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An approximately HHH111-optimal Petrov-Galerkin meshfree
method: application to computation of scattered light for

optical tomography
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Abstract: Nearly pollution-free solutions of the Helmholtz equation for k-values
corresponding to visible light are demonstrated and verified through experimentally
measured forward scattered intensity from an optical fiber. Numerically accurate
solutions are, in particular, obtained through a novel reformulation of the H1 opti-
mal Petrov-Galerkin weak form of the Helmholtz equation. Specifically, within a
globally smooth polynomial reproducing framework, the compact and smooth test
functions are so designed that their normal derivatives are zero everywhere on the
local boundaries of their compact supports. This circumvents the need for a priori
knowledge of the true solution on the support boundary and relieves the weak form
of any jump boundary terms. For numerical demonstration of the above formula-
tion, we used a multimode optical fiber in an index matching liquid as the object.
The scattered intensity and its normal derivative are computed from the scattered
field obtained by solving the Helmholtz equation, using the new formulation and
the conventional finite element method. By comparing the results with the experi-
mentally measured scattered intensity, the stability of the solution through the new
formulation is demonstrated and its closeness to the experimental measurements
verified.
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1 Introduction

There are a number of application areas where time harmonic wave propagation
modeled by the Helmholtz equation needs to be solved repeatedly [Devaney(1982),
Bao, Wei and Zhao(2004), William(1984)]. These include acoustic tomography
with application in oil prospecting, optical diffraction tomography for cross-sectional
imaging of fiber and integrated optics wave-guides and antenna design in electro-
magnetics. The boundary value problem represented by ∆u(r)+ k2u(r) = − f (r),
where f (r) is a harmonic source and k the wavenumber, results in highly oscilla-
tory solutions for large k. Therefore if a solution is sought through the conventional
finite element (FE) discretization, the characteristic mesh size h may have to be
made impracticably small to resolve the oscillations. One way of getting at an ac-
ceptable h could be to demand that kh =constant, resulting in constant grid spacing
throughout the domain. Insisting on a constant kh, when k is a large precipitates a
non-robust behavior of the FE solution, known as the pollution effect [Babuška and
Sauter, (2000),Bao, Wei and Zhao (2004)]. Many in the past have recognized this
difficulty and worked on means to extracting acceptably stable solutions. One of
the approaches has been to refine the FE method through its so-called h and h− p

versions [Ihlenburg and Babuška (1995), Ihlenburg and Babuška (1997)]. Another
approach involves the reformulation of the problem using a boundary integral equa-
tion (BIE) enriching also the approximation space with plane waves or spheroidal
wave functions (instead of only piece-wise continuous polynomials) which are
helpful in capturing the large k behaviour of the solution [Monk and Wang (1999)].
In Qian et al. [Qian, Han, Ufimtsev and Atluri (2004), Qian, Han and Atluri
(2013)], using vector test functions constructed from gradients of the fundamen-
tal solution of the Helmholtz equation, a non-hyper-singular BIE is arrived at for
the gradient of the sought after solution. A regularized version of the above non-
hyper-singular BIE is solved through a collocation scheme, the numerical imple-
mentation of which is speeded up by novel interpolation called the fast multipole
method. Thus the above scheme involves only O(N) computations thus making
it able to tackle practical problems of large dimension. In [Bruno, Geuzaine and
Reitich (2004)], following the high frequency integral equation formulation, the
rapidly oscillating surface waves are captured with a relatively coarse discretiza-
tion. A wavelet collocation method involving the discrete convolution algorithm
is discussed in [Bao, Wei and Zhao (2004)], wherein it is shown through Fourier
analysis that wavelet-based algorithm is essentially pollution free. In the context of
the inverse problem of recovery of spatial inhomogeneities in k(r), efficient time-
marching schemes are suggested and implemented to solve the Helmholtz equation
with and without first order paraxial or parabolic approximation [Natterer (2003)].

The present work is concerned with the exploitation of a smooth, polynomial re-
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producing functional discretization scheme within a nearly H1 optimal Petrov-
Galerkin weak formulation towards obtaining a numerically accurate solution to the
Helmholtz equation with moderate to high wave numbers. The standard Galerkin
projection, based on an orthogonalization of the residual field with respect to a finite
dimensional functional approximation space, yields the best approximation prop-
erty (in the form of minimum energy norm or H1semi-norm) for Laplace’s equation
and performs consistently with varying mesh resolutions. This is however not the
case with the Helmholtz operator, wherein considerable numerical pollution could
occur, especially for large wave numbers that precipitate the relative dominance
of the advection or derivative-free terms over the Laplacian term, as the above
best approximation property is no longer satisfied. The so-called pollution effect
is typically manifested in the numerical simulations through the presence of sharp
gradient layers and spuriously high-frequency oscillations [Ihlenburg and Babuska
(1995)]. The pollution effect simultaneously gives rise to dispersion [Babuska,
Ihlenburg, Paik and Sauter (1995)] as the wave number of the ‘exact’ solution is
different from that of the discretized numerical solution. Based on the conventional
Galerkin approximation, a condition like kh < 1 (where h denotes the discretiza-
tion step-size) may be enforced towards obtaining acceptable numerical accuracy
and, if domain discretization is, for instance, through the finite element method
(FEM), this could entail an impracticably dense meshing for large k [Ihlenburg and
Babuška (1995)]. A similar scenario arises with meshfree methods wherein a high
particle (nodal) density must be used. While this warrants a significant increase in
the system dimension post-discretization and might possibly yield acceptably ac-
curate solutions for not-so-large k, the best approximation property is nevertheless
not restored.

Significant research efforts have been invested in alleviating the numerical issues
mentioned above. Yet, there is hardly an efficient method that completely circum-
vents the above problem and hence Zienkiewicz [2000] puts this problem in the cat-
egory of unsolved ones. Galerkin’s least-square (GLS) method [Harari and Hughes
(1992)] is one such stabilization scheme that completely avoids the pollution ef-
fect in one-dimension. Unfortunately this method is far less effective in two or
still higher dimensions. A quasi-stabilized finite element method (QSFEM) has
been proposed by Babuska, Ihlenburg, Paik and Sauter [1995], which attempts at
addressing the pollution effect in 2D problems. But the efficacy of this method to
non-homogeneous problems and those involving non-uniform meshes as well as
higher order interpolations is unclear. Other methods aimed at reducing the pol-
lution effect include residual-free bubble (RFB) based approaches [Brezzi, Franca
and Russo (1998), Franca, Nesliturk and Stynes (1998)], residual-based finite ele-
ment method (RBFEM) [Oberai and Pinsky (2000)], streamlined upwind Galerkin
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methods (SUPG) [Brooks and Hughes (1982)], generalized finite element method
(GSFEM) [Strouboulis, Babuska and Copps (2000)] and the discontinuous enrich-
ment method (DEM) [Farhat, Harari and Franca (2001)]. Of specific interest in this
work is the nearly optimal Petrov-Galerkin method [Barbone and Harari (2001)],
which is based on approximately enforcing the optimal H1 semi-norm of the error
en route to the numerical determination of the solution. While the last method has
been demonstrated to be nodally exact for the 1D Helmholtz equation, an effica-
cious implementation of the scheme for 2D and still higher dimensions remains
somewhat elusive. The major obstacle in deriving an accurate test (weight) func-
tion within an H1 optimal Petrov-Galerkin scheme seems to be the prior lack of
knowledge of the true error (that in turn necessitates prior knowledge of the true
solution) appearing in the boundary integral of the weak form.

The boundary integral appearing in the H1 optimal Petrov-Galerkin weak form also
contains a jump term involving the difference of the normal derivatives of the test
and trial functions. However, given the higher order global smoothness and com-
pactness of the shape functions within a meshfree functional discretization scheme,
it appears worthwhile to derive the H1 optimal Petrov-Galerkin approach based
on such smooth test functions so constructed that their normal derivatives identi-
cally vanish on the boundary (interior or otherwise) thereby driving the boundary
term to zero. This would simplify the formulation by eliminating the boundary
term. Moreover, if the shape functions are constructed based on the condition of
polynomial reproduction, it is also likely to bring in higher numerical accuracy
vis-à-vis the FEM. With the rapid progresses made in the development of mesh-
free methods, there is a large family of such approximation methods to choose
from, e.g. moving least-square Petrov-Galerkin method (MLPG) [Atluri and Zhu
(1998), Atluri, Han and Rajendran (2004)], element-free Galerkin method (EFG)
[Lu, Belytschko, Gu (1994)], partition of unity method (PUM) [Babuska and Me-
lenk (1997), Melenk and Babuska(1996)], the h− p cloud method [Duarte and
Oden (1996)], reproducing kernel particle methods (RKPM) [Liu, Jun, Li, Adee
and Belytschko (1995), Liu, Jun, and Zhang (1995)], moving least square kernel
method (MLSRK) [Liu, Li and Belytschko (1997), Chen, Pan, Wu and Liu (1996)],
smooth particle hydrodynamics [Swegle, Hicks and Attaway (1995):], the point in-
terpolation method[Liu and Gu(2001)] to name a few. In this work, however, an
error reproducing kernel method (ERKM) [Shaw, Banerjee and Roy (2008), Shaw,
Bendapudi and Roy (2008), Shaw and Roy (2007, 2008)] is adopted, wherein non-
uniform rational B-splines (NURBS) are employed as bases in the initial (zeroth
order) functional approximation followed by a representation of the resulting ap-
proximation error through polynomial reproduction.

The rest of the paper is organized as follows. Section 2 describes the ERKM-based
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functional approximation scheme for completeness. In Section 3, the approximate
H1optimal weak formulation is outlined with emphasis on the derivation of the test
function based on a least square minimization. Application of the resulting Petrov-
Galerkin scheme to the Helmholtz equation, as it arises in the forward problem of
diffraction tomography, is dwelt upon in Sections 4 and 5. Here, we also com-
pare the forward solution with the experimentally measured scattered field from an
optical fiber. Finally, in Section 6, a few concluding remarks are provided.

2 NURBS-based ERKM

With a view to combining the global smoothness of meshfree methods with the
popularly adopted meshbased discretization of the FEM, several NURBS-based
hybrid methods, e.g. error reproducing kernel method (ERKM) [Shaw and Roy
(2007)] and parametric mesh-free methods [Shaw and Roy (2008)] have been de-
veloped. The NURBS based parametric bridging gives smooth solutions with shape
functions reproducing polynomials of appropriate degrees and derivatives of shape
functions reproducing derivatives of these polynomials. A NURBS based paramet-
ric bridging method uses an appropriate tensor product of NURBS bases as the
kernel function in deriving the shape functions via polynomial reproduction. The
FEM-like meshing is necessitated in the construction of the NURBS bases and the
derivation of the shape function relies upon a family of piecewise bijective geo-
metric maps between subsets of the original domain and a rectangular (cuboidal)
parametric domain These methods have been successfully applied to several linear
and nonlinear problems of general interest in solid mechanics. They however have
limitations for highly irregular geometries, wherein the geometric map might pre-
cipitate ill-conditioning in the discretized weak form. Another problematic issue
is a possible non-conformality in the numerical integration owing to the dual use
of knots as particles (or nodes) whilst constructing the NURBS or B-spline bases.
A significant extension and improvement of this concept, addressing most of these
issues by replacing the NURBS (B-splines) with triangular B-splines has also been
reported [Sunilkumar and Roy (2010) Sunilkumar, Roy and Reid (2012)]

The ERKM method is briefly described below. Some details on the NURBS bases
are given in Appendix-I. Here, to begin with, the target function is directly approx-
imated through NURBS basis functions. However, NURBS basis functions do not
reproduces polynomials (except for the constant or linear ones). One thus formally
defines an error function, which is made to meet the polynomial reproduction con-
dition via a non-NURBS family of basis functions. The functional approximation
is finally obtained by adding the approximated error function to the NURBS ap-
proximation. For a more detailed exposition, refer to [Shaw and Roy (2007, 2008),
Shaw, Banerjee and Roy (2008)].
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2.1 ERKM shape functions

Letu(x), x ∈ Rd , denote a scalar-valued continuous function defined on a simply
connected open set Ω ⊂ Rd with a Lipschitz continuous boundary ∂Ω and Pp =
Pp(Ω) vector space of polynomials of degree≤ pon Ω where pis the highest degree
of polynomials to be reproduced. The dimension of Pp is (p+d)!

p!d! . Multi-index no-
tations are adopted here. Thus, defining the multi-index α = (α1,α2, ....,αd) to be

an q- tuple of non-negative integersα j and its length|α| =
q
∑

i=1
αi, the α thderivative

of u(x) is written as Dαu(x) = ∂ α1
x1

∂ α2
x2
...∂

αq
xq u(x). Moreover, one defines α! =

α1!α2!...αq! andxα = xα1
1 xα2

2 ...xαq
q . Let Ω̄=Ω∪∂Ω be discretized by set of Npparticles

or nodes{{xi}
Np
i=1} ⊂ Ω̄. Associated with them is a set of discretized function

values{ui
∆
= u(xi)}

Np
i=1. Now the initial approximation of the function is given by:

ua
bs(x) =

Np

∑
i=1

Rp
i (x)ui (1)

where Rp
i (x) is a B-spline (or NURBS) basis function of the degree pand ua

bs(x)
denotes the B-spline approximation of u(x). The accruing (notional) error owing to
this approximation is then reproduced via non-B-spline family of functions {Ψ̄i(x)}
such that:

u(x)−ua
bs(x) =

Np

∑
i=1

Ψ̄(x)ui (2)

where

Ψi(x) = Rp
i (x)+ Ψ̄i(x) (3)

Ψi(x) is the ERKM shape function corresponding to the ith particle. The function
Ψ̄i(x) may be written as

Ψ̄i(x) =C(x−xi)ϕai(x−xi) (4)

where ϕai(x− xi) is a compactly supported kernel function (also referred to as
weight or window function) with ai ∈ R+ denoting the dilation parameter. The
correction function C(x−xi) is given by:

C(x−xi) = HT (x−xi)b̄(x) (5)

where HT (x− xi) = {(x− xi)
α}T
|α|≤p is the set of monomial basis functions and

b̄(x) = {b̄α(x)}|α|≤p
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is the set of coefficient functions that may be interpreted as moving with the loca-
tions xof the approximation. From equations (3), (4), (5), Ψi(x) may be written
as

Ψi(x) = Rp
i (x)+ H̄T (x−xi)b̄(x)ϕai(x−xi) (6)

b̄(x) can be found from the reproducing conditions:

NP

∑
i=1

Ψi(x)xα
i = xα , |α| ≤ p (7)

⇒
NP

∑
i=1

Ψi(x)(x−xi)
α = δ|α|,0, |α| ≤ p (8)

⇒M(x)b̄(x) = H(0)−
Np

∑
i=1

Rp
i (x)H(x−xi) (9)

Thus b̄(x) is given as

b̄(x) = M−1(x)

[
H(0)−

Np

∑
i=1

Rp
i (x)H(x−xi)

]
(10)

M(x)is called as moment matrix and is given as

M(x) =
Np

∑
i=1

H(x−xi)HT (x−xi)ϕai(x−xi) (11)

Hence, ERKM shape functions may finally be expressed as

Ψi(x) = Rp
i (x)+

[
H(0)−

NP

∑
i=1

Rp
i (x)H(x−xi)

]T

M−1(x)H(x−xi)ϕai(x−xi) (12)

3 An approximately HHH111 optimal formulation

Consider the following boundary value problem: find u : Ω̄→ C such that

Lu = f in Ω⊂ Rd (13)

u = 0 on ∂Ω (14)

Here f : Ω̄→ Cis the given source function,L a non-Laplacian linear differential
operator (e.g. a Laplacian term plus an advection term) and u the unknown func-
tion. Homogenous boundary conditions are chosen only for the sake of expositional
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simplicity. Generalizations to non-homogenous and other types of boundary con-
ditions (Neumann/Robin) would follow a similar procedure. For the variational
formulation, the variation w = δu (or equivalently the test function in the weak
form) must satisfyw = 0 on ∂Ω ∀ w ∈ V ; whereV ⊂ H1

0 (Ω). In the conventional
Galerkin setting, one typically aims at finding u ∈ H1(Ω) such that ∀w ∈V

ã(w,u) = L(w) (15)

where

ã(w,u) = (w,Lu) =(L∗w,u) (16)

is a bilinear form for all u ∈ H1(Ω),w ∈V and L(w) = (w, f ) is the so called linear
form. Upon integration by parts applied to the Laplacian (diffusion) term, the LHS
of the above equation may be reduced to the canonical bilinear form, henceforth
referred to as a(w,u). Note that L∗ denotes the adjoint of differential operatorL and
(., .)is the standard inner product with f ∈ L2(Ω).

Given the special form of Dirichlet boundary condition (i.e. u = 0 on ∂Ω), we will
henceforth assume that uand w(or their finite dimensional approximations ūand w̄)
are drawn from the same function space. Now, if one were to adopt a mesh-based
discretization technique (e.g. the FEM), the canonical weak form may be written
as:

a(w̄, ū) = L(w̄) (17)

where ū, w̄ ∈ V̄ ⊂Vwith V̄ denoting the finite dimensional vector space spanned by
FEM-based basis functions, typically with C0 continuity. However, as noted before,
the approximation ūsolving the above weak form need not be optimal in any sense.
In order to enforce the H1 optimality, which seems to be a natural goal given the
Sobolev space setting, Barbone and Harari (2001) have proposed an alternative
formulation for the weak form. Here the problem is to findū ∈ V̄ such that ∀w̄ ∈ V̄ ,
the following identity must be enforced:

(∇w̄,∇e) = 0 (18)

where e is the signed difference between the approximate and exact (true) solutions,
i.e.

e = ū−u (19)

One cannot directly invert the above weak form for ū as the true solution uis not
known. Using Equation (15) and (16), it has however been argued [Barbone and
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Harari (2001)] that, by way of enforcing the H1 optimality, one may adopt an un-
symmetric (Petrov-Galerkin) weak form wherein the test function w̃ ∈ Ṽ ⊂ V sat-
isfies the adjoint problem for everyw̄ ∈ V̄ :

L∗w̃ = ∇
2w̄ in Ω

′
and (20)

w̃ = w in ∂Ω
′

(21)

Here Ω
′
= ∪Ωe is the domain interior and ∂Ω

′
= ∪∂Ωe the collection of all bound-

aries, interior as well and exterior. Here Ωe is the open interior of the element e and
∂Ωe its boundary.

After integration by parts, Equation (18) is reduced to

(∇w̄,∇e) =− (∇2w̄,e)
Ω
′ +([w̄,n] ,e)∂Ω′ (22)

Here [w̄,n] is the jump term defined as

[w̄,n] =
[

∂ w̄
∂n

]
= ∂ w̄+

∂n+ + ∂ w̄−
∂n− , the superscripts+ and - indicate approaching the el-

ement boundary from +and - sides, respectively. Using Equation (20) in (22), we
may write:

(∇w̄,∇e) =− (L∗w̃,e)Ω′+([w̄,n],e)∂Ω′ (23)

Integrating the first term on the RHS of the above identity by parts (which yields
the canonical bilinear form a(w̃,e) and a boundary term), one obtains:

(∇w̄,∇e) = a(w̃,e)+([w̄,n− w̃,n],e)∂Ω′ (24)

Considering Ṽ ⊂ V , using the definition (19) and finally invoking the canonical
weak form a(w̃,u)−L(w̃) = 0, we get

(∇w̄,∇e) = a(w̃, ū)−L(w̃)+([w̄,n− w̃,n],e)∂Ω′ (25)

The above equation thus suggests the following Petrov-Galerkin formulation: find
ū ∈ V̄ ∀ w̃ ∈ Ṽ , such that

a(w̃, ū) = L(w̃) (26)

Referring to Equation (22), one observes that the solution ūobtained by inverting
the weak form (23), should satisfy:

(∇w̄,∇e) = ([w̄,n− w̃,n],e)∂Ω′ (27)

In other words, the condition (∇w̄,∇e) = 0 enforcing H1 optimality is met provided
that either the jump terms in the RHS of Equation (27) identically vanish or that



42 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.33-61, 2013

w̄,n− w̃,n = 0 identically on ∂Ω′. However, with the FEM-based functional ap-
proximations being only C0, such jump terms on ∂Ω′ would almost always remain
non-zero thereby frustrating efforts at imposing the desired optimality condition in
a precise manner. This justifies the use of the phraseology ‘nearly-optimal’ in [Bar-
bone and Harari (2001)], whilst describing the FEM-based implementation of the
method. In this context, a mesh-free or hybrid discretization, which provides for
higher order smoothness in the shape functions, is of great use as the jump terms
over ∂Ω′ are no longer present and this should enable a more precise numerical en-
forcement of the H1 optimality condition. Thus, if we specifically adopt the ERKM
based approach and denote the NURBS cells as elements (i.e. Ωe denoting the in-
terior of the eth NURBS cell and ∂Ωe its boundary), then one need only to solve
the following PDE to determine the test function w̃:

L∗w̃ = ∇
2w̄ on Ωe (28)

w̃ = w̄ on ∂Ωe (29)

3.1 Evaluating the test function

While the ERKM approximation scheme is based on an FE-like meshing of the
domain, most meshfree methods bypass such meshing and obtain the functional
approximation purely based on a set of (randomly) scattered nodes. We conform
to this general plan of meshfree discretization in describing the derivation of the
test function w̃. Let Ωi denote the interior of the support of the ith shape function
that necessarily contains the ith node. Let ∂Ωi denote the boundary ofΩi. Since
supports of both w̃i and w̄i are taken to coincide withΩ̄i, Equations (20) and (21),
restricted to Ωi, may be written in an uncoupled manner (with respect to similar
such equations corresponding to node j, where j 6= i) as:

L∗w̃i = ∇
2w̄i on Ωi (30)

w̃i = wi on ∂Ωi (31)

Lettingw̄i = Ni, where Ni denotes the ith shape function (e.g. the ith ERKM-based
shape function), we get:

L∗w̃i = ∇
2Ni on Ωi (32)

w̃i = Ni on ∂Ωi (33)

Thus, w̃i−Ni typically corresponds to a bubble function [Oberai and Pinsky (2000),
Brezzi, Franca and Russo (1998), Franca, Nesliturk and Stynes (1998)] (which is
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presently at least C1 or still higher order continuous uniformly overΩ) in Ωifor ev-
ery i. A direct inversion of Equations (32) and (33) is however not quite desirable
as the computational effort needed would be commensurate with the original prob-
lem itself. In this work, a simpler strategy based on a least square minimization is
suggested to arrive at w̃i. In particular, we adopt the following form forw̃i−Ni:

w̃i−Ni = ciBi(x,y) (34)

where ci is a yet-undetermined constant and Bi(x,y) a C∞
0 (Ω) bubble function, com-

pactly supported over Ωi and presently assumed to be of the form:

Bi(x,y) = exp
(
−a2

a2− x2

)
× exp

(
−b2

b2− y2

)
(35)

Here a and b are the dimensions of Ωi,which is rectangular for d = 2 (cuboidal
ford > 2) for the ERKM shape function. Figure 1 shows the geometry of Ωi and
the associated bubble function Bi(x,y).

Now, substituting w̃i =CiBi(x,y)+Ni in Equation (30), one obtains:

L∗(ciBi(x,y)+Ni)≈ ∇
2Ni (36)

where the pointwise equality is now only valid approximately. Denoting by Ri, the
residual of the above equation, i.e.

Ri = L∗(ciBi(x,y)+Ni)−∇
2Ni, (37)

one may determine ci through a least square minimization of the L2(Ωi) norm of
Ri. Specifically, one has the following one dimensional linear algebraic equation to
determinecifor every node i:

d
dci

∫
Ωi

(Ri)
2dΩi = 0 or (38a)

d
dci

∫
Ωi

[
L∗(ciBi(x,y)+Ni)−∇

2Ni
]2

dΩi = 0 (38b)

As noted above, the integration is performed overΩi ≡ sup p(Ni), which is the same
assup p(Bi). The identical supports for the bubble and shape functions also help
identically satisfying the boundary condition in Equation (33). Typical supports of
Bi (and henceNi) are shown in Figures 1(a) and 1(b).
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(a) Domain of the shape function of node (b) Bubble function for node

Figure 1:

Of specific interest in this work is the evaluation of the set of constants {ci}for the
Helmholtz equation:

∇
2u+ k2u = 0 in Ω (39)

u = ū in ∂Ω (40)

Here, the self-adjoint differential operator L is identical to its adjoint L∗:

L≡ L∗ ≡ ∇
2 + k2I (41)

where I denotes the identity operator. Substituting (41) into (38b) we get,

d
dci

∫
Ωi

[
(∇2 + k2)(ciBi +Ni)−∇

2Ni
]2

dΩi = 0 (42)

i.e.∫
Ωi

d
dci

[
(∇2 + k2)(ciBi +Ni)−∇

2Ni
]2

dΩi = 0 (43)

which finally yields:

ci =

−
∫
Ωi

k2Ni
[
∇2Bi + k2Bi

]
dΩi∫

Ωi

[∇2Bi + k2Bi] [∇2Bi + k2Bi]dΩi
(44)

Given the general infeasibility of analytical integration, the constants {ci} are com-
puted by numerically evaluating the above integrals via Gauss quadrature.
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It is expected that, by approximately driving the H1 semi-norm of the functional
approximation error to zero, the proposed strategy should effectively arrest the spu-
rious oscillations in the numerical inversion of the Helmholtz equation even if the
characteristic particle spacing is coarser than that demanded by the sampling the-
orem for large wave numbers. In what follows, the interest is in the application
of the proposed scheme in computationally feasible simulations of the Helmholtz
equation as it appears in the forward model of diffraction tomography, as explained
below.

Figure 2: Supports of bubble function and B-spline basis function for nodes I and
J

4 Helmholtz equation in diffraction tomography

Diffraction tomography is used to recover properties of the objects such as refrac-
tive index from scattered radiation when the spatial resolution required is compa-
rable to the wavelength of radiation used to interrogate the objects. The standard
algorithm for refractive index recovery uses the Fourier diffraction theorem (FDT)
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which equates the Fourier transform of the scattered amplitude to the Fourier trans-
form of the unknown refractive index, reminiscent of the Fourier slice theorem of
X-ray tomography. However the FDT is derived under restrictive approximations
on the size of the object and variations of refractive index, either the Born- or Ry-
tov approximation. Even though the Rytov is less restrictive than Born, still the
variations of the property is so restricted that the recovery of refractive index with
changes expected in the third and second decimal places is quite unsatisfactory us-
ing the FDT. Thus one of the important applications of optical tomography which
is non-destructive evaluation of optical fiber and optical waveguides is outside the
scope of the FDT-based diffraction tomography. In this context an iterative proce-
dure which employs Newton algorithm to minimize the mean-square error between
measured scattered field and its computed counterpart is often employed. In the it-
eration the nonlinear problem is ‘locally’ linearized and an update equation for the
parameter to be recovered is setup and solved. The implementation of this iterative
algorithm requires, among other steps, the repeated evaluation of the scattered field
by solving the forward propagation model, which is the wave equation, or its time-
Fourier transformed version, the Helmholtz equation. It is in the numerical solution
of the Helmholtz equation for large values of the propagation vector modulus (i.e.
k(r), r being the position vector) that one faces the greatest challenge en route to
employing an iterative parameter recovery algorithm. For large k, the solution of
the Helmholtz equation suffers from spurious oscillations brought in by the inher-
ent instability (virtual loss of ellipticity) of the discretized system resulting from
the Helmholtz equation.

The objects of interest in integrated optics such as optical fiber and optical waveg-
uides, even though the refractive index variation is large enough to violate the as-
sumptions of the Rytov approximation, still come under the category of the so
called ‘weakly scattering’ objects. For such weakly varying refractive index distri-
butions, one neglects the second order term of the inhomogeneous refractive index
distribution in k2(rrr). In this case it is possible to use an approximate form of
Helmholtz equation to represent forward propagation of light, as shown below.

The propagation of monochromatic wave of wavelength λ0 through a medium of
refractive index distribution η(r)in a domain shown in Fig. 3 is governed by the
Helmholtz equation:

∇.∇u(r)+ k2(r)u(r) = 0 (45)

The boundary conditions used are:

u(r) = uin on L∪L− and (46)

u(r)+
∂u(r)

∂n
= 0 on L+ (47)
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where uin is the incident complex amplitude and ∂u(r)
∂n is the normal derivative of

u(r) on L+.

Here u(r) is the complex scalar amplitude of the wave and k is the modulus of the
propagation vector, i.e. k≡ |k|=η(r)2π

λ0
≡η(r).k0. Considering η(r)= 1+ηδ (r),

where ηδ (r) is the small perturbation to the background medium whose refractive
index is assumed to be one, we write k(r) in terms of ηδ (r) as:

k2(r)≈ k2
0(1+2ηδ (r)) (48)

Using f (r) to denote −2ηδ (r), we can rewrite equation (45) as:

∇.∇u(r)+ k2
0(1− f (r))u(r) = 0 (49)

If ηδ (r) is not small enough for the approximation in equation (48) to hold then
the forward model should be Equation (45) which holds for large variations in η(r)
inside the object. This is the case for optical fibers for which variation in refractive
index between the core and cladding is in the first or second decimal place. For cer-
tain integrated optics waveguides the refractive index variation is small enough for
which the following weak-scattering formulation holds. For objects where the over-
all k variation is small, the traditional FEM formulation is able to solve the forward
equation without appreciable numerical errors. For objects with larger variations,
the usual FEM fails because of pollution effects; it is in here our proposed formu-
lation of nearly H1 optimal mesh-free method gives accurate results (as verified by
comparison with experimental data).

For completeness we give a perturbation equation connecting ηδ (r)to v(r), the
scattered field under weak scattering approximation. The object, assumed to be
2-D square shaped with boundariesL,L− and L+, as shown in Fig. 3 is illuminated
with the plane waveeik0r.θ . Here θ is the unit vector in the propagation direction,
given by

θ =

[
−sinϕ

cosϕ

]
(50)

where r ∈ R2 and ϕ is the angle of illumination. The total field u(r) at any point
in the medium is given by sum of incident wave eik0r.θ and the scattered wave
v(~r)eik0r.θ that is

u(r) = eik0r.θ (1+ v(r)) (51)

Here it is assumed that the scattered wave is obtained from the incident wave
through a multiplicative perturbation v(r).
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Substituting the above expression for u(r) into equation (49), through a small rear-
rangement of terms we get the following equation connecting f (r), the perturbation
in refractive index to v(r), and the multiplicative perturbation owing to scattering
on the incident plane wave.

∇.∇v(r)+2ik0θ .∇v(r)− k2
0 f (r)v(r) = k2

0 f (r) (52)

The above equation models the forward propagation of light through the object with
the following boundary conditions (see Fig. 3):

v(r) = 0 on L∪L− and (53)

v(r)+
∂v(r)

∂n
= 0 on L+ (54)

where ∂v(r)
∂n is the normal derivative of v(r) on L+.

Figure 3: Problem domain

In one of the numerical implementations of the Helmholtz equation, when the η(r)
variation is small enough to admit the approximation in equation (48), we use the
standard (Bubnov-Galerkin) FEM to solve Equations (52)-(54) for v(r) and com-
pute the total field u(r)= eik0r.θ (1+v(r)) from which the intensity I(r)= u(r)u∗(r)
and its normal derivative are calculated and compared with the corresponding ex-
perimentally measured values. The new H1 optimal mesh-free scheme is only used
when the above approximation fails to hold. Results are discussed in Section 5.
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5 Numerical computations and results

5.1 Numerical computation

In this section we specifically consider the numerical implementation of the Helmholtz
equation with and without the weak scattering approximations. The details of the
implementation of weak scattering approximation are given below

For convenience, the variables v(r) and f (r) are decomposed into their real and
imaginary parts:

v(r) = vr(r)+ ivi(r) (55)

f (r) = fr(r)+ i fi(r) (56)

In the above equations, while the subscript iis an integer, the coefficient iis given
by i =

√
−1. Substituting (55) and (56) into (52), and separating the real and

imaginary parts we get:

∇2vr(r)−2k0
∂vi(r)

∂y − k2
0 fr(r)vr(r)+ k2

0 fi(r)vi(r) = k2
0 fr(r)

∇2vi(r)+2k0
∂vr(r)

∂y − k2
0 fr(r)vi(r)− k2

0 fi(r)vr(r) = k2
0 fi(r)

(57)

The above system of equations can be written as:

LU = F (58)

where

L =

[
(∇2− k2

0 fr(r)) −(2k0
∂

∂y − k2
0 fi(r))

(2k0
∂

∂y − k2
0 fi(r)) (∇2− k2

0 fr(r))

]

U =

[
vr(r)
vi(r)

]
F =

[
k2

0 fr(r)
k2

0 fi(r)

]
The object domain is a square of size 240µm x240 µm, as shown in Figure 3. The
object has a circular inhomogeneity of radius 70µm (in the background refractive
index of (1.472+0i)), which is at (0, 0) with refractive index varying from 1.4805
to 1.51. With this object, Equation (57) is solved using the standard FEM. These
results are verified using the experimentally measured intensity and normal deriva-
tive of intensity (for a description of the experiment, see Section 5.2) and shown
in Figures 4 and 5 respectively. Since the standard FEM gives results which match
well the experimental data, there is no need to use the new H1 optimal mesh-free
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Figure 4: Intensity distribution

Figure 5: Normal derivative of intensity
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method (which is computationally more expensive) to further improve the FEM
results.

However, when variation in η(r) is large so that Equation (45) is the right forward
equation and Equations (52)-(54) do not hold, the traditional FEM fails to give
solution. Here we bring in the new formulation and solve Equation (45) using the
nearly H1 optimal Petrov-Galerkin method (Section 3). For details of the numerical
simulations and comparison with experimental data see Section 5.3.

5.2 Experiment

The experimental setup is shown in Figure 6. The illumination is from a quasi-
monochromatic and spatially incoherent source. This is obtained by sending a
He-Ne laser beam (power 10 mW) through a combination of static and rotating
diffusers. The beam coming out of the rotating diffuser is collimated by a cor-
rected doublet with collimation checked by a parallel plate interferometer. The
collimated spatially incoherent light illuminates the object, which is a 140µm op-
tical fiber stripped off its plastic jacket and immersed in a cuvette containing an
index-matching liquid which is anhydrous glycerol with refractive index of 1.472.
The transmitted intensity at a plane few hundreds of microns behind the optical
fiber is measured using a 14 bit CCD camera (guppypro F031).

Figure 6: Schematic diagram of experimental set up. The light from the He-Ne laser
is send through the static diffuser (SD) and rotating diffuser (RD) to spoil the spatial
coherence. This light beam collimated by lenses L1 and L2 falls on the optical
fiber(F) immersed in index matching liquid in the cuvette(C).The transmitted light
distribution in the planes behind the fiber is magnified using lens L3 and is caught
on the CCD.

The normal derivative of intensity (here the normal is along the z−axis which is
the optic axis of the system) is computed from the recorded intensities around the
required output plane by focusing the camera at a number of x− y planes corre-
sponding to a sequence of z-values around the plane of interest. From the recorded
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intensities a polynomial expansion of intensity in terms of z is obtained from which
the normal derivative of intensity ( ∂ I(x,y,z)

∂ z ) is computed.

5.3 Comparison of results

In the next numerical experiment we consider an object (a fiber with larger re-
fractive index variation) for which the restriction imposed on refractive index by
Equation (48) is not valid. Hence we model light propagation using the Helmholtz
equation in its original form without simplification, which is Equation (45), which
is the most appropriate forward model. The boundary conditions are as given in
Equations (47-48) and we once again implement the forward equation using the
traditional FEM and proposed H1optimal Petrov-Galerkin mesh-free scheme.

The results, which are the scattered intensity and its normal derivative plots, are
shown in Figures (7) and (8). For comparison, experimental results obtained using
the set-up of Section 5.2 is also shown. It is clearly seen that the numerical results
from the new scheme match the experimental results far better compared to those
from the conventional FEM which only results in the trivial solution.

Figure 7: Scattered intensity distribution
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Figure 8: Normal derivative of intensity

6 Conclusions

A Petrov-Galerkin mesh-free method, with B-splines or NURBS as the basis for
globally smooth functional approximation, is proposed for approximately incor-
porating the H1 optimality criterion in the weak form of the governing PDE and
demonstrated for nearly pollution free solution of the Helmholtz equation for rel-
atively large k values. With this the loss of ellipticity in the Helmholtz equation,
resulting in both dispersion and pollution effects, is effectively tackled. While a
rigorous theoretical justification of this stabilizing effect has been kept beyond the
scope of this article, an inspection of the H1 optimality condition reveals that it in-
deed behaves as a consistent diffusion term that may be responsible in removing the
pollution effects as evidenced through the numerical work. Vis-à-vis the conven-
tional FEM, part of the superior numerical accuracy with the proposed method may
also be attributed to the smooth shape functions that satisfy polynomial reproduc-
ing conditions and to their normal derivatives being zero on the support boundaries.
The method is tested by solving the Helmholtz equation, which is the forward equa-
tion of diffraction tomography aiming at recovering refractive index distributions
from scattered field. For the sake of comparisons with experiments which gener-
ally measure intensity and the normal derivative of intensity, we have computed
both these quantities from the scattered field obtained by solving the Helmholtz
equation. We have considered the light propagation through refractive index dis-
tributions under two conditions: (i) one for which the refractive index variation
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are small enough so that a weak-scattering approximation holds and (ii) the second
where the above approximation is not valid. In the first case it is shown that the
FEM is good enough to discretize and invert the forward equation. In the second
case, however, it is shown that the numerical accuracy of solutions from the FEM
is grossly inadequate, whereas those from the proposed method are much supe-
rior as testified via the pattern matching with the experimental data. One of the
missing links in the iterative recovery of refractive index distributions of objects
not restricted to be weakly scattering from scattered intensity, which is an accurate
‘forward solver’ yielding the scattered field with the refractive index distribution as
the input, is now made available through the present work.

It seems possible to use the above implementation of H1 optimality as a generic tool
for ellipticization against a possible loss of ellipticity using any mesh-free method,
e.g. the MLPG. In addition, the non-hyper-singular intergral equation approach
(Qian, Han and Atluri 2013), wherein the boundary integrals in an appropriately re-
duced non-symmetric weak form are numerically implemented through a fast mul-
tilevel multipole algorithm, could also be exploited to arrive at a stable solution of
the Helmholtz equation with large wavenumbers. Explorations of such approaches
to stabilize numerical solutions of impact dynamical systems in the softening plas-
ticity regime (based on, say, a gradient plasticity theory) could also constitute an
interesting aspect of future research.

Appendix I

1. B-splines, NURBS and geometric modeling via NURBS

For completeness in the description of the algorithm needed whilst numerically im-
plementing the H1 optimal ERKM, a brief introduction to B-spline basis functions,
curves and surfaces would be in order. For a more detailed account, see Piegl and
Tiller (1997).

1.1 B-splines

B-splines constitute a generalization of Bézier curves. The recursive definition of
the ith normalized B-spline basis functions of degree p(order p +1) is given by:

Rp
i (ξ ) =

{
1 if ξi ≤ ξ ≤ ξi+1
0 otherwise

(59)

Rp
i (ξ ) =

ξ −ξi

ξi+1−ξi
Rp−1

i (ξ )+
ξi+p+1−ξ

ξi+p+1−ξi+1
Rp−1

i+1 (ξ ), i = 1,2,3, .....n+ p+1

(60)
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where Ξ = {ξ1,ξ2,ξ3........ξn+p+1|ξi ∈ R} is a non-decreasing sequence of real
scalars, defined over a parametric space and referred to as the knot vector, p the
degree of the polynomial (appearing in the numerators) and n the number of basis
functions. In the above definition, 0/0 (whenever it occurs) must be replaced by 0.
Knots are called uniform if they are equally spaced. In the parametric space, knots
can be repeated at the same coordinate. A knot vector is ‘open’ if its first and last
knots appear p+1 times. Basis functions in one dimension formed via open knot
vectors are interpolating at the boundary of the parametric domainΞ. Although
Rp

i (ξ ) is defined everywhere on the real line, it has non-zero values only in the
interval[ξi,ξi+p+1). An example of a cubic basis function for a uniform knot vector
(open and closed) is presented in Figure 9.

Figure 9: The cubic B-spline basis function for
(a) uniform knot vector Ξ = {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
(b) open uniform knot vector Ξ = {0,0,0,0,0.25,0.5,0.75,1.0,1.0,1.0,1.0}

A few salient properties of B-spline basis functions are summarized below.

1. Local support property: Rp
i (ξ ) = 0 if ξ is outside the interval [ξi,ξi+p+1).

In any given knot span, [ξi,ξi+1), at most p+1 of Rp
i (ξ ) are nonzero, namely

the functions Rp
j−p, ...,R

p
j . For example, the only cubic non-zero functions

on [ξ3,ξ4) are R3
0, ...,R

3
3.

2. Non-negativity: Rp
i (ξ )≥ 0∀i, p,ξ

3. Partition of unity: For an arbitrary knot span [ξi,ξi+1),
i

∑
j=i−p

Rp
j (ξ )= 1 ∀ξ ∈

[ξi,ξi+1)
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4. All derivatives of Rp
i (ξ ) exist in the interior of a knot span. At a knot, Rp

i (ξ )
is p− k times continuously differentiable, where k is the multiplicity of the
knot. Hence increasing the degree increases continuity and increasing the
knot multiplicity decreases continuity.

5. Except for p = 0, Rp
i (ξ ) attains exactly one maximum value.

1.2 B-spline curves

Using the B-spline basis function, B-spline curves may be constructed as:

C(ξ ) =
NP

∑
i=1

Rp
i (ξ )Pi (61)

where Rp
i is the ith B-spline basis function of degree p,Pi are the coefficients of B-

spline basis functions, called control points, and NP is the number of control points.
The polygon formed by {Pi} is called the control polygon. In general control points
are not interpolated by B-spline curves. A cubic B-spline curve on an open uniform
knot (Figure 9(b)) is shown in Figure 10.

Figure 10: A cubic B-spline curve on an open uniform knot vector Ξ =
{0,0,0,0,0.25,0.5,0.75,1.0,1.0,1.0,1.0}, basis functions are shown in Figure 9(b)

1.3 B-splines in Higher Dimensions:

Higher dimensional B-spline basis function may be constructed by taking the tensor
product of B-spline basis functions in one dimension.

B-spline Surfaces
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A B-spline surface is obtained by taking a bidirectional net of control points, two
knot vectors and the products of univariate B-spline functions:

S(ξ ,η) =

NP
ξ

∑
i=1

NPη

∑
j=1

Rp
i (ξ )R

q
j(η)Pi j (62)

Rp
i (ξ ) and Rq

j(η) are two different sets of one dimensional B-spline basis functions
of orders p and q respectively. Moreover, they are defined on the knot vectors Ξ =
{ξ1,ξ2,ξ3......ξn+p+1|ξi ∈ R} and Ξ =

{
η1,η2,η3......ηn+q+1|ηi ∈ R

}
respectively.

Note that{Pi j}, i = 1,2, ...NPξ and j = 1,2, ...NPη , defines the control net.

1.4 B-spline solids:

B-spline solids are defined in a fashion analogous to the definition of B-spline sur-
faces. Given a control net{Pi jk}, i= 1,2, ...NPξ , j = 1,2, ...NPη , j = 1,2, ...NPς and
knot vectors Ξ= {ξ1,ξ2,ξ3......ξn+p+1|ξi ∈ R} , Ξ=

{
η1,η2,η3......ηn+q+1|ηi ∈ R

}
and Ξ̃ = {ς1,ς2,ς3......ςn+r+1|ςi ∈ R} , a B-spline solid is defined as:

S(ξ ,η ,ς) =

NP
ξ

∑
i=1

NPη

∑
j=1

NPς

∑
k=1

Rp
i (ξ )R

q
j(η)Rr

j(ς)Pi jk (63)

1.5 The non-uniform rational B-spline (NURBS):

The rational basis function in one dimension is defined as:

R̄p
i (ξ ) =

Rp
i (ξ )wi

NP

∑
k=1

Rp
k (ξ )wk

(64)

Rp
i is the ith B-spline basis function of degree p and wi is the weight associated with

the ith control point Pi. Similarly, in 2 and 3 dimensions, NURBS basis functions
are given by:

R̄p
i (ξ ,η) =

Rp
i (ξ )R

p
j (η)wi j

NP
ξ

∑

î=1

NPη

∑

ĵ=1
Rp

î
(ξ )Rp

ĵ
(η)wî ĵ

(65)

R̄p
i, j,k(ξ ,η ,ς) =

Rp
i (ξ )R

p
j (η)Rp

k (ς)wi jk

NP
ξ

∑

î=1

NPη

∑

ĵ=1

NPς

∑

k̂=1
Rp

î
(ξ )Rp

ĵ
(η)Rp

k̂
(ς)wî ĵk̂

(66)
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