
Copyright © 2013 Tech Science Press CMES, vol.92, no.2, pp.193-212, 2013

A set-based method for structural eigenvalue analysis
using Kriging model and PSO algorithm

Zichun Yang1,2,3, Wencai Sun2

Abstract: The set-based structural eigenvalue problem is defined, by expressing
the uncertainties of the structural parameters in terms of various convex sets. A
new method based on Kriging model and Particle Swarm Optimization (PSO) is
proposed for solving this problem. The introduction of the Kriging model into
this approach can effectively reduce the computational burden especially for large-
scale structures. The solutions of the non-linear and non-monotonic problems are
more accurate than those obtained by other methods in the literature with the PSO
algorithm. The experimental points for Kriging model are sampled according to
Latin hypercube sampling method. Two approaches of imposing the constraint of
the hyper-ellipsoid are presented for global optimization. One is by adding penalty
terms to the original objective function; the other one is use objective function
with interval spherical coordinates by coordinate transformation. An engineering
example revealed the feasibility and accuracy of the proposed method.

Keywords: structural eigenvalue, natural frequency, convex model, Kriging model,
Particle Swarm Optimization

1 Introduction

The finite element method (FEM) has become one of the most popular methods for
solving ordinary differential equations and partial differential equations, because
its simplicity, efficiency, and established convergence, etc. It has been widely ap-
plied in various fields of engineering and sciences, such as solid/fluid mechanics,
heat transfer, electromagnetics, acoustics, see [Atluri (2005)]. The traditional finite
element methods are based on deterministic model, which can be called determin-
istic finite element methods. In recent years, it is realized that many uncertain
factors exist in practical structures, such as environmental loads, material parame-
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ters, geometries and boundary conditions. The uncertainties should be considered
in finite element analysis if they are expected to have great influences on structural
behaviors.

As the first uncertain finite element method, the Probabilistic Finite Element Method
(PFEM) has been studied systematically by many researchers. However, PFEM has
significant limitations when very limited statistical information is available, i.e. the
accurate Probability Density Function (PDF) of uncertainties cannot be obtained.
[Elishakoff (2000)] implemented a universal survey and systematically summarized
the limitations of the probabilistic methods in engineering problems. Affected by
the random factors, complex problems that require large computational resources
become more complex and mostly cannot be effectively solved.

The interval or convex models are new mathematical tools for uncertain problems.
The convex models do not depend heavily on statistical information, and are there-
fore very suitable for problems with small sample-sizes. Many studies about the
applications of the non-probabilistic convex models have been conducted in re-
cent years, see [Ben-Haim and Elishakoff (1990); Qiu (2005); Li, Luo and Sun
(2011); Gao, Song and Tin-Loi (2009); Qiu, Chen, Su and Elishakoff (1995)].
They brought up a new research direction called Interval Finite Element Method
(IFEM) or Non-probabilistic Finite Element Method (NFEM), and many studies in
this area is summarized by [Moens and Vandepitte (2005,2006); Moens and Hanss
(2011)]. The “Set-based Finite Element Method” is used in this paper to represent
the general cases of various convex sets, of which the IFEM is merely a special
case.

The non-probabilistic analysis of structural eigenvalues have been studied in [Yang,
Chen and Lian (2001); Chen, Lian and Yang (2003); Sim, Qiu and Wang (2007);
Muhanna, Kreinovich and Solin (2006)], mainly based on interval models. The pur-
pose of these studies is to seek the upper and lower bounds of the structural eigen-
values, from which the studies can be divided into two categories [Qiu (2005)]:
one is the standard interval eigenvalue problem (the matrix vertex solving theorem,
the positive semi-definite solution theorem and the parameter decomposition based
solving theorem, etc.), the other one is the generalized interval eigenvalue prob-
lem (parameter vertex method and the method based on the perturbation of interval
parameters, etc.).

In this paper, a method based on Kriging model and Particle Swarm Optimization
(PSO) algorithm is presented to study the bounds of structural eigenvalues caused
by various uncertaities. South Africa geologists Krige firstly proposed this model
in [Krige (1951)], which had been applied mainly in Geology for determination of
mineral reserves distribution, before being introduced into the field of design opti-
mization. [Irfan (2005); Zhang and Li (2006)] have used Kriging model in struc-
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tural reliability analysis, in order to construct the alternative model of structural
Limit State Function (LSF). One of the prominent advantages of Kriging model
is its excellent local fitting performance. In this study, Kriging model is used to
construct the response function of structural natural frequency. The PSO algorithm
[Shi and Eberhart (1998); Eberhart and Shi (2000)] which has excellent perfor-
mance for global optimization is then used to seek the extreme values of natural
frequency. An engineering example is given, which has revealed the feasibility and
accuracy of the proposed methods.

The rest of paper is organized as follows: in section 2, the concepts regarding con-
vex models are briefly reviewed in section 2; the generalized interval eigenvalue
problem is defined in section 3; in section 4, the method prosed in this study with
Kriging model and Particle Swarm Optimization is presented with detail; in sec-
tion 5, we demonstrated the feasibility and accuracy of this method by numerical
examples; in section 6, we complete this paper with some concluding remarks.

2 Convex models

In the 1960s, a branch of mathematics called Convex Analysis appeared due to the
various needs of mathematical programming, optimal control, calculus of varia-
tions, numerical approximation, mathematical economics, and etc. The basic re-
searches are about convex sets and convex functions. The former one will be intro-
duced here.

Assume R denotes the space of real number, V is a linear space in R, Rn denotes
n-dimensional Euclidean space, and ‖x‖denotes the Euclidean norm in Rn.

Definition 1: Assume C belongs to Rn. If the relation

(1− t)x+ ty ∈ C (1)

is always true as long as x and y belong to C and t is between 0 and 1, C is a convex
set model.

One of the properties of the convex set model is that, if two different points are
included in it, the line segment between them must be included too.

Definition 2: Assume xi belongs to V, λ i is greater than or equal to 0 and the sum
of λ iis equal to 1. The point

x =
n

∑
i=1

λixi (2)

is called the convex combination of x1,x2, · · · ,xn
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Property 1: Assume all C1, C2, . . . , Cn are convex sets and α i (i=1, 2, . . . , n)
belong to R. Then,

n

∑
i=1

αiCi =

{
x : x =

n

∑
i=1

αixi,xi ∈ Ci

}
(3)

must be a convex set.

Property 2: Assume C j ( j ∈J) are convex sets and J is an indicator set. Then,

C = ∩
j∈J

C j (4)

must be a convex set.

Property 3: Assume W is a linear space and T is a linear mapping from V to W.

1. If A is a convex set in V, TA must be a convex set in W

2. If B is a convex set in W, T−1B must be a convex set in V, where T−1 is the
inverse mapping of T.

Definition 3: Assume A belongs to V. The intersection of all the convex sets that
belong to V and contain A is called the convex hull of A and denoted by co(A).

Theorem 1: If A belongs to V, the convex hull of A is composed of all the finite
convex combinations of the elements in A
Definition 4: If A is a finite set of points {x1,x2, · · · ,xm}in V. The convex hull of
A is

co(x1,x2, · · · ,xm) =

{
m

∑
i=1

λixi : λi ≥ 0,
m

∑
i=1

λi = 1

}
(5)

which is called convex polyhedron. The points x1,x2, · · · ,xm are called the genera-
tors of the convex polyhedron.

3 The generalized interval eigenvalue problem

The eigenvalue problem of undamped structure can be expressed as

K (ααα)u = λM (ααα)u (6)

where α is the vector of the structural parameters, K (ααα) and M (ααα) are the stiffness
matrix and the mass matrix, respectively, λ is the structural eigenvalue which is
equal to the square of natural frequency, u is the corresponding eigenvector.
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Assume the parameter vector α is an interval vector expressed as

ααα ∈ ααα
I = [ααα, ᾱαα] (7)

where ααα and ᾱαα are the lower and upper boundaries of the parameter vector, re-
spectively. Then both the stiffness matrix and the mass matrix contain interval
parameters. Equation (6) can be written as

K
(
ααα

I)u = λM
(
ααα

I)u (8)

where K(ααα I) and M(ααα I) are the collections of the stiffness matrix and the mass
matrix, which can be expressed by {K : K = K (ααα) ,ααα ≤ ααα ≤ ᾱαα} and
{M : M = M (ααα) ,ααα ≤ ααα ≤ ᾱαα}, respectively.

The corresponding collection of the eigenvalue vectors is

ΓΓΓ = {λλλ : λλλ ∈ RRRn,KKK (ααα)uuu = λλλMMM (ααα)uuu, uuu 6= 0,ααα ≤ ααα ≤ ᾱαα} (9)

The above collection is generally a complex non-convex set, but what are of more
interest are the upper and lower boundaries of this area expressed by the following
interval forms

λλλ
I =
[
λλλ ,λλλ

]
=
{

λ
I
i , i = 1, ..,n

}
,λ I

i =
[
λi,λi

]
(10)

where λi and λi can be expressed as

λi = min
ααα∈ααα I

λi (< KKK(ααα),MMM(ααα)>) (11)

λi = max
ααα∈ααα I

λi (< KKK(ααα),MMM(ααα)>) (12)

where λi (< KKK(ααα),MMM(ααα)>) can be further expressed as [Qiu (2005)]

λi (< KKK(ααα),MMM(ααα)>) = min
ΦΦΦi⊂RRRn

max
uuu ∈ΦΦΦi

uuu 6= 0

uuuT KKKuuu
uuuT MMMuuu

(13)

where ΦΦΦi is the arbitrary i-dimensional subspace in Euclidean space Rn.

Up to now, the non-probabilistic structural eigenvalue analyses are mainly based
on the interval model. Eigenvalue or natural frequency analyses using other types
of convex set models needs further studies.
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4 Structural eigenvalue analysis using Kriging and PSO algorithms

Optimization is considered to be one of the most suitable methods for set-based
problems. The feasibility of various optimization methods depend mainly on the
following two aspects [Moens and Hanss (2011)]:

(1) The level of the confidence about which the results can represent the global
optimums.

(2) The computation cost for reaching the confidence level.

The first aspect depends on the stability of the optimization algorithm and the capa-
bility of it to explore new space, especially for complex nonlinear objective func-
tions. The second aspect is mainly associated with two problems: (a) The volume
of the optimization space grows exponentially with increasing number of uncertain
parameters; (b) Most of the engineering problems are faced with large-scale finite
element model. Typically, problem (b) is crucial. Therefore, in order to reduce
the computational burden, an alternative model of the objective function can be
sought for. A new set-based method which combines the Kriging model and the
PSO algorithm will be developed to analyze the set-based structural eigenvalues.

4.1 Kriging model

Generally, Kriging model contains two parts: polynomials and random distribution
as follows

y(xxx) = F (βββ ,xxx)+ z(xxx) = f T (xxx)βββ + zzz(xxx) (14)

where β is the vector of regression coefficient, f (x) is the polynomial basis function
which provides the global simulation, z(x) is a random process which provides the
local simulation and follows normal distribution N(0,σ2) . The covariance of z(x)
is non-zero and the covariance matrix of z(x) is

Cov [Z (xxxi) ,Z (xxx j)] = σ
2R [R(xxxi,xxx j)] (15)

where R(xi,x j) is the correlation equation about any two sample points xi and x j,
which determines the accuracy of the algorithm. Sacks, Koehler and Owen have
presented some types of correlation equations. The most widely used is the Gaus-
sian correlation equation as the following form

R(xxxi,xxx j) = exp

(
−

n

∑
k=1

θk

∣∣∣xxxi
k− xxx j

k

∣∣∣2) (16)

where n denotes the dimension of the correlation function and θ k is anisotropic
parameter. Then, the correlation matrix can be obtained based on the experimental
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data, and has the following form

RRR =

 R(xxx1,xxx1) . . . R(xxx1,xxxN)
...

. . .
...

R(xxxN ,xxx1) · · · R(xxxN ,xxxN)

 (17)

where N is the total number of the experimental samples. According to the weighted
least squares method, the parameters of the polynomial can be obtained

β̂ββ =
(
XXXT RRR−1XXX

)−1
XXXT RRR−1YYY (18)

where X is the coefficient matrix and Y is the corresponding vector of response
values expressed as

XXX =

 f1 (xxx1) . . . fp (xxx1)
...

. . .
...

f1 (xxxN) · · · fp (xxxN)

 (19)

YYY = [y(xxx1)y(xxx2) · · ·y(xxxN)]
T (20)

The estimated value of the variance is

σ̂
2
z =

1
N

(
YYY −XXX β̂ββ

)T
R−1

(
YYY −XXX β̂ββ

)
(21)

Because β̂ββ and σ̂z are associated with θ , the optimal value of θ must be firstly
obtained based on the experimental data. According to the Maximum Likelihood
Estimation Method, the following optimization problem can be obtained

max
θ>θ0
−
[
N ln

(
σ2
)
+ ln(detRRR)

]
2

(22)

Finally, the predictive value at x is

ŷ(xxx) = fff T (xxx) β̂ββ + rrrT (xxx)RRR−1
(

YYY −XXX β̂ββ

)
(23)

where r(x) is the correlation matrix between x and the experimental data, which is
expressed as

rrrT (xxx) = [R(xxx,xxx1)R(xxx,xxx2) · · ·R(xxx,xxxN)] (24)

The second item in the right of eq. (23) can ensure that the fitted surface gets
through the experimental points.
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4.2 PSO algorithm

Particle Swarm Optimization (PSO) method appeared in 1990s, which is a Swarm
Intelligence (SI) algorithm that simulates bird predation. The particles in the opti-
mization space are abstracted as birds. These particles constitute a population and
constantly change their position and velocity by sharing information in order to
seek the global optimums.

Let the position and velocity of the particle i be denoted by xi=(xi1,xi2,. . . ,xin)
T and

vi=(vi1,vi2,. . . ,vin)
T , respectively. Every particle knows its own current location xi,

its history optimal location xband the population’s history optimal location xgb.

Every particle changes the velocity and the location by the following two equations

vik (t +1)=ωvik (t)+c1rand1 (0,1) [xbk (t)− xik (t)]+c2rand2 (0,1)
[
xgk (t)− xik (t)

]
(25)

xik (t +1) = xik (t)+ vik (t +1) (26)

where

i is the serial number of the particle,

k is the dimension number of location and velocity,

t is the number of iterations,

rand1(0,1) and rand2(0,1) are random numbers between 0 and 1,

ω is the inertia weight,

c1 and c2 are acceleration factors.

The location and velocity components xik andvik are bounded by the intervals [xk,min,
xk,max] and [-vk,max,vk,max], respectively.

When ω is relatively large, the algorithm has stronger global search capability,
otherwise, when ω is relatively small, the algorithm has stronger local search ca-
pability [Shi and Eberhart (1998)]. Using dynamic inertia weight can improve the
performance of the algorithm, for this method focuses on global exploration at early
stages and local development at later stages. The linear decreasing inertia weight
is used in this study, which can be expressed as

ω (t) = ωmax− (ωmax−ωmin) · (t−1)
/
(Tmax−1) (27)

where Tmax denotes the iteration times for reaching ωmin.

There are two criterions for iteration termination: (1) The maximum number of
iterations is done; (2) xgb remains stable during m steps and the error is less than
the required accuracy.
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4.3 The program for the natural frequency analysis

4.3.1 Latin hypercube sampling and the evaluation of Kriging model

Before building the Kriging model, we need to select the experimental sample
points firstly. Latin hypercube sampling, due to [McKay, Conover, Beckman (1979)],
is a strategy for generating random sample points ensuring that all portions of the
vector space is represented.

Consider the case where we wish to sample m points in the n-dimensional vector
space. The Latin hypercube sampling strategy is as follows:

(1) Divide the interval of each dimension into mnon-overlapping intervals having
equal probability.

(2) Sample randomly from a uniform distribution a point in each interval in each
dimension.

(3) Pair randomly the points from each dimension.

The experimental points (20 in total) in a 2-dimensional space are shown in Fig. 1.

Figure 1: The Latin sampling points (20 in total) in 2-dimensional space

The Kriging model should be evaluated before further application of it. Thus, we
need to sample some test points besides the experimental points. Two commonly
used evaluation indexes are as follows:



202 Copyright © 2013 Tech Science Press CMES, vol.92, no.2, pp.193-212, 2013

(1) Empirical Integrated Squared Error

EISE =
1
m

m

∑
i=1

[y(xxxi)− ŷ(xxxi)]
2 (28)

where m denotes the total number of the test points, y(xxxi) is the actual response
value and ŷ(xxxi) is the predictive value.

(2) Average relative error

err =
1
m

m

∑
i=1

|y(xxxi)− ŷ(xxxi)|
|y(xxxi)+ ε|

,ε =

{
0 |y(xxxi)| 6= 0

0.01 |y(xxxi)|= 0
(29)

4.3.2 The natural frequency analysis method

(I) For structures with interval parameters
When the uncertainties of the parameters are quantified by intervals, the problem
of eigenvalue analysis has been defined as eq. (11) and eq. (12).

The strategy for natural frequency analysis of structure with interval parameters is
as follows:

(a) Sample the experimental points in the variable space according to Latin hyper-
cube sampling method.

(b) Get the values of natural frequency corresponding to the experimental points
through modal analysis.

(c) Choose the type of correlation function and provide the boundaries of the corre-
lation parameters such as θ . Define the type of simulation (isotropic or anisotropic)
and establish the Kriging model.

(d) Sample a certain number of test points and evaluate the Kriging model accord-
ing to eq. (28) or eq. (29). Adjust the optimization parameters until the accuracy
meets the requirements.

(e) Set the parameters about PSO such as population size ps, inertia weight ω ,
acceleration factors c1 and c2, the search scopes and the termination criterion.

(f) Apply the Kriging model as the objective function and get the upper and lower
boundaries of the structural natural frequency by using PSO method.

(II) For structures with hyper-ellipsoidal uncertain parameters
Assume the uncertainty of the structural parameters can be expressed as

ααα ∈ EEE (ααα ,θ) =
{

ααα : (ααα−ααα0)
T WWW (ααα−ααα0)≤ φ

2
}

(30)

where W is a positive definite matrix, φ is a positive real number and ααα0 is the
nominal vector of ααα . The upper and lower boundaries of the ith eigenvalue can be
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expressed by

λi = min
ααα∈EEE(ααα,θ)

λi (< KKK(ααα),MMM(ααα)>) (31)

λi = max
ααα∈EEE(ααα,θ)

λi (< KKK(ααα),MMM(ααα)>) (32)

The Kriging model can be constructed in the smallest external hyper-cuboid that
encloses the hyper-ellipsoid. However, the application of PSO needs the constraint
condition of the hyper-ellipsoid. Two approaches for imposing the constraint are
presented as follows:

1) Add penalty terms to the original problems and establish the following optimiza-
tion problem

λi = min
ααα∈♦(E(ααα,θ))

{λi (ααα)+C1 · sgn [T (ααα)]}

λi = max
ααα∈♦(E(ααα,θ))

{λi (ααα)−C2 · sgn [T (ααα)]} (33)

where ♦(E (ααα,θ)) is a hyper-cuboid containing the ellipsoidal model, C1 and C2
are penalty factors taking positive real numbers, sgn(·) is sign function. T (ααα)is
expressed as follows

T (ααα) = (ααα−ααα0)
T WWW (ααα−ααα0)−φ

2 (34)

Thus, the original problem is converted to an unconstrained optimization problem.

2) Convert the orthogonal coordinates to the spherical coordinates

We can make eigenvalue decomposition for the positive definite matrix W as

WWW = QQQT DDDQQQ,QQQT QQQ = III (35)

where D is a diagonal matrix and I is a unit matrix. Let us introduce the following
vector

uuu′=
(
1
/

φ
)

DDD1/2QQQααα (36)

Consequently, the original hyper-ellipsoidal model can be converted to the follow-
ing forms

uuu′ ∈
{

uuu′ : (uuu′−uuu′0)T (uuu′−uuu′0)≤ 1
}

(37)

∆uuu′ ∈
{

∆uuu′ : ∆uuu′T ∆uuu′ ≤ 1
}

(38)
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Through the above transformation, the original hyper-ellipsoidal model has been
converted to a unit hyper-sphere. From Eq. (36), we can get

ααα = φQQQT DDD−1/2uuu′= φQQQT DDD−1/2 (∆uuu′+uuu′0) (39)

Assume the dimension of ∆u is nand the spherical coordinates of the unit hyper-
sphere is (r,θ 1,θ 2,. . . ,θ n−1). Then all the components are interval parameters:
r ∈[0,1], θ 1 ∼θ n−2 ∈[0,π], θ n−1 ∈[0,2π]. The spherical coordinates and the or-
thogonal coordinates have the following relations

∆u1 = r cosθ1
∆u2 = r sinθ1 cosθ2
...
∆un−1 = r sinθ1 sinθ2 · · ·sinθn−2 cosθn−1
∆un = r sinθ1 sinθ2 · · ·sinθn−2 sinθn−1

(40)

Thus, the objective function with interval spherical coordinates can be obtained by
the above coordinate conversion, and the following optimization problem can be
established

λi = min
δδδ∈δδδ

I
λi′(δδδ )

λi = max
δδδ∈δδδ

I
λi′(δδδ )

(41)

where δ is the vector of spherical coordinates of the unit hyper-sphere.

The principles of the above two methods are shown in Fig. 2.

Figure 2: Two methods for imposing the hyper-ellipsoidal constraint

The strategy for natural frequency analysis of structure with hyper-ellipsoidal un-
certain parameters is as follows:
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(a) Sampling the experimental points within the external hyper-cuboid that enclos-
ing the hyper-ellipsoid according to Latin sampling methods.

(b) Take the experimental sample data as the inputs of the deterministic Finite El-
ement Analysis, and the corresponding 1st ∼ kth order natural frequencies can be
obtained.

(c) Set the type of the correlation equation in Kriging model and provide the bound-
aries of the correlation parameters such as θ . Define the type of simulation (isotropic
or anisotropic) and establish the Kriging models for the 1st ∼ kth order natural fre-
quencies.

(d) Sample a certain number of test sample points, and evaluate the Kriging models
according to eq. (28) and eq. (29). Adjust the optimization parameters until the
obtained model meets the accuracy requirement.

(e) Add penalty items to the original objective function, and build the optimization
problem as eq. (33). If choose the way of coordinate conversion, then go to step
(f).

(f) Get the objective functions with spherical coordinates through coordinate con-
version. Establish the optimization problem as eq. (41).

(g) Provide the parameters about PSO such as population size ps, inertia weight ω ,
acceleration factors c1 and c2, the search scopes and termination criterion.

(h) Get the upper and lower boundaries of the 1st ∼ kth order natural frequencies
based on PSO methods and the objective functions with penalty items or spherical
coordinates.

5 Numerical examples

Take a gas turbine blade shown in Fig. 3 as the object of discussion. The parameters
of the blade are listed in Tab. 1.

Table 1: The structural parameters

elastic modulus
E(×1011Pa)

density
ρ(×103kg/m3)

angular velocity
ω(×102rad/s)

Poisson ratiov

2.17(±5%) 8.489(±5%) 3.14(±5%) 0.32(deterministic)

20 experimental points and 10 test points are extracted using Latin sampling method.
The Gaussian correlation function is chosen for Kriging model. The adjustment
procedure of correlation parameter θ is listed in Tab. 2 for the first order natural
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Figure 3: The geometric model of the turbine blade

frequency.

Table 2: The adjustment of the Kriging model for the 1st natural frequency

Lower Upper initial
value

θ 1 θ 2 θ 3 EISE(×10−4) err(‰)

0.1,0.1,0.1 20,20,20 10,10,10 0.899 0.143 0.100 182.33 1.88
0.1,0.1,0.1 10,10,10 5,5,5 0.450 0.100 0.100 68.131 1.21
0.02,0.01,0.01 10,5,5 5,2,2 0.450 0.030 0.010 10.350 0.39
0.01,0.01,0.01 5,5,5 2,2,2 0.180 0.020 0.010 3.6490 0.28
0.01,0.01,0.005 5,5,3 2,2,1 0.180 0.019 0.005 2.7062 0.24
0.01,0.01,0.0001 5,5,3 2,2,1 0.0196 0.010 0.000107 0.0518 0.028

It can be found from Tab. 2 that choosing the anisotropic parameters is better than
choosing the isotropic parameters. The finally obtained Kriging model can meet
the accuracy requirement after parameter adjustment.

The comparison of the predicted and actual values at the test points are shown in
Fig. 4.

Fig. 5 and Fig. 6 show the optimization procedure for the 1st and 2nd natural fre-
quencies. The termination criterion is that the population’s optimal value remains
stable during 50 steps. The optimal values are reached after only about 20 steps,
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Figure 4: The comparison of the predicted and actual values of the 1st and 2nd

natural frequencies

and the high efficiency of the PSO algorithm is revealed.

Figure 5: The optimization process for the 1st natural frequency

The intervals and the uncertainty degrees of the 1st ∼5th order natural frequencies
are listed in Tab. 3.
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Figure 6: The optimization process for the 2st natural frequency

Assume the uncertainty degree of the structural parameter changes, then the bound-
aries of the natural frequencies are calculated which are listed in Tab. 4.

It can be seen from Tab. 4 that the intervals of the natural frequencies become wider
when the uncertainty degree of the structural parameters increases.

If the uncertainties of the structural parameters are quantified by the hyper-ellipsoidal
model, the Kriging model obtained above can also be used, but the hyper-ellipsoidal
constraint must be imposed for PSO.

The boundaries of the 1st ∼5th order natural frequencies based on the internal

Table 3: The uncertainty degrees and the intervals of 1st ∼5th order natural fre-
quencies

f1/Hz f2/Hz f3/Hz f4/Hz f5/Hz
nominal/Hz 52.880 123.26 172.87 247.02 472.13
interval/Hz [50.245,

55.514]
[117.09,
129.43]

[164.27,
181.47]

[234.86,
259.19]

[448.48,
495.79]

uncertainty/% 4.98 5.01 4.98 4.93 5.01
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Table 4: The natural frequency boundaries based on different uncertainty degrees
of structural parameter

β f1/Hz f2/Hz f3/Hz f4/Hz f5/Hz
0.01 [52.293,53.348] [121.84,124.30] [170.91,174.36] [244.23,249.15] [467.13,476.57]
0.02 [51.771,53.883] [120.62,125.55] [169.21,176.11] [241.79,251.65] [462.48,481.37]
0.03 [51.255,54.423] [119.42,126.81] [167.54,177.88] [239.38,254.18] [457.85,486.20]
0.04 [50.745,54.967] [118.24,128.11] [165.89,179.67] [237.05,256.71] [453.20,491.02]

hyper-ellipsoid are listed in Tab. 5.

Table 5: The 1st ∼5th natural frequency intervals based on the internal ellipsoidal
model

f1/Hz f2/Hz f3/Hz f4/Hz f5/Hz
nominal/Hz 52.849 123.131 172.743 246.846 472.105
interval/Hz [51.17, 54.53] [118.87,

127.39]
[166.74,
178.75]

[238.30,
255.39]

[455.58,
488.63]

uncertainty/% 3.18 3.46 3.48 3.46 3.50

Interval model is simple and intuitive, which is easy to operate. However, the
hyper-ellipsoidal model can more flexibly and objectively reflect the uncertainties
of the structure. The above analysis showed the feasibility of the proposed method
based on Kriging model and PSO algorithm.

6 Conclusions

In this paper, a new non-probabilistic method for structural eigenvalue analysis
is developed, which is featured with the Kriging model and the PSO algorithm.
To reduce the computational cost and deal with the small sample-size problem,
the convex model is introduced to this study to model the structural uncertainties.
Thus, how to obtain the accurate bounds of the structural eigenvalues is the prob-
lem of interest in this study. The Kriging method which has excellent performance
for local fitting, is very suitable for complex non-linear problems and is used here
to construct the approximate models of the structural eigenvalues. The PSO algo-
rithm which has excellent performance for global optimization is used here to seek
the bounds of the structural eigenvalues. Two methods for imposing the hyper-
ellipsoidal constraints are also presented. The proposed new method successfully
solved the set-based eigenvalue problems for complex and random structures. It is
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simple, highly efficient and accurate, and can be a useful complement when it is
difficult to get the accurate probability densities of the uncertain structural param-
eters.

We would also like to point out that, although this study is focused on structural
eigenvalue analysis, the essential methodology can be easily extended to solve
other practical engineering problems with uncertainties, such as cracks, life-time
prediction, buckling and postbuckling, structural reliability, etc. And the structural
model is not limited to FEM, the method proposed in this study can also be easily
combined with BEM [Brebbia, Telles and Wrobel (1984)], and novel methods like
the MLPG method [Atluri (2003)], etc. These can be possible interesting studies in
future.
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