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A new implementation of the numerical manifold method
(NMM) for the modeling of non-collinear and intersecting
cracks

Y.C. Cai'?:3, J. Wu?, S.N. Atluri’

Abstract: The numerical manifold method (NMM), based on the finite covers,
unifies the continuum analyses and discontinuum analyses without changing a pre-
defined mathematical mesh of the uncracked solid, and has the advantages of being
concise in theory as well as being clear in concept. It provides a natural method
to analyze complex shaped strong discontinuities as well as weak discontinuities
such as multiple cracks, intersecting cracks, and branched cracks. However, the
absence of an effective algorithm for cover generation, to date, is still a bottle neck
in the research and application in the NMM. To address this issue, a new method
for the generation of the finite covers in the NMM is proposed, for the modeling
of cracks. In the present algorithm for cover generation, the physical lines such
as joints and cracks are described by geometric functions, the mathematical cover
is naturally partitioned into different regions by the physical lines, and the regions
belonging to a same physical cover, which contains the end points of the physical
lines are identified by a simple calculation of the function values of the physical
lines. The present method is simple and robust, and is also very fast because it
avoids the usage of the complex geometrical algorithms, and the time-consuming
judgment of the point-polygon relations, which are commonly used in the previous
literature. Several linear elastic fracture problems are analysed here, to demonstrate
the validity and the robustness of the proposed algorithms.
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1 Introduction

An accurate analysis of crack tip fields, and modeling the crack propagation, in
a cracked solid, are of vital importance for the safety assessment and life predic-
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tion of cracked engineering structures and materials (Atluri 1998, 2005). Because
of its simplicity and popularity, the traditional FEM (finite element method) with
embedded-singularity elements by [Tong, Pian and Lasry 1973; Atluri, Kobayashi
and Nakagaki 1975], singular quarter-point elements by [Henshell and Shaw 1975;
Barsoum 1976], and others, has been widely used for fracture modeling with quite
a good accuracy, and is adopted in many commercial software such as ANSYS
and ABQUS. However, the method finds difficulties in modeling crack propaga-
tion, due to a need for a continuous update of the element topology, during crack
propagation.

In order to overcome this difficulty, a wide range of new numerical methods, such
as the MM (Meshless Methods)[ Fleming, Chu, Moran and Belytschko 1997; Xu
and Saigal 1998; Belytschko and Fleming 1999;Ching and Batra 2001; Gu, Wang,
Zhang and Feng 2011], the NMM (numerical manifold method) [Shi 1991,1992;
Ma, An, Zhang and Li 2009], and the XFEM(extended finite element method)
[Moes, Dolbow and Belytschko 1999; Sukumar, Chopp, Moes and Belytschko
2001;Sukumar, Chopp, Béchet and Moés 2008], have been developed. They are
particularly suitable for fracture modeling, since there is no need for remeshing to
accommodate the changing geometry of a crack. Despite clear general progress
with these methods, there are still some technical issues in their application to frac-
ture problems, for instance, the complexity in the construction of the discontinuous
interpolation functions along the crack, the expense to refine the nodal arrangement
near the crack tip, and the complicated algorithm for the subdivision of the integral
cells around the crack. More recently, a series of SGBEM (symmetric Galerkin
boundary element method)-based methods has been proposed by Atluri and his co-
workers [Nikishkov, Park and Atluri 2001; Han and Atluri 2002,2003; Dong and
Atluri 2012,2013a,2013b] for modeling complex structures with stationary or prop-
agating cracks. As can be seen from these papers, the SGBEM-based methods are
very accurate for computing SIFs (stress intensity factors), require minimal effort
for modeling the non-collinear/non-planar propagation of cracks, and require sig-
nificantly coarser and lower-quality meshes than in other methods, and are probably
the best methods so far, for fracture and fatigue analyses.

As a particular method which unifies the continuum analyses, and discontinuum
analyses, the NMM proposed by Shi (1991, 1992) has also attracted much inter-
est from researchers in recent years [An, Ma, Cai and Zhu 2011a,2011b; Jiang,
Zhou and Li 2009; Liu, Chang, Yang, Wang and Guan 2011; Ma, An, Zhang and
Li 2009; Ma, An, and He 2010; Ning, An and Ma 2011; Terada and Kurumatani
2005; Wu and Wong 2012; Zhang, Li, An and Ma 2010; Zhang, Zhang and Yan
2010; Cai, Zhuang and Zhu 2013]. In the NMM, the mathematical mesh of the
uncracked solid, regardless of the existence of physical lines of material and ge-
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ometric discontinuity (joints and cracks), is first constructed with a defined inter-
polation accuracy, and the independent local crack functions are augmented in the
physical covers, which are obtained from the mathematical covers of the uncracked
solid, as cut by the physical lines (joints and cracks). It provides a natural solution,
by using the mathematical and physical cover systems, to accommodate problem
domains with strong discontinuities as well as weak discontinuities, making itself
particularly suitable for dealing with multiple cracks, intersecting cracks, branched
cracks or other discontinuities. In the NMM, the generation of the finite covers
(different influence domains) constitutes a key and essential part of the NMM the-
ory. However, to the authors’ knowledge, the absence of an effective algorithm for
cover generation, to date, is still a bottle neck in the research and application in the
NMM. To address this issue, a simple, fast and robust cover generation method, and
algorithm, is developed, for the modeling of crack problems in this paper. Several
stationary linear elastic fracture problems are analysed, to demonstrate the validity
and the robustness of the proposed method.

2 Introduction of the basic theory of the NMM

Consider an arbitrary two-dimensional analysis domain € as shown in Fig.1. There
are three preexisting cracks (chosen as straight lines in this illustration, but can
be general lines of discontinuity) represented by the lines denoted as 1, 2 and 3,
respectively. In NMM, a material or geometric discontinuity, such as joint or crack,
is called a physical line [Shi 1991,1992; Cai, Zhuang and Zhu 2013].

Physical line 2
Physical line 3

Physical line 1

Physical Lines of Material
or Geometric Discontinuity
(Joints or Cracks)

Figure 1: An arbitrary analysis domain with three physical lines (Lines of Material
or Geometric Discontinuity, i.e., Joints or Cracks)
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Figure 2: A mathematical mesh for the uncracked domain

In the NMM, two types of separated finite covers (“influence domains’), named as
“mathematical covers” and “physical covers”, are defined to unify the continuum
analysis and discontinuum analysis, respectively. We describe the generation of the
finite covers as follows:

(1) Mesh the uncracked problem domain using a triangular mesh [or quadrilateral
mesh] following the same procedure in the FEM as shown in Fig.2. The triangular
mesh can be used as the mathematical mesh in the NMM. In this step, it is not nec-
essary to consider the existence of physical lines when creating the mathematical
mesh. Thus a mathematical mesh is simply the mesh in a domain without a material
or geometric discontinuity, i.e., Joints or Cracks.

(2) Add the physical lines to the mathematic mesh, and partition the mathematical
element into the “physical elements” by the physical lines. As shown in Fig.3, the
mathematical element 3-5-7 is partitioned into “physical elements” (or manifold
elements) 3-21-24, 22-7-24-21 and 21-5-22 by the “physical lines” 1 and 2.

(3) Define the mathematical covers (“influence domains”) for the mathematical
elements. For each node iin the mathematical mesh in Fig.2, a mathematical cover
centering the node i is defined as a polygon composed of all mathematical elements
having the node ias its vertex. For example, in Fig.4, the mathematical cover 3
is the polygon bounded by 1-2-5-7-6-3, the mathematical cover 5 is the polygon
bounded by 2-4-8-9-7-3, and the mathematical cover 7 is the polygon bounded by
3-5-9-11-10-6. Thus, the mathematical cover of node i may be considered to be
the “Domain of Influence” of node i, in the domain without the “physical lines”.
The intersection of the mathematical covers is the mathematical element, e.g., the
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7

partitioned into

Physical elements 3-21-24,
22-7-24-21 and 21-5-22

Mathmatical element 3-5-7

Figure 3: Physical elements for domain

overlap of mathematical covers 3, 5 and 7 forms the mathematical element 3-5-7.

(4) The mathematical covers are further partitioned into physical covers by the
physical lines. As shown in Fig.5, the mathematical cover 3 [influence domain of
node 3] is partitioned into physical covers 3, 3, and 33, the mathematical cover
5 is partitioned into physical covers 51, 5; and 53, and the mathematical cover 7
is partitioned into physical covers 71, and 7,. Thus, we can see that the physical
element 3-21-24 is the overlap part of the three physical covers 31, 53 and 7, the
physical element 22-7-24-21 is the overlap part of the three physical covers 33, 5,
and 71, and the physical element 21-5-22 is the overlap part of the three physical
covers 3, 5; and 7;

With the definition of the mathematical covers and physical covers, the interpola-

tion of field variables over each physical element [affected by physical lines] can
be easily constructed through the following process. Taking the physical element
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5 9

Mathmatical cover 3 ’,’ Mathmatical cover 7

5

Mathmatical element 3-5-7

Mathmatical cover 5

Figure 4: Mathematical covers [influence domains] for mathematical element 3-5-7

22-7-24-21 in Fig.4 belonging to the mathematical element 3-5-7 as an example,
the “global” interpolation over the physical element 22-7-24-21 in xdirection is
expressed as

us, (xay)
M()C,y) = [ w3 w5 wy j| us, (-xay) (l)
uy, (x,y)

where uz, (x,y).us, (x,y) and u7, (x,y) are the local cover functions defined over
the physical covers 33, 5, and 7 (Fig.5) respectively, and w3,ws and wy are the
weight functions over the mathematical element 3-5-7 for the three nodes respec-
tively where the subscripts of the weight functions indicates the number of the
mathematical node. Note here that the local cover functions u; (x,y) are defined
in the “regions of physical covers”, whereas, by comparison, the nodal degrees of
freedom or the nodal unknown enrichment parameters are defined at the nodes in
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the FEM/XFEM. As can be seen, both the NMM interpolation and the XFEM in-
terpolation have the similar mathematical expression, and can be regarded as the
types of partition of unity interpolations (Melenk and Babuska 1996). However,
they are derived from the different theories (e.g. the NMM constructs the interpo-
lation based on the finite cover theory and the XFEM constructs the interpolation
based on an enrichment function of Heaviside type), and thus they have the differ-
ent numerical performances when solving various problems. Please refer to An, Fu
and Ma (2012) for more comparisons between the NMM and the XFEM.

5 9

Physical covers 7,.7,

Physical covers 31.3,.33

]

Physical elements 3-21-24,
22-7-24-21 and 21-5-22

4

Physical covers 51,5,,5;

Figure 5: Physical covers and physical elements

The local cover functions u3, (x,y),us, (x,y) and u7, (x,y) in Eq.(1) can be chosen as
the polynomial function or any other functions that reflect the local characteristics
of the solution, with the form as

ui (x,y) = HiD; )
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where D; = [ dyn dp - ]T are the generalized degrees of freedom over physi-
cal cover C; and H; is the basis function. In this study, we take H; = [1] for common
physical coversand H;=[ 1 \/rsing /rcos? /rsin%sin® /rcos9sin6 |
for the physical covers near a crack tip, where (r, 0) is the local coordinate system
at the crack tip. The J integral is used to compute the stress intensity factors (SIFs)
over the crack tip.

The weight functions ws,ws and wy in Eq.(1) are calculated by

1
wi= a1 (@i +Dbix+ciy) 3)
;i = XjYm —XmYj> bi =Y —Ym, Ci = —Xj+Xpn, 4)

in which, A is the area of the triangular mathematical element 3-5-7, and i = 3,5,7;
j=5"73m="17,3,5.

We see that, the global function in Eq.(1) is actually constructed, by multiplying
the weight functions w; (x,y) from the mathematical mesh, with the local functions
u; (x,y) from the physical covers which are obtained from the mathematical covers
cut by physical lines (cracks or joints). When there is no physical line involved in a
physical element and the local function is taken as u; (x,y) = d;1, the interpolation
in Eq.(1) is reduced to the general FEM triangular interpolation.

Similarly the displacement function over physical element 3-21-24 in Fig.5 in xdirection
is expressed as

us, ('xay)
M(X,y) = [ w3 Ws wy ] Us, (x,y) (5)
ur, (xay)

The interpolation over the physical element in y direction can be defined following
an identical process.

By comparing Eq. (1) with Eq. (5), it can be found that same weight functions wy,
ws and wy are used for the physical elements 22-7-24-21 and 3-21-24 in Fig. 5.
However as the physical covers 33, 5, and 7 of the physical element 22-7-24-21,
and the physical covers 3, 53 and 7, of the physical element 3-21-24 are sepa-
rately defined and have different degrees of freedoms, the discontinuity of the dis-
placement jump over the interface 21-24 of the adjacent elements 22-7-24-21 and
3-21-24 can be easily captured while the mathematical mesh remain unchanged.
This means in the NMM, the analysis of moving interface problems such as crack
propagation and discontinuous deformation, can be performed until the end stages
of failure, without the need for changing predefined mathematical mesh.
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3 A simple and robust method for the generation of the finite covers

From the above introduction, it can be seen that, in the NMM, the mathematical
mesh, ignoring the existence of physical lines is first constructed to define the in-
terpolation accuracy, and the independent local cover functions are then defined at
the physical covers which are obtained from the mathematical covers, as cut by the
physical lines. It unifies the continuum analysis and discontinuum analysis with-
out changing the predefined mathematical mesh, and has the advantages of being
concise in theory as well as being clear in concept.

™ Fzr\f Fz(X)>O

Fig: Fi(x)<0

Fl()I Fl(X)ZO

Fia: Fl()C)>O
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=
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[N}
e

An integral pomt K in the

22 physical element 22-7-24-21

Figure 6: Generation of physical cover 3
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A key and essential part in the implementation of the NMM is the generation of
the finite covers, which includes the partitioning of independent physical covers
and the indentification of the relations between physical covers and physical ele-
ments. For example, for the mathematical cover 3 in Fig.5, the simplest idea for
the generation of the finite covers is to search out the closed regions 6-3-1-20-21-
24, 1-2-5-22-21-20 and 22-7-6-24-21 by using the geometry algorithms, and record
them as the independent physical covers 31, 3, and 33 respectively. Then the phys-
ical cover numbers of the physical element can be found out through the relative
position between the integral points of the physical element and the physical covers.
This method seems to be very simple, but actually it is quite difficult to be imple-
mented in the NMM, due to the usage of the complex geometry algorithms and the
time-consuming judgment of the point-polygon relations, especially for three di-
mensional analyses. Up to now, the absence of an effective cover generation theory
is still the bottle neck of the research and application of the NMM.

In the following, a novel simple and robust cover generation method is developed
to address the above-mentioned issue in the NMM. The algorithmic steps are:

(1) Take the mathematical cover 3 which is bounded by 1-2-5-7-6-3 (Fig.2). It can
be easily found that the mathematical cover 3 is partitioned by the physical lines
1 and 2. We suppose that the physical line 1 is described by function F; (x) =0
and the physical line 2 is described by function F, (x) = 0, denoted as F and Fy(
respectively. The physical line 1 partitions the mathematical cover 3 into two parts
Fi(x) > 0 and F; (x) < 0, denoted as Fj o and Fyg respectively. The physical
line 2 partitions the mathematical cover 3 into two parts F; (x) > Oand F; (x) < 0,
denoted as F5 o and Fyp respectively, as shown in Fig.6.

(2) Record the 2"different regions, which are obtained from the mathematical cover
i partitioned by n physical lines, with a 2" x nmatrix R;. For example, the mathe-
matical cover 3 in Fig.6 is partitioned into 4 regions by the physical lines 1 and 2,
which can be recorded as

Fig.FoB
R — | F1a-T2B
i FyA.F
1a-Foa
FiB,FoA

(3) The position of the tip point 25 of the physical line 1 falls into the interior of
the mathematical cover 3. According to the definition of the physical covers, the
regions (Fl A7F2B) and (F 1A,F2 A) belong to a same physical cover 3, because
(F1a.Fop) and (Fj o, Fy A ) are not totally separated by the physical line and they
don’t have the independent deformations, as shown in Fig.6. To deal with this case
automatically, we extend the tip point 25 to point P, where P should be outside of



A new implementation of the numerical manifold method (NMM) 73

the mathematical cover 3. Divide the line 25-P into m equal segments, e.g., m = 10
The divided points are denoted as P,,. Then we can compute and obtain the function
values (Fl A7F2O) of the points P,,, where Fy(y indicates that the points P,, lie in
the physical line 2. Set all the items related to the physical line 2 at the matrix R;
to 0, that is

Fig,0
Fia,0
Fia,0
Fig,0

We can see that the regions with the same item (Fj 5 ,0) in the matrix R; (P,,) be-
long to a same physical cover. Thus, by comparing matrix R; with matrix R; (P,,),
it can be found that the regions (FjA,Fyg) and (Fja,Fya) belong to a same
physical cover 3. Note here that if the function values of the points P, are all
zero, that means the function values are represented by (Flo, on) , we don’t need
to perform this step for identifying the same physical cover.

(4) At this point, we have completed the generation of the independent physical
covers for the mathematical cover 3. As shown in Fig.6, the mathematical cover 3
is partitioned into the independent physical covers 31, 3, and 33. The next step is
to identify the physical cover numbers of the corresponding physical elements.

(5) For example, for an arbitrary integral point K at the physical element 22-7-
24-21, we compute and obtain the function values (F{g,F5A) of the point K by
substituting the coordinates of the point K into the functions F; (x) and F; (x). It
can be found that the integral point K belongs to the physical cover 33.

If we repeat the above described process, the finite covers over the entire domain
can be easily generated. It can be seen that, the present method is simple and robust,
and is also very fast because it avoids the usage of the complex geometry algorithm
and the time-consuming judgment of the point-polygon relations, which are com-
monly used in the previous literatures. It is expected that the proposed theory and
algorithms will contribute to be the basis for further research and application of the
NMM.

It can be verified that the proposed method is suitable for the correct generation of
various complex cases in which the mathematical cover is cut by multiple physical
lines such as cracks. Let’s check the special case in Fig.7, in which the mathe-
matic cover 3 is partitioned into 4 different regions by two arbitrary physical lines
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Fi(x) =0and F, (x) =0 as

Fig.F2
R — | F1a-F2B
"~ | Fia.F
1a-FoA
Fig.Foa

By using the step 3 of the above described procedure, we find that (FlBaFZB)
and (Fl A7F2B) belong to a same physical cover 3;. Furthermore, the region
(Fl Ao A) is the invalid physical region because no integral point falls into the
polygon of the mathematical cover 3 bounded by 1-2-5-7-6-3. Thus, the mathe-
matical cover 3 is actually partitioned into two valid physical covers 31 and 3, as
shown in Fig.7. However, we don’t have to employ a special algorithm to find out
the invalid physical regions in the implementation of the present method. It can be
easily found that the invalid physical regions are the regions containing no integral
points, when we complete the computing and assembling of the stiffness matrix of
each integral point following the same procedure in the FEM. We can simply skip
these invalid physical covers when numbering the degrees of freedom over physical
COVers.

Fg(')I Fz(x):()
FZB: Fz(x)<0 «—|—> FZ:\: Fz(x)>0

Figure 7: A special case of the generation of the physical cover
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4 Numerical examples
4.1 Central-cracked plate

A plate with a central crack of length 24, as shown in Fig. 8 is firstly tested by the
present method. The dimensions of the plate used in the test are L = 2m and W=
Im. The plate is subjected to uniform traction of ¢ = 3MPa in y direction. The
elastic material parameters used are E = 3.0x 10*MPa and v = 0.3. The problem is
solved under plane stress assumption. A number of tests have been performed by
varying a between 0.2W, 0.4W and 0.6W. The problem is modeled using 448 and
1416 irregular nodes and solved for plane stress case. The analytical solution for
Kj is available in Anderson (1995) as

K = ov7a sec;—; [1 —0.025 (%)2 +0.06 (;})1 6)

The computational results of the SIFs by the NMM are listed in Table 1. Table 1
indicates that the NMM solution is in a good agreement with the analytical solution
even for sparsely distributed nodes.
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Figure 8: Central-cracked plate
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Table 1: SIFs for the central-cracked plate
448 nodes 1416 nodes )
alW K Error K Error Analytical
0.2 2.4150 -0.87% 2.4313 -0.20% 2.4362
04 3.6638 -1.77% 3.6863 -1.16% 3.7297
0.6 5.2837 -1.53% 5.2952 -1.32% 5.3658

4.2 Three-point bend specimen

The problem of a stationary crack in a three-point bend specimen is considered.
The geometry is shown in Fig. 9. The crack is located at the midspan of the
beam so that only mode I cracking develops. The dimensions of the specimen are
S=12and W = 6. The load is F = 1 applied over unit length and unit depth. The
discretisation with 1977 nodes is also shown in Fig. 9 and the computed SIFs are
compared with the analytical solution obtained by John (1976) in Table 2. As can
be seen from the table, the NMM shows high solution accuracy for SIFs with the
maximum error less than 1.61%.

l F=1

=6

1

S=12

S=12

Pl
P

i A ‘
LA

O
"‘?f"“"i%ﬁ“’%#ngAA
e AVAVANA
A VAYAVAVAVAVA

AVAVAVAVAN
Qﬁgﬁﬂﬁﬂ!ﬁ!“

VAYAS

1977 nodes

Figure 9: A three-point bending specimen
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Table 2: SIFs for the three-point bend specimen

alW 0.3 04 0.5

K; Error K; Error | K; Error
Reference | 2.484 | — 3.236 | — 4.348 | —
Present 2444 | -1.61% | 3.256 | 0.62% | 4.305 | -0.99%

4.3  Curved crack in an infinite plate

77

The problem of a curved crack in an infinite plate is considered. The dimensions
of the model are shown in Fig.10, withR = 4.25 and B = 28.0725°. The analytical
solutions for SIFs of the problem are available in Gdoutos (1979) and Budyn(2004).
The discrete model with 2083 nodes is shown in Fig.11. The comparison of the SIF

results from the NMM and the analytical solutions is listed in Table 3. It is seen
that the NMM shows good accuracy for this problem.

(22.0)

40

»

Figure 10: Curved crack in an infinite plate
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Figure 11: 2083 discrete nodes

Table 3: SIFs for the curved crack
Present | Analytical | Error

K; | 2.026 2.015 0.55%
Ky | 1.138 1.112 2.34%

4.4 Branched crack in an infinite plate

A branched crack in an infinite plate under uniform tension is examined as shown
in Fig.12. The dimensions of the model are fixed to H =4, W =5, a/W =0.05,
b / a=09 and 6 = 45°. The material constants are the Young’s modulus E =
1000 and the Poisson’s ration v = 0.3. Totally 3678 discrete nodes were used for
discretisation as shown in Fig. 13. The normalized stress intensity factors for tips
A and B are defined as

Ff =K}'/ov/nc,Ff =K} /o\/me, Ff} = K}, /o/nic

where ¢ = (a+bcos ) /2.

The SIF results from the NMM and the reference solution (Chen and Hasebe 1995)
are listed in Table 4. It is seen that the relative error is less than 1.06% for all the
cases.



A new implementation of the numerical manifold method (NMM) 79

g=1
N O O
F
B H
a
N l— 4 v
“ 0 A
b
| 2c | H
I ]
« m e " R
a3 ’|‘ - Y
N

Figure 12: Branched crack in an infinite plate
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Figure 13: Discrete nodes for branched crack
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Table 4: SIFs for branched crack in an infinite plate

Present | Analytical | Error
A 1.029 | 1.040 -1.06%
FP 0492 | 0.495 -0.61%
Fj 0.501 0.503 -0.40%

4.5 An embedded star-shaped crack

In this example, we considered a star-shaped crack as shown in Fig.14. The geo-
metrical parameters are 8 = 60°, W = 4 and a / W =0.05. Uniform stress o =50 is
applied to each edge. The mesh used in NMM with 2844 nodes is shown in Fig.15.
Fi4 and Fj4 in Table 5 are defined as

Fia :KIA/G\/na s FlB:Klg/G\/TL'a

It is seen that the SIF results listed in Table 5 are in good agreement with Chen and

Hasebe (1995).
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Figure 14: An embedded star-shaped crack
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Figure 15: Discrete nodes for star-shaped crack

Table 5: SIFs for star-shaped crack

Present | Analytical | Error
FA 0.744 | 0.743 0.13%
FP 0.749 | 0.743 -0.81%

5 Conclusions

In this paper, a new method is proposed for the automatic generation of the fi-
nite covers in the NMM for the modeling of cracks. The present method of cover
generation is simple and robust, and is also very fast because it avoids the us-
age of the complex geometry algorithm and the time-consuming judgment of the
point-polygon relations. It is expected that the proposed theory and algorithms will
contribute to be the basis for further research and application of the NMM.

Only two-dimensional stationary elastic fracture problems are investigated and dis-
cussed in this paper. Extensions of the present work to the crack growth simulation
and three dimensional analyses are natural and feasible. They will also be the fur-
ther work of the present authors.
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