solution.

The results by the present parallel method presented in Tables 1 and 2 show that
when grid density increases the present parallel domain decomposition method sig-

Compact Local IRBF and Domain Decomposition method 15

Figure 8: Second order problem with Dirichlet-Neumann boundary condition: So-
lutions obtained by the 3-node CLIRBF method, the present parallel method and
and the analytic solution (top figure); Relative L2 errors of the solution u against
the grid density by the 3-node CLIRBF method and the present method (bottom
figure).

nificantly increases the throughput. Indeed, the computation time is reduced signif-
icantly in comparison with non-parallel computation when increasing the number
of collocation points to 185×185 as shown in Tables 1-2. Furthermore, the parallel
algorithm is really efficient for solving large scale problems which require a large
number of calculations as described in the next example.

5.3 Lid driven cavity problem

The lid-driven cavity (LDC) flow is commonly used as a typical example to bench-
mark numerical methods and therefore is also employed here to investigate the
accuracy as well as the efficiency of the present parallel scheme. The problem is

16 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Figure 9: 2-D problem: Geometry of the analysis domain with 1) Dirichlet bound-
ary conditions (left figure) and 2) Dirichlet-Neumann boundary conditions (right
figure)

Table 1: 2D problem with Dirichlet Boundary conditions. nx×ny: number of collo-
cation points in the analysis domain; CPUs: number of CPUs; CMTol: the tolerance
of convergence measure on the artificial interfaces; Ni: number of iterations; Nes:
error norm for the single domain CLIRBF method; Nep: error norm for the parallel
CLIRBF-DD method; ts: computation time for the single domain CLIRBF method;
tp: computation time for the parallel CLIRBF-DD method.

Single Domain Multi Domains - Parallel computation
nx×ny Nes ts (sec) CPUs CMTol Ni Nep tp (sec)
77×77 2.963E−6 25 4 1.E−6 124 3.174E−6 428
113×113 1.882E−6 104 9 1.E−6 217 1.831E−6 744
149×149 1.443E−6 383 16 1.E−6 384 1.413E−6 1311
185×185 1.268E−6 11234 25 1.E−6 515 1.408E−6 1739
237×237 n/a n/a 25 1.E−7 577 2.877E−6 3873

defined in the stream function formulation as follows.

∂ω

∂ t
+(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
) =

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
, (16)

−ω =
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 , (17)

where Re is the Reynolds number, ψ the stream function, ω the vorticity and t the
time. The geometry of the analysis domain with the chosen coordinate system is
shown in Fig. 11. The x− and y− velocity components (ux and uy) are given by

Compact Local IRBF and Domain Decomposition method 17

(a)

(b) (c)

Figure 10: 2D problem: (a) - Analytical solution; (b) - Present method with
Dirichlet-Dirichlet boundary condition; (c) - Present method with Dirichlet-
Neumann boundary condition.

ux =
∂ψ

∂y and uy =− ∂ψ

∂x .

18 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Table 2: 2D problem with Neumann and Dirichlet Boundary conditions. nx× ny:
number of collocation points in the analysis domain; CPUs: number of CPUs;
CMTol: the tolerance of convergence measure on the artificial interfaces; Ni: num-
ber of iterations; Nes: error norm for the single domain CLIRBF method; Nep: error
norm for the parallel CLIRBF-DD method; ts: computation time for the single do-
main CLIRBF method; tp: computation time of the parallel CLIRBF-DD method.

Single Domain Multi Domains - Parallel computation
nx×ny Nes ts (sec) cpu CMTol Ni Nep tp (sec)
77×77 1.523E−6 19 4 1.E−5 132 1.356E−6 469
113×113 5.898E−6 54 9 1.E−6 660 3.949E−6 2294
149×149 2.708E−6 145 16 5.E−7 1150 1.945E−6 4039
185×185 1.443E−6 16560 25 5.E−7 921 1.129E−6 3193
237×237 n/a n/a 25 1.E−7 661 1.307E−6 4379

Figure 11: The lid driven square cavity problem: geometry of the analysis domain
and boundary conditions in terms of the stream function.

The boundary conditions are given in terms of the stream function as

ψ = 0,
∂ψ

∂x
= 0 ∀(x,y) ∈ Γ2∪Γ3; (18)

ψ = 0,
∂ψ

∂y
= 0 ∀(x,y) ∈ Γ4; (19)

ψ = 0,
∂ψ

∂y
= 1 ∀(x,y) ∈ Γ1. (20)

Compact Local IRBF and Domain Decomposition method 19

The problem is solved by the present parallel algorithm using the 3× 3 nodes
CLIRBF - DD method. Let N (N = Nx×Ny) be the number of subdomains and
(nx× ny) the grid for the whole domain. Since each subdomain is governed by a
separate CPU, N is also the number of CPUs used for the present parallel method.
The algorithm for solving LDC problem can be described as follows.

1. Divide the analysis domain into a number of subdomains. Guess initial
boundary condition at artificial boundaries (ABs);

2. Guess the initial values of ω;

3. Solve the LDC in each and every subdomain using CLIRBF method;

(a) Solve Eq. (17) for ψ;

(b) Approximate the values of ω on boundaries and the convective terms
inside subdomain;

(c) Solve Eq. (16) for ω;

4. Exchange the values of ψ and ω at interfaces with neighbours;

5. Calculate convergence measure on all interfaces;

6. Check for termination condition on all interfaces;

If the procedure is not yet converged, replace values of ψ and ω at ABs with
those received from neighbours and go back to step 3;

7. Stop the procedure.

A range of Re (100,400,1000) and uniform grids are considered in the simulation.
The time step (∆t) is chosen in the range from 10−4 to 10−6 and based on Re value
and spatial grid size (smaller time steps are for finer grids and/or higher Re). The
results by the present parallel method using a range of different subdomains (see
Tables 3 - 5) are in very good agreement with the benchmark solution by Ghia,
Ghia, and Shin (1982) using a multi-grid method.

Indeed, Fig. 12 depicts profiles of the velocities u and v along the vertical and hor-
izontal centre-lines, respectively at several Reynolds numbers (100, 400 and 1000)
with grids of 103×103 collocation points (Figs 12(a) - 12(b)) and 295×295 col-
location points (Figs 12(c) - 12(d)) using the present parallel method with 5× 5
subdomains. These results are in very good agreement with the benchmark solu-
tion by Ghia, Ghia, and Shin (1982) using a grid of 129×129 points. Although the
present method can produce results in excellent agreement with Ghia’s using only
103× 103 grid points, a larger grid of 295× 295 points is used to demonstrate a

20 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

(a) grid=103x103 (b) grid=103x103

(c) grid=295x295 (d) grid=295x295

Figure 12: The LDC fluid flow. Profiles of the u velocity along the vertical cen-
tre lines (a, c) and the v velocity along the horizontal centre lines (b, d) by the
present parallel method at several Reynolds numbers (Re = 100, 400, and 1000)
and grids (103×103, 295×295) in comparison with the corresponding Ghia’s re-
sults. Although the present method can produce results in excellent agreement with
Ghia’s using only 103× 103 grid points, a larger grid of 295× 295 points is used
to demonstrate a large scale solution.

large scale solution. Meanwhile the corresponding streamlines and vorticity con-
tours in Fig. 13 by the method show a very good agreement with benchmark so-
lution by Ghia, Ghia, and Shin (1982) (Figs. 3 and 4) at Reynolds numbers Re =
100, 400 and 1000 and from Botella and Peyret (1998) at Reynolds numbers Re

Compact Local IRBF and Domain Decomposition method 21

= 100, 1000. Furthermore, secondary vortices at the bottom corners (Figs. 13(a),
13(c) and 13(e) using grid 103× 103 and Figs. 14(a), 14(c) and 14(e) using grid
295×295) are well captured by the present method.

The efficiency of the present parallel method is considered. The general goal is
(i) to assign each processor an equal amount of work to be completed as fast as
possible and (ii) to minimise the amount of communication between processors by
essentially minimising the surface area of the subdomains. Results described in
Tables 3 - 5 show that the computation time of the present parallel method for the
solution of non-linear time-dependent problems using an iterative method decreases
massively with respect to the number of CPUs used, for example, the throughput
is 346.66,100.48,49.44, . . . ,2.61 minutes, respectively using the number of CPUs
2,4,6, . . . ,36 for the grid 101×101 (Table 3). An interpretation on this significant
improvement of throughput will be presented below (Eq. 21).

Fig. 15 shows the efficiency of the present parallel algorithm with respect to the
number of CPUs for the solution of LDC problem for several Reynolds numbers
(Re = 100, 400 and 1000) using a range of grid densities (nx× ny with nx = ny ∈
{101, 155, 209, 253}). The results show that the computation time of the present
parallel algorithm decreases tremendously as the number of subdomains/CPUs in-
creases. This correctly reflects the scalability nature of parallel computing. How-
ever there are always some thresholds (called cpusopt) over which the increase of
number of CPUs influences insignificantly on the computation time. For exam-
ple, the improvement of efficiency of computation is not significant anymore as the
number of CPUs is more than 10 for a grid of 101×101 (Fig. 15(a)), 25 for a grid
of 155× 151 (Fig. 15(b)) and 32− 35 for a grid of 209× 209 (Fig. 15(c)) and
253×253 (Fig. 15(d)). It shows that the choice of the scale for subdomains plays
an important role in the high performance computation using parallel schemes. The
detailed results are provided in Tables 3 - 5. Furthermore, the method removes the
ill-conditioning of the global system matrix evidenced by a significant decrease of
the condition number of the system matrix associated with the IRBF method (see
column 3 of Table 6 and Fig. 17).

Fig.16 depicts the influence of the grid density on the efficiency of the present par-
allel algorithm with respect to the number of CPUs for the solution of the LDC
problem for several Reynolds numbers (Re = 100,400 and 1000). Indeed, the gra-
dient (slope) of time curves for larger numbers of collocation points is steeper for
any Reynolds number, which indicates that the efficiency of the present parallel
method will be higher for larger scale problems (i.e. larger numbers of collocation
points).

It is worth noting that the efficiency of present parallel method for iterative fluid
flow problem is very high and increases gradually with respect to the number of

22 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

(a) (b)

(c) (d)

(e) (f)

Figure 13: The LDC fluid flow. Streamlines and vorticity contours of the flow
for several Reynolds numbers (Re = 100, 400, and 1000) by the present parallel
method using a grid of 103×103 of points.

Compact Local IRBF and Domain Decomposition method 23

(a) (b)

(c) (d)

(e) (f)

Figure 14: The LDC fluid flow. Streamlines and vorticity contours of the flow for
several Reynolds numbers (Re = 100, 400, and 1000) using a grid of 295× 295
points.

24 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Table 3: Parallel computation of the LDC problem with Re = 100. nx× ny: grid
of collocation points; CPUs (Nx×Ny): number of CPUs (number of subdomains);
∆t: time step; CMTol: tolerance of convergence measure at interfaces; Ni: number
of iterations; t(m): elapsed time (minutes); CMp: average convergence measure of
the whole analysis domain.

nx×ny CPUs ∆t CMTol Ni t(m) CMp
101×101 2 1.E−5 1.E−6 2983 346.66 3.3862E−07
− 4 1.E−5 1.E−6 3039 100.48 3.2612E−07
− 6 1.E−5 1.E−6 3130 49.44 3.0900E−07
− 8 1.E−5 1.E−6 3127 26.32 3.1188E−07
− 9 1.E−5 1.E−6 3153 23.90 2.6812E−07
− 12 1.E−5 1.E−6 3141 13.69 2.7585E−07
− 15 1.E−5 1.E−6 3140 10.22 2.5592E−07
− 16 1.E−5 1.E−6 3142 7.96 2.5326E−07
− 20 1.E−5 1.E−6 3139 5.97 2.3442E−07
− 25 1.E−5 1.E−6 3128 4.54 2.2448E−07
− 28 1.E−5 1.E−6 3125 3.59 2.1013E−07
− 30 1.E−5 1.E−6 3123 3.10 2.1792E−07
− 35 1.E−5 1.E−6 3119 2.70 2.0436E−07
− 36 1.E−5 1.E−6 3118 2.61 2.0544E−07
155×155 9 5.E−6 1.E−06 5806 190.00 2.8840E−07
− 12 5.E−6 1.E−6 5822 110.39 2.8021E−07
− 15 5.E−6 1.E−6 5828 74.76 2.7005E−07
− 16 5.E−6 1.E−6 5837 63.17 2.5711E−07
− 20 5.E−6 1.E−6 5842 41.61 2.4535E−07
− 25 5.E−6 1.E−6 5837 29.23 2.3962E−07
− 28 5.E−6 1.E−6 5764 25.24 2.2321E−07
− 30 5.E−6 1.E−6 5820 23.00 2.1753E−07
− 35 5.E−6 1.E−6 5813 18.27 2.0763E−07
− 36 5.E−6 1.E−6 5732 17.94 2.1531E−07
209×209 16 5.E−6 1.E−06 5862 190.41 3.4286E−07
− 20 5.E−6 1.E−6 5968 134.30 2.8124E−07
− 25 5.E−6 1.E−6 5835 89.89 3.3027E−07
− 28 5.E−6 1.E−6 5823 74.26 2.6927E−07
− 30 5.E−6 1.E−6 5854 61.78 3.0911E−07
− 35 5.E−6 1.E−6 5820 51.69 2.7399E−07
− 36 5.E−6 1.E−6 5820 45.19 2.2564E−07
253×253 25 5.E−6 1.E−6 6715 227.97 2.9365E−07
− 28 5.E−6 1.E−6 6598 190.89 2.8132E−07
− 30 5.E−6 1.E−6 6673 149.42 2.6219E−07
− 35 5.E−6 1.E−6 6619 115.89 2.4176E−07
− 36 5.E−6 1.E−6 6537 101.33 2.5564E−07
295×295 36 4.E−6 1.E−6 8437 313.05 2.4598E−07
299×299 42 4.E−6 1.E−6 8485 207.59 2.0221E−07

Compact Local IRBF and Domain Decomposition method 25

Table 4: Parallel computation of the LDC problem with Re = 400. nx× ny: grid
of collocation points; CPUs (Nx×Ny): number of CPUs (number of subdomains);
∆t: time step; CMTol: tolerance of convergence measure at interfaces; Ni: number
of iterations; t(m): elapsed time (minutes); CMp: average convergence measure of
the whole analysis domain.

nx×ny CPUs ∆t CMTol Ni t(m) CMp
101×101 2 1.E−5 1.E−6 1769 199.67 3.6469E−07
− 4 1.E−5 1.E−6 1809 59.51 3.4120E−07
− 6 1.E−5 1.E−6 1907 30.38 3.1543E−07
− 8 1.E−5 1.E−6 1943 17.09 3.0031E−07
− 9 1.E−5 1.E−6 1949 15.34 2.6732E−07
− 12 1.E−5 1.E−6 1980 8.55 2.6361E−07
− 15 1.E−5 1.E−6 1988 6.55 2.6674E−07
− 16 1.E−5 1.E−6 2044 5.06 2.5307E−07
− 20 1.E−5 1.E−6 2092 3.89 2.2655E−07
− 25 1.E−5 1.E−6 2163 3.10 2.0506E−07
− 28 1.E−5 1.E−6 2184 2.51 2.1807E−07
− 30 1.E−5 1.E−6 2199 2.26 1.9648E−07
− 35 1.E−5 1.E−6 2330 2.09 1.4480E−07
− 36 1.E−5 1.E−6 2359 1.86 1.3151E−07
155×155 9 1.E−5 1.E−6 1957 117.43 2.2188E−07
− 12 1.E−5 1.E−6 1978 38.02 2.0113E−07
− 15 1.E−5 1.E−6 1995 25.64 1.9335E−07
− 16 1.E−5 1.E−6 1993 21.82 2.1742E−07
− 20 1.E−5 1.E−6 1996 14.64 2.1968E−07
− 25 1.E−5 1.E−6 2047 10.41 1.8317E−07
− 28 1.E−5 1.E−6 2303 10.34 1.7704E−07
− 30 1.E−5 1.E−6 2292 9.23 1.7548E−07
− 35 1.E−5 1.E−6 2398 7.54 1.4143E−07
− 36 1.E−5 1.E−6 2577 6.54 1.0865E−07
209×209 16 1.E−5 1.E−6 2088 68.21 3.5483E−07
− 20 1.E−5 1.E−6 2192 49.50 3.5207E−07
− 25 1.E−5 1.E−6 2305 35.96 4.3792E−07
− 28 1.E−5 1.E−6 2245 28.56 3.1715E−07
− 30 1.E−5 1.E−6 2293 25.80 3.5021E−07
− 35 1.E−5 1.E−6 2453 23.16 2.6163E−07
− 36 1.E−5 1.E−6 2393 18.43 2.2997E−07
253×253 25 8.E−6 1.E−6 2814 91.87 3.4725E−07
− 28 8.E−6 1.E−6 2980 75.47 4.1144E−07
− 30 8.E−6 1.E−6 3015 67.91 3.6694E−07
− 35 8.E−6 1.E−6 3195 58.14 2.4023E−07
− 36 8.E−6 1.E−6 3236 49.99 2.7969E−07
295×295 36 4.E−6 1.E−6 5164 171.74 2.5456E−07
299×299 42 4.E−6 1.E−6 5333 130.06 1.9579E−07

26 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

Table 5: Parallel computation of the LDC problem with Re = 1000. nx× ny: grid
of collocation points; CPUs (Nx×Ny): number of CPUs (number of subdomains);
∆t: time step; CMTol: tolerance of convergence measure at interfaces; Ni: number
of iterations; t(m): elapsed time (minutes); CMp: average convergence measure of
the whole analysis domain.

nx×ny CPUs ∆t CMTol Ni t(m) CMp
101×101 2 1.E−6 1.E−6 9292 972.00 2.7711E−07
− 4 1.E−6 1.E−6 9146 301.05 2.9968E−07
− 6 1.E−6 1.E−6 8958 246.58 3.6250E−07
− 8 1.E−6 1.E−6 8789 76.40 3.9178E−07
− 9 1.E−6 1.E−6 8964 68.32 3.3912E−07
− 12 1.E−6 1.E−6 8936 37.71 3.1141E−07
− 15 1.E−6 1.E−6 8901 29.06 2.8634E−07
− 16 1.E−6 1.E−6 8866 21.68 2.4941E−07
− 20 1.E−6 1.E−6 8862 16.27 2.2520E−07
− 25 1.E−6 1.E−6 8881 12.11 2.1926E−07
− 28 1.E−6 1.E−6 9062 9.54 1.9764E−07
− 30 1.E−6 1.E−6 8685 8.54 2.4913E−07
− 35 1.E−6 1.E−6 8764 7.27 2.3634E−07
− 36 1.E−6 1.E−6 9326 6.71 1.5421E−07
155×155 9 1.E−6 1.E−6 8887 290.22 3.5905E−07
− 12 1.E−6 1.E−6 8973 170.57 3.2145E−07
− 15 1.E−6 1.E−6 8979 137.84 3.0020E−07
− 16 1.E−6 1.E−6 9018 97.69 2.6282E−07
− 20 1.E−6 1.E−6 9072 79.81 2.3382E−07
− 25 1.E−6 1.E−6 9094 46.22 2.1900E−07
− 28 1.E−6 1.E−6 9565 43.57 1.8332E−07
− 30 1.E−6 1.E−6 9171 36.38 2.2463E−07
− 35 1.E−6 1.E−6 9901 29.89 1.5324E−07
− 36 1.E−6 1.E−6 11704 36.81 1.2794E−07
209×209 16 5.E−6 1.E−06 3435 203.43 1.7919E−07
− 20 5.E−6 1.E−6 3738 148.03 1.6568E−07
− 25 5.E−6 1.E−6 3944 107.23 1.6116E−07
− 28 5.E−6 1.E−6 3890 75.06 1.6030E−07
− 30 5.E−6 1.E−6 3988 69.16 1.5540E−07
− 35 5.E−6 1.E−6 4118 60.20 1.3527E−07
− 36 5.E−6 1.E−6 4268 54.84 1.0258E−07
253×253 25 5.E−6 1.E−6 3798 227.09 1.5637E−07
− 28 5.E−6 1.E−6 4043 160.56 1.5123E−07
− 30 5.E−6 1.E−6 4042 139.30 1.4436E−07
− 35 5.E−6 1.E−6 4131 124.96 1.3336E−07
− 36 5.E−6 1.E−6 4486 114.92 8.8219E−08
295×295 36 5.E−6 1.E−6 4550 271.60 2.3908E−07
299×295 42 5.E−6 1.E−6 4849 212.26 2.0420E−07

Compact Local IRBF and Domain Decomposition method 27

(a) (b)

(c) (d)

Figure 15: The LDC fluid flow. Computation time versus number of CPUs for the
present parallel method with different number of collocation points nx× ny (nx =
ny = N).

CPUs until it reaches some threshold (cpusopt). Indeed, although the communi-
cation time among processors is generally orders of magnitude slower than cal-
culation time within a single processor, due to a great number of iterations, the
computation time for each subdomain plays a key role in improving the throughput
of the present parallel method. One typical numerical example is given in Table 6
and the extensive improvement of throughput of the present parallel method can be
explained as follows.

Let Np be the number of iterations in the whole domain, tcal the average computa-
tional time (second) in subdomains for each iteration; tcom the total communication

28 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

(a) (b)

(c)

Figure 16: The LDC fluid flow. Computation time versus number of CPUs when
solving LDC using the present parallel method with different Reynolds numbers:
Re = 100 (Fig. 16(a)); Re = 400 (Fig. 16(b)); Re = 1000 (Fig. 16(c)).

time (minutes). The total execution time (elapsed time) Ttotal (minutes) is given by

Ttotal =
Np× tcal

60
+ tcom (21)

Table 6 shows that while the number of iterations for different cases of parallel
computation is similar (approximately 3000 for CMp = 3.E−7), the average com-
putation time tcal for each iteration in subdomains decreases quickly with increasing
number of CPUs or subdomains (scale of sub-problems) (Figure 17 (top)), resulting
in a very high rate of throughput.

Compact Local IRBF and Domain Decomposition method 29

Table 6: Parallel computation using the present method for the LDC problem with
Re = 100 and ∆t = 1.E − 5. nx× ny: grid points; CPUs (Nx×Ny): number of
CPUs (number of subdomains); Cond. Num: condition number; CMp: average
convergence measure of the whole analysis domain; Np: number of iterations on
the whole domain; tcal(s): average computational time (second) in subdomains for
each iteration; tcom(m): total communication time (minutes); Ttotal(m): elapsed
time (minutes).

nx×ny CPUs Cond. Num CMp Np tcal(s) tcom(m) Ttotal(m)
101×101 2 2190.99 3.3862E−7 2983 6.891 4.06 346.66
−− 4 1389.97 3.2612E−7 3039 1.971 0.63 100.48
−− 9 617.80 2.6812E−7 3153 0.350 5.48 23.90
−− 16 322.27 2.5326E−7 3142 0.143 0.45 7.96
−− 25 230.75 2.2448E−7 3128 0.065 1.14 4.54
−− 36 154.49 2.0544E−7 3118 0.037 0.67 2.61

Figure 17: The LDC problem. Computation time (Top Figure) and Condition num-
bers (Bottom Figure) of the present parallel computation method using different
number of CPUs with a grid of 101×101.

30 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.1-31, 2013

6 Conclusion

In this paper, we have developed a parallel algorithm based on the combination
of the overlapping domain decomposition technique and CLIRBF methods. The
proposed algorithm allows not only a large scale problem to be discretised by par-
allel CLIRBF processes but also compact local stencils to be independently treated
in multiple-core CPUs. Advantages of the new approach include (i) to alleviate
the ill-condition problem associated with IRBF methods; (ii) to avoid the reduc-
tion in convergence rate caused by differentiation and (iii) to achieve much higher
throughput in solving large scale problems. The method is verified with several
numerical examples using Matlab Distributed Computing Engine.

Acknowledgement

The first author would like to thank the CESRC, FoES and University of Southern
Queensland for a Ph.D. scholarship. This research was supported by the Australian
Research Council.

References

Botella, O.; Peyret, R. (1998): Benchmark spectral results on the Lid-driven
cavity flow. Computers & Fluids, vol. 27, pp. 421–433.

Brown, D. (2005): On approximate cardinal preconditioning methods for solving
pdes with radial basis functions. Engineering Analysis with Boundary Elements,
vol. 29(4), pp. 343–353.

Dijkstra, E. W.; Scholten, C. (1980): Termination detection for diffusing com-
putation. Information Processing Letters, vol. 11, pp. 1–4.

Francez, N. (1980): Distributed termination. ACM Transaction on Programming
Languages and Systems, vol. 2, pp. 42–55.

Franke, R. (1982): Scattered data interpolation: Tests of some methods. Mathe-
matics of Computation, vol. 38 (157).

Ghia, U.; Ghia, K.; Shin, C. (1982): High-Re solutions for Incompressible flow
using the Navier-Stokes equations and a multigrid method. Journal of Computa-
tional Physics, vol. 48, pp. 387–411.

Haykin, S. (1999): Neural Networks: A Comprehensive Foundation (second
Edition), volume 842. Prentice Hall.

Ingber, M.; Chen, C.; Tanski, J. (2004): A mesh free approach using radial
basis functions and parallel domain decomposition for solving three-dimensional

Compact Local IRBF and Domain Decomposition method 31

diffusion equations. International Journal for Numerical Methods in Engineering,
vol. 60, pp. 2183–2201.

Kansa, E. (1990): Multiquadrics - A scattered data approximation scheme with
applications to computational fluid-dynamics - I Surface approximations and partial
derivative estimates. Computers & Mathematics with Applications, vol. 19(8-9),
pp. 127–145.

Ling, L.; Opfer, R.; Schaback, R. (2006): Results on meshless collocation
techniques. Engineering Analysis with Boundary Elements, vol. 30(4), pp. 247–
253.

Mai-Duy, N.; Tran-Cong, T. (2001): Numerical solution of differential equations
using multiquadric radial basis function networks. Neural Networks, vol. 14, pp.
185–199.

Mai-Duy, N.; Tran-Cong, T. (2008): A multidomain integrated-radial-basis-
function collocation method for elliptic problems. Numerical Methods for Partial
Differential Equations, vol. 24(5), pp. 1301–1320.

Mai-Duy, N.; Tran-Cong, T. (2011): Compact local integrated-RBF approxi-
mations for second-order elliptic differential problems. Journal of Computational
Physics, vol. 230, pp. 4772–4794.

Smith, B. F.; Bjorstad, P. E.; Gropp, W. D. (1996): Domain Decomposition
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge
University Press.

Tran, C.-D.; Phillips, D.; Tran-Cong, T. (2009): Computation of dilute polymer
solution flows using bcf-rbfn based method and domain decomposition technique.
Korea-Australia Rheology Journal, vol. 21, no. 1, pp. 1–12.

Tran-Canh, D.; Tran-Cong, T. (2004): Element-free simulation of dilute poly-
meric flows using brownian configuration fields. Korea-Australia Rheology jour-
nal, vol. 13(1), pp. 1–15.

Zerroukat, M.; Power, H.; Chen, C. (1998): A numerical method for heat
transfer problems using collocation and radial basis functions. Int. J. for Numer.
Meth. in Engng., vol. 42, pp. 1263–1278.

