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A Regularized Method of Fundamental Solutions Without
Desingularization

C. Gáspár1

Abstract: Some regularized versions of the Method of Fundamental Solutions
are investigated. The problem of singularity of the applied method is circumvented
in various ways using truncated or modified fundamental solutions, or higher order
fundamental solutions which are continuous at the origin. For pure Dirichlet prob-
lems, these techniques seem to be applicable without special additional tools. In the
presence of Neumann boundary condition, however, they need some desingulariza-
tion techniques to eliminate the appearing strong singularity. Using fundamental
solutions concentrated to lines instead of points, the desingularization can be omit-
ted. The method is illustrated via numerical examples.
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1 Introduction

The popularity of the Method of Fundamental Solutions (MFS, [Alves, Chen and
Sarler (2002)]) is based on its simplicity, accuracy and the fact that it is a truly
meshless method: it requires neither domain, nor boundary mesh generation. What
is needed is a set of points scattered along the boundary without any mesh struc-
ture. Originally, the fundamental solution of the partial differential equation to be
solved (and/or its derivatives) is shifted to some source points located outside of the
domain of the problem and the approximate solution is sought as a linear combi-
nation of the shifted fundamental solutions. Since the fundamental solution of the
familiar second-order partial differential equations with constant coefficients are
radial function, the MFS can be considered a special radial basis function (RBF-
) technique. To compute the unknown coefficients of the linear combination, the
boundary conditions are taken into account at some boundary collocation points.
This results in an linear algebraic system, which is extremely ill-conditioned, es-
pecially when the source points are far from the boundary. On the other hand, if
they are located too close to the boundary, logarithmic type numerical singularities
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appear in the approximate solution. The presence of Neumann boundary condi-
tion makes the situation even worse since it results in stronger singularities at the
vicinity of the source points.

The problem of singularity has been treated in various ways. In the boundary knot
method (BKM, see [Chen (2002); Chen, Shen, Shen and Yuan (2005)]), nonsin-
gular general solutions are utilized so that the source and collocation points are
allowed to coincide without generating singularities. The technique is also an RBF-
type method, but still produces highly ill-conditioned matrices. In the desingular-
ization techniques [Young, Chen and Lee (2005); Chen and Wang (2010); Sarler
(2008); Sarler (2008); Sarler (2009)], the singular terms are recalculated by using
simple analytic solutions of the original problem. Another possibility is to approx-
imate the original second-order problem by a (singularly perturbed) fourth-order
one. The new problem can then be solved by MFS, However, since the fundamen-
tal solution is now continuous at the origin, the problem of singularity does not
appear. Unfortunately, this approach fails in the presence of Neumann boundary
conditions, therefore it also requires some desingularization technique.

In this paper, we outline several regularization methods which avoid the problem
of singularity in the case of pure Dirichlet problems. In the presence of Neumann
boundary condition, they have to be coupled with desingularization. After that,
another type of MFS is introduced based on special fundamental solutions concen-
trated to lines (or planes in 3D) instead of single points. These fundamental solu-
tions exhibit much weaker singularity than the traditional fundamental solutions; in
particular, they are continuous everywhere. This results is methods (which are not
of RBF-type any more) that need no desingularization even in the presence of Neu-
mann boundary conditions. The resulting algebraic system remains ill-conditioned
(or moderately ill-conditioned). However, the use of the external source points is
avoided. The presented methods are illustrated by numerical examples concerning
the Laplace as well as the modified Helmholtz equation.

2 The traditional MFS

Consider the following model problem, defined in a bounded 2D domain Ω:

(∆−λ
2I)u = 0 in Ω, u|Γ1 = u0,

∂u
∂n
|Γ2 = v0 (1)

If the Helmholtz parameter λ equals to 0, we have the familiar Laplace equation.
Here the boundary Γ is decomposed to the union of the Dirichlet boundary ΓD and
the Neumann boundary ΓN (the latter may be empty). It is well known that the
inhomogeneous equation ∆− λ 2I)u = f can be converted to the Problem (1) by
using the Method of Particular Solutions, is a particular solution (without requiring
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any boundary condition) has been computed. This can be performed by using FFT
or an RBF-technique completely independently of the solution of the homogeneous
problem (1).

The MFS produces an approximate solution of the original problem (1) in the fol-
lowing form:

u(x)∼
N

∑
j=1

α jΦ(x− x̃ j), (2)

where x̃1, x̃2, ..., x̃N are external source points, and Φ is a fundamental solution of
the operator (∆−λ 2I):

Φ(r) =


1

2π
log(r) if λ = 0

1
2π

K0(λ r) if λ > 0
(3)

where K0 denotes the usual Bessel function. Φ always has a logarithmic type singu-
larity at the origin: this is the reason that the source points shold be located outside
of the domain Ω.

The unknown coefficients α1, ...,αN in Equation (2) can be computed by the bound-
ary conditions:

N

∑
j=1

α jΦ(xk− x̃ j) = u0(xk) (xk ∈ ΓD)

N

∑
j=1

α j
∂Φ

∂nk
(xk− x̃ j) = v0(xk) (xk ∈ ΓN)

(4)

where x1, ...,xN ∈ Γ are the boundary collocation points, and nk is the outward
normal unit vector at xk. The number of the collocation points is not necessarily
equals to the number of the source points. If the two numbers are different, (4) is
to be solved e.g. in the sense of least squares. For simplicity, we assume that the
numbers of the source and collocation points are equal.

In fact, the form (2) gives us a solution which is automatically extended outside of
Ω. From numerical points of view, it is highly ill-posed problem, even if this exten-
sion exists. If the solution is smooth enough, the method produces extremely exact
approximate solution, but the system (4) is generally strongly ill-conditioned. The
further the source points are located from the boundary, the greater the condition
number. As an illustrative example, consider the simple 2D Laplace equation with
the test solution

u(x,y) = cosπx · sinhπy (5)
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Here we used the more familiar notations x, y for the spatial variables. The domain
of the problem is the unit circle, and we assumed pure Dirichlet boundary condi-
tion. Table 1 shows the relative L2-errors of the approximate solution with different
numbers of source points (N) and different distances from the boundary (d), while
Table 2 shows the corresponding condition numbers. The source as well as the col-
location points are equally spaced along the circle with radius (1+d) and the unit
circle, respectively.

Table 1: Traditional MFS, relative L2-errors (%), Test solution: (5). N is the num-
ber of sources, d is their distance from the boundary. Pure Dirichlet boundary
condition.

d \N 16 32 64 128 256
1/8 9.83 0.764 0.007 2.0E–6 2.9E–13
1/4 4.53 0.054 1.9E–5 5.9E–12 2.3E–13
1/2 1.77 0.001 1.4E–9 1.4E–13 6.6E–13
1 0.39 4.9E–5 8.0E–13 8.0E–12 6.1E–12
2 0.35 1.4E–5 3.1E–11 8.1E–11 3.0E–10

Table 2: Traditional MFS, condition numbers. Test solution: (5). N is the number
of sources,d is their distance from the boundary. Pure Dirichlet boundary condition.

d \N 16 32 64 128 256
1/8 9 46 616 5.3E+4 2.0E+8
1/4 19 227 1.6E+4 4.0E+7 1.2E+14
1/2 83 4.2E+3 5.5E+6 4.8E+12 > 1.0E+16
1 1.4E+3 7.2E+5 9.5E+10 > 1.0E+16 > 1.0E+16
2 5.7E+4 7.5E+8 > 1.0E+16 > 1.0E+16 > 1.0E+16

3 Regularization techniques and desingularization

Consider again the model problem (1). The following regularization techniques
are based on replacing the fundamental solution with another function that has no
singularity at the origin. This makes it possible to avoid the problem of singularity,
when pure Dirichlet boundary condition is applied. In the presence of Neumann
boundaries, however, special desingularization tools are required.
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From now on, the source and the boundary collocation points are supposed to co-
incide: they are denoted by x1, ...,xN ∈ Γ.

Regularization by using truncated fundamental solutions. Now instead of the
fundamental solution (3), the following truncated functions are used:

Φ(r) =


1

2π
K0(λ r) if r > 1

c

1
2π

K0(λ · 1
c ) if r ≤ 1

c

(6)

In the case of the Laplace equation (i.e. when λ = 0), the following simpler form
can be applied:

Φ(r) =


1

2π
log(c · r) if r > 1

c

0 if r ≤ 1
c

(7)

Here c denotes a positive scaling constant that should be defined carefully. The
value 1

c should remain under the characteristic distance of the boundary collocation
points. Thus, the effect of truncation is restricted to a narrow vicinity of the bound-
ary collocation points x1, ...,xN This results in a small distortion of the domain as
well as the Dirichlet boundary data, therefore it can be expected that the method
generates only small errors et least in case of pure Dirichlet boundary conditions.
Table (3) shows the relative L2-errors of the approximate solution with different
numbers of boundary collocation points (N) and different values of the scaling pa-
rameter c. Here the model problem (1) is solved in the unit circle supplied with
pure Dirichlet boundary conditions. The boundary collocation points are equally
spaced along Γ. The Helmholtz constant is set to the value λ := 1. The test solution
of (1) is

u(x,y) = cosx · sinh(
√

1+λ 2 · y) (8)

and the Dirichlet boundary condition is defined in a consistent way. Table (4) shows
the corresponding condition numbers. The optimal value of 1

c seems to be propor-
tional to the characteristic distance of the boundary collocation points (as expected),
i.e. the optimal value of c is proportional to the number of boundary collocation
points. In this case, the condition numbers remain moderate and much less that in
the case of the traditional MFS. The price of this property is the fact that the ex-
actness is lower that in the case of the traditional MFS, even if the optimal scaling
constant is applied.
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Table 3: Method of truncated fundamental solutions, relative L2-errors (%). Test
solution: (8). N is the number of sources, c is the scaling constant. Pure Dirichlet
boundary condition.

c\N 16 32 64 128 256
8 13.01 13.24 11.99 11.99 11.87

16 3.53 6.67 6.69 6.14 6.14
32 12.37 1.19 3.34 3.34 3.07
64 21.14 6.34 0.207 1.65 1.65
128 28.39 11.67 3.19 0.084 0.827
256 34.43 16.44 6.15 1.63 0.008

Table 4: Method of truncated fundamental solutions, condition numbers. Test so-
lution: (8). N is the number of sources, c is the scaling constant. Pure Dirichlet
boundary condition.

c\N 16 32 64 128 256
8 11 1.8E+3 3.7E+3 1.2E+6 2.5E+6
16 6 23 1.1E+4 2.3E+4 2.1E+6
32 4 12 48 7.7E+4 1.5E+5
64 3 8 24 97 5.2E+5

128 3 6 16 49 195
256 2 5 12 33 98

Desingularization. For Neumann and mixed problems, the above method does not
work due to the strong singularity of the normal derivative of the function Φ(x−xk)
at the point xk, i.e. the diagonal elements of the system matrix of (4). The normal
derivative of u at xk ∈ ΓN is expressed as

∂u
∂n

(xk) = ∑
j 6=k

α jBk j +αk ·Bkk

where for j 6= k:

Bk j :=
∂Φ

∂n
(xk− x j)

but the diagonal entry Bkk cannot be calculated in a similar way due to the singu-
larity of the derivative of Φ. In the desingularization techniques [Young, Chen and
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Lee (2005); Chen and Wang (2010); Sarler (2008); Sarler (2009)], these diagonal
entries are calculated in the following way. Let w be a known, smooth solution of
the original problem (1). Expressing w in the same form:

w(x)∼
N

∑
j=1

β jΦ(x− x j), (9)

the coefficients β j can be computed from the Dirichlet data. Having computed
β1, ...,βN , the Neumann data are expressed in a similar form as earlier:

∂w
∂n

(xk) = ∑
j 6=k

β jBk j +βk ·Bkk,

from which the diagonal term Bkk can be computed:

Bkk =
1
βk

(
∂w
∂n

(xk)−∑
j 6=k

β jBk j

)
(10)

and the system (4) of the original problem now has the form:

N

∑
j=1

α jAk j = u0(xk) (xk ∈ ΓD)

N

∑
j=1

β jBk j = v0(xk) (xk ∈ ΓN)

(11)

where for j 6= k:

Ak j = Φ(xk− x j), Bk j =
∂Φ

∂nk
(xk− x j)

and Bkk is defined by (10).

In the case of the simple Laplace equation, w can be chosen to be e.g. an identically
constant function. In this case, ∂w

∂n is identically zero, which simplifies the calcula-
tion. In the more general modified Helmholtz problem, a possible definition of w
can be w(x,y) := eλx or w(r) := I0(λ r), where I0 is the familiar Bessel function.

Remarks:

• Using several predefined solutions, it is possible to define not only the diago-
nal terms Bkk but their neighboring entries as well, which further reduces the
effect of singularity of the function ∂Φ

∂n (x− xk).
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• It should be pointed out that using any type of desingularization, it is suffi-
cient to compute the values of the solution along the Neumann boundary ΓN

only. Once the values along the whole boundary have been computed, the
values inside the domain Ω can be reconstructed by solving a pure Dirich-
let problem, which is often a simpler task from computational point of view,
as mentioned in the Introduction. Moreover, applying quadtree-based multi-
level techniques, the problem of the use of large, ill-conditioned matrices can
be completely avoided [Gáspár (2002); Gáspár (2004)].

To illustrate the method, consider again the model problem (1) with the test solution
(8), where the Helmholtz constant is set to the value λ := 1. Now the boundary
Γ is decomposed into two half-circles (Dirichlet and Neumann boundaries). The
boundary collocation points are equally spaced along the boundary. Table 5 shows
the relative L2-errors on the boundary Γ (cf. the previous Remark) with different
numbers of boundary collocation points (N) and different scaling constants c. It
can clearly be seen that the optimal value of c is again inversely proportional to the
characteristic distance of the boundary collocation points.

Table 5: Method of truncated fundamental solutions combined with desingulariza-
tion. Relative L2-errors (%) on the boundary. Test solution: (8). N is the number
of sources, c is the scaling constant. Mixed boundary conditions.

c\N 16 32 64 128 256
8 23.28 23.28 20.81 21.91 21.97

16 0.491 12.48 12.39 11.16 11.48
32 31.32 0.063 6.469 6.431 5.820
64 64.31 15.90 0.008 3.294 3.282
128 224.1 35.95 7.183 0.001 1.663
256 273.8 212.8 15.57 3.466 1.4E–4

Regularization by using fourth-order fundamental solutions. Now instead of
the fundamental solution (3), the following RBFs are used (see [Gáspár (2008)] for
details):

Φ(r) :=− 1
2π

1
c2−λ 2 (K0(cr)−K0(λ r)) (12)
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if λ > 0. In case of the Laplace equation (i.e. when λ = 0):

Φ(r) :=− 1
2πc2 (K0(cr)+ log(cr)) (13)

Here c is again a scaling parameter. Note that these functions are continuous at the
origin (the singularities cancel out). Using the series expansion of the function K0,
it can easily be deduced, that for the function defined by (12), the equality

Φ(0) =− 1
2π

− logc+ logλ

c2−λ 2

holds. A similar expression can be deduced also for the function (13):

Φ(0) =− 1
2πc2 (log2− γ) ,

where γ denotes the Euler constant: γ = 0.5772156....

The functions (12) and (13) are the fundamental solutions of the fourth-order partial
differential operator ∆(∆−c2I) and (∆−λ 2I)(∆−c2I), respectively. Consequently,
the approximate solution

N

∑
j=1

α jΦ(x− x j) (14)

solves exactly the fourth-order problems

∆

(
I− 1

c2 ∆

)
u = 0, and (∆−λ

2I)
(

I− 1
c2 ∆

)
u = 0,

respectively. By a careful choice of the scaling parameter, the error of the approx-
imate solution can be minimized (see [Gáspár (2004); Gáspár (2008)] for details).
The parameter c should be again inversely proportional to the characteristic dis-
tance of the boundary collocation points.

The approach is mathematically elegant; however, the Neumann boundary condi-
tions still require desingularization as described above. First, consider the problem
(1) with an arbitrary predefined, smooth solution w 6= 0. Expressing w in the RBF-
form:

w(x)∼
N

∑
j=1

β jΦ(x− x j),

the coefficients β j can be calculated. Now expressing ∂w
∂n , we have:

∂w
∂n
∼ ∑

j 6=k
β jBk j +βkBkk,
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where Bk j := ∂Φ

∂nk
(xk− x j for j 6= k. From here, the diagonal term Bkk can be calcu-

lated for all boundary points xk which are located on the Neumann boundary ΓN .
For Dirichlet boundary points, no desingularization is needed.

Remark: The regularization based on higher order fundamental solutions can be
applied for more general problems as well. In [Gáspár (2009)], the technique is ap-
plied to steady Stokes problem. Note, however, that for Stokes problems, the usual
boundary condition is of Dirichlet type, so that desingularization is not needed.

As an example, consider again the model problem (1) with the test solution (8),
where the Helmholtz constant is set to the value λ := 1. The boundary Γ is again
decomposed into tho half-circles as Dirichlet and Neumann parts. The boundary
collocation points are equally spaced along the boundary. Table 6 shows the rel-
ative L2-errors on the boundary Γ with different numbers of boundary collocation
points (N) and different scaling constants c. It can be seen again that the optimal
value of c is inversely proportional to the characteristic distance of the boundary
collocation points.

Table 6: MFS with fourth-order fundamental solution combined with desingular-
ization. Relative L2-errors (%) on the boundary. Test solution: (8). N is the number
of sources, c is the scaling constant. Mixed boundary conditions.

c\N 16 32 64 128 256
8 28.35 31.32 31.51 31.40 31.31

16 4.307 15.41 17.08 17.24 17.22
32 87.78 2.252 8.039 8.974 9.082
64 54.11 12.78 1.138 4.112 4.612
128 168.1 150.4 5.918 0.570 2.081
256 412.4 103.4 14.03 2.873 0.285

Regularization by using nearly fundamental solutions. This technique can be
applied to potential problems only. Instead of the fundamental solutions (3), the
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following function is applied (which is already not of RBF-type):

Φ j(x) := log
r1 + r2 +

√
(r1 + r2)2−a2

a
, (15)

Here a > 0 is a scaling constant and

r1 :=

√(
x− a

2 e(x)j

)2
+
(

y− a
2 e(y)j

)2
,

r2 :=

√(
x+ a

2 e(x)j

)2
+
(

y+ a
2 e(y)j

)2

(16)

where e j = (e(x)j ,e(y)j ) is the tangential unit vector at the boundary point x j. Clearly,
r1 and r2 are the distances between the point (x,y) and the endpoints of the segment
Γ j :=

[
−a

2 e j,
a
2 e j
]
. (Here we used the more familiar notations x, y for the spatial

variables.) It is easy to see, that Φ j is continuous everywhere, vanishes along the
segment Γ j and harmonic outside. Thus the shifted function Φ(x− x j) vanishes on
a small straight segment which contains the boundary collocation point x j and has
tangential direction. The approximate solution of (1) can be sought in the following
nearly RBF-form:

u(x)∼
N

∑
j=1

α jΦ j(x− x j)

Since all Φ j’s are continuous, no singularity problem arises in case of pure Dirichlet
problem. In the presence of Neumann boundaries, the method still needs desingu-
larization.

As an illustration, consider again the model problem (1) in the unit circle with the
harmonic test solution (5) (the Helmholtz constant is now zero). The boundary Γ is
decomposed into two half-circles as Dirichlet and Neumann parts. The boundary
collocation points are equally spaced along the boundary. Table 7 shows the rel-
ative L2-errors on the boundary Γ with different numbers of boundary collocation
points (N) and different scaling constants c: here, in order to be consistent with the
previous examples, c is defined by c := 2

a . The optimal value of c is still inversely
proportional to the characteristic distance of the boundary collocation points.

Note that the technique can be generalized to 3D potential problems as well. Now
the functions (15) can be defined with the help of the function

Φ(x,y,z) :=
2
π

arcsin
a√

z2 +
(
r− a

2

)2
+

√
z2 +

(
r+ a

2

)2
, (17)



114 Copyright © 2013 Tech Science Press CMES, vol.92, no.1, pp.103-121, 2013

Table 7: The use of potentials concentrated on straight segments conbined with
desingularization. Relative L2-errors (%) on the boundary. Test solution: (5). N is
the number of sources, c is the scaling constant. Mixed boundary conditions.

c\N 16 32 64 128 256
8 3.568 6.287 0.974 0.939 0.350

16 22.42 0.945 2.757 0.358 0.413
32 41.82 10.14 0.488 1.252 0.163
64 61.30 19.71 4.989 0.265 0.590
128 80.80 29.38 9.754 2.489 0.140
256 100.2 39.08 14.58 4.863 1.245

where r :=
√

x2 + y2. The function Φ identically equals to 1 on the closed disc of
the xy-plane centered at the origin with radius a

2 and harmonic outside [Atkinson,
Young and Brezovich (1983)].

4 Regularization techniques without desingularization

All the previous techniques presented in the previous section need desingulariza-
tion due to the fact that they are based on nearly fundamental solutions which are
continuous at the origin, but their normal derivative still exhibits numerical singu-
larity. This can be avoided if more smooth functions Φ are applied. Typically this is
the case in the boundary knot method (BKM, see [Chen (2002); Chen, Shen, Shen
and Yuan (2005)]), where nonsingular general solutions are used, which are still ra-
dial functions. Here we outline a different approach which is based on fundamental
solutions concentrated to straight lines/planes. More precisely, let L be a partial
differential operator and let n be a unit vector, Consider a function Φn satisfying
the equation

LΦn = δn (18)

where δn denotes the Dirac distribution concentrated to the line/plane which passes
the origin and has the normal vector n. An approximate solution of the equation
Lu = 0 is sought in the form:

u(x)∼
N

∑
j=1

α jΦn j(x− x j) (19)

where n j is the normal direction at the boundary point x j. In other words, the
approximate solution is sought as a linear combination of the above fundamen-
tal solutions concentrated to the tangents of Ω at the boundary collocation points,
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provided for the time being that the domain Ω is strictly convex. The coefficients
α1, ...,αN can be computed by enforcing the boundary conditions:

∑
N
j=1 α jΦn j(xk− x j) = u0(xk) (xk ∈ ΓD)

∑
N
j=1 α j

∂Φn j
∂nk

(xk− x j) = v0(xk) (xk ∈ ΓN)

(20)

The main advantage of the approach is that the above fundamental solutions are
smoother and have much simpler form than the traditional fundamental solutions
(concentrated to the origin). In the case of the modified Helmholtz operator (∆−
λ 2I), the fundamental solution is as follows

Φn(x,y) =
1

2λ
e−λ |y| (21)

provided that the normal vector is n = (0,1). Otherwise, the fundamental solution
can be obtained by rotating the coordinate system, i.e.

Φn(x,y) =
1

2λ
e−λ |x·n(x)+y·n(y)|, (22)

if n =
(
n(x),n(y)

)
.

Equation (21) is not valid, if the Helmholtz parameter λ equals to 0. In this case
(i.e. in the case of the Laplace operator), the above fundamental solution has the
form:

Φ(x,y) =
1
2
|y|,

if n = (0,1). Otherwise, if n =
(
n(x),n(y)

)
, we have:

Φ(x,y) =
1
2
·
∣∣∣x ·n(x)+ y ·n(y)

∣∣∣
However, now the functions Φn j(x− x j) are not linearly independent. In this case,
the functions defined by (15) should be used. The scaling parameter a – in contrast
to the previous subsection – should be defined to be much higher. The parameter a
should be in the same order of magnitude than the diameter of Ω. As expected, the
condition numbers become very high when the number of boundary collocation
points increase. However, due to the lack of singularity, no desingularization is
needed.

To illustrate the method, consider the following test solutions in the unit circle:

u(x,y) := cosπx · sinhπy (23)
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and

u(x,y) := cosx · sinh(
√

1+λ 2 · y) (24)

The function (23) is harmonic, while function (24) satisfies the modified Helmholtz
equation. It this example, the parameter λ is defined as λ := 2. In both cases, mixed
boundary conditions are prescribed on the half-circles ΓD and ΓN , respectively. The
boundary collocation points are equally spaced along Γ. Table 8 shows the relative
L2-errors belonging to the test solution (23) on the boundary Γ with different num-
bers of boundary collocation points (N) and scaling parameter a. Table 9 shows
the corresponding condition numbers. In this case, there is no optimal value for
the parameter a: the higher the parameter a, the more exact the approximate so-
lution, however, the larger the condition number. For the test solution (24), Table
10 shows the relative L2-errors of the method on the boundary, and also the corre-
sponding condition numbers with different numbers of boundary points N.

Table 8: The use of potentials concentrated on straight segments without desingu-
larization. Relative L2-errors on the boundary. Test solution: (23). N is the number
of sources, a is the scaling constant. Mixed boundary conditions

a\N 16 32 64 128 256
2 16.1 0.013 1.6E–7 9.0E–10 2.7E–8
4 0.47 5.5E–5 6.8E–9 7.1E–8 2.7E–7
8 11.1 2.9E–6 6.6E–6 3.8E–4 4.7E–3

Table 9: The use of potentials concentrated on straight segments without desingu-
larization. Condition numbers. Test solution: (5). N is the number of sources, a is
the scaling constant. Mixed boundary conditions

a\N 16 32 64 128 256
2 5.1E+3 6.8E+5 1.7E+8 2.1E+13 > 1.0E+16
4 1.1E+4 2.3E+8 1.3E+14 8.3E+15 > 1.0E+16
8 3.3E+7 1.2E+11 5.1E+14 3.4E+15 > 1.0E+16
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Table 10: The use of potentials concentrated on straight segments without desin-
gularization. Relative L2-errors on the boundary and condition numbers. Test solu-
tion: (24). N is the number of sources, a is the scaling constant. Mixed boundary
conditions

N 16 32 64 128 256
Rel. L2-error 0.010 3.3E–8 1.0E–12 1.2E–11 3.6E–12

Cond. number 588 2.5E+8 > 1.0E+16 > 1.0E+16 > 1.0E+16

Remark: If the domain is not strictly convex, then the above approaches fail since
(19) produces a function which does not satisfy the differential equation every-
where (since it is not differentiable along the corresponding tangents belonging to
the boundary collocation points). However, the following smooth functions are still
applicable:

Φ(x,y) = sinhλy (25)

for the modified Helmholtz operator, and:

Φ j(x) := sign y · log
r1 + r2 +

√
(r1 + r2)2−a2

a
, (26)

where a > 0 is the scaling constant and

r1 :=

√(
x− a

2

)2
+ y2, r2 :=

√(
x+

a
2

)2
+ y2 (27)

for the Laplace equation, when the normal vector of the line is n = (0,1). (In the
general case, the functions are derived by rotating the coordinate system.) Note
that the function (26) is smooth everywhere with the exception of the half-lines
(−∞,−a

2 ] and [a
2 ,∞). However, if the parameter a is large enough, then the func-

tions Φn j(x− x j) remain harmonic in the whole domain ω .

A mixed strategy for mixed problems. The above technique can be combined
with the previous regularization methods, since the approximation corresponding
to the Dirichlet and Neumann boundaries need not be indentical. A natural idea is
to use (6) - (7) or (12) - (13) or (15) along the Dirichlet boundary and (15) (with
sufficiently large scaling parameter a) or (21) along the Neumann boundary. In this
case the approximate solution has the form:

u(x)∼ ∑
x j∈ΓD

α jΦ j(x− x j)+ ∑
x j∈ΓN

α jΨ j(x− x j)
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where the functions Φ j denote the regularized fundamental solutions (or their ap-
proximations as presented previously), and Ψ j denote a fundamental solution con-
centrated to the tangent (or its harmonic approximation). Thus, the ill-conditioned
part of the problem is restricted to the Neumann boundary.

As an example, consider the harmonic test function

Φ(x,y) = x2− y2 (28)

in the unit circle, where mixed boundary condition is prescribed along the half-
circles ΓD and ΓN , respectively. The boundary collocation points are equally spaced
along Γ. Along ΓD, the truncated fundamental solution (7) is applied, while along
ΓN , the nearly fundamental solution (15) is applied with the scaling parameter a :=
1. Table 11 shows the relative L2-errors on the boundary with different numbers of
boundary collocation points (N) and with different values of the scaling parameter
c (note that c has effect only on basis functions corresponding to the Dirichlet
boundary). Table 12 shows the corresponding condition numbers. Observe that the
optimal value of c is still proportional to the characteristic distance of the boundary
collocation points; however, the condition numbers remain moderate.

Remark: Without going details we note that the ill-conditioned Neumann subprob-
lem can be solved separately by using the Schur complement of the system matrix.
Thus, the ill-conditioned character can be restricted to the Neumann boundary.

Table 11: Mixed strategy, relative L2-errors on the boundary. Test solution: (28).
N is the number of sources, a is the scaling constant. Mixed boundary conditions

c\N 16 32 64 128 256
16 5.53 7.69 4.05 6.43 16.8
32 4.76 2.78 2.44 2.63 13.4
64 4.89 4.43 0.10 1.18 1.38
128 5.43 10.8 2.59 0.01 1.66
256 6.01 16.3 5.13 1.20 0.002

5 Summary and conclusions

Some regularized versions of the MFS have been presented based on truncated or
higher order fundamental solutions. For the Laplace equation, a non-RBF-type
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Table 12: Mixed strategy, condition numbers. Test solution: (28). N is the number
of sources, a is the scaling constant. Mixed boundary conditions

a\N 16 32 64 128 256
16 70.9 3.5E+3 1.9E+5 3.3E+6 5.4E+11
32 58.1 3.0E+3 6.2E+3 1.4E+7 3.2E+12
64 53.9 2.8E+3 6.2E+3 1.4E+7 1.1E+12
128 51.9 2.6E+3 6.3E+3 1.5E+7 1.2E+12
256 50.9 2.6E+3 6.4E+3 1.5E+7 1.2E+12

method was also outlined based on harmonic functions vanishing on a straight seg-
ment. These basis functions are continuous, produce no singularity, so that they
can be applied to the pure Dirichlet problems without generating singularities pro-
vided that the scaling parameter is properly defined (the optimal value is inversely
proportional to the characteristic distance of the boundary collocation points). The
accuracy of these methods are less than that of the traditional MFS, but they lead
much better conditioned linear systems. However, in the presence of Neumann
boundary condition, these methods still need some desingularization technique. In
order to avoid desingularization, the use of fundamental solutions concentrated to
straight lines has been proposed. Using these functions as basis functions, no desin-
gularization is needed. In the case of mixed boundary condition, this approximation
should be applied along the Neumann boundary only, which results in an accept-
able compromise between the ill-conditioned character of the discretized problem
and the accuracy of the method.
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