
Copyright © 2013 Tech Science Press CMES, vol.92, no.4, pp.353-368, 2013

Wavelet operational matrix method for solving fractional
integral and differential equations of Bratu-type
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Abstract: In this paper, a wavelet operational matrix method based on the second
kind Chebyshev wavelet is proposed to solve the fractional integral and differential
equations of Bratu-type. The second kind Chebyshev wavelet operational matrix of
fractional order integration is derived. A truncated second kind Chebyshev wavelet
series together with the wavelet operational matrix is utilized to reduce the frac-
tional integral and differential equations of Bratu-type to a system of nonlinear
algebraic equations. The convergence and the error analysis of the method are also
given. Two examples are included to verify the validity and applicability of the
proposed approach.
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1 Introduction

In recent years fractional differential equations and fractional integral equations
have found applications in several differential disciplines. A large class of dynami-
cal systems appearing throughout the field of science and engineering, and applied
mathematics is described by the integral and differential equations of fractional
order [Chen (2007); Bagley and Calico (1991); Rossikhin and Shitikova (1997)].
Owing to the increasing applications, much attention has been given to the solu-
tion of fractional integral and differential equations. Many numerical and analyt-
ical methods for solving fractional integral and differential equations have been
proposed in recent decades. These methods include Laplace Transforms [Pod-
lubny (1999)], Adomian Decomposition Method [Momani (2007)], Variational It-
eration Method [Das (2009)], Fractional Differential Transform Method [Arikoglu
and Ozkol (2009)], and Fractional Difference Method [Meerschaert and Tadjeran
(2006)].
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Bratu’s problem [Chui (1997); Davis (1962); Frank-Kamenetski (1955); Hassan
and Erturk (2007); Caglar and Caglar (2009)] is also discussed in all kinds of ap-
plications, such as chemical reaction theory, the fuel ignition model of the ther-
mal combustion theory and nanotechnology. About Bratu’s problem, both math-
ematicians and physicists have devoted a lot of effort. In Ref. [Syam and Ham-
dan (2006)], Syam and Hamdan presented the Laplace Adomian decomposition
method for solving Bratu’s problem. Wazwaz [Wazwaz (2005)] proposed the Ado-
mian decomposition method for solving Bratu’s problem. Yigit Aksoy and Mehmt
Pakdemirli had solved Bratu-type equation of new perturbation iteration solutions
[Aksoy and Pakdemirli (2010)]. Ref. [Boyd (2003)] uses Chebyshev polynomial
expansions to solve the Bratu-type equations.

The operational matrices of fractional order integration for the Legendre wavelet
[Rehman and Khan (2011)], Chebyshev wavelet [Li (2010)], Haar wavelet [Yi and
Chen (2012)], and CAS wavelet [Sawwdi (2011)] have been developed to solve
the fractional differential equations. In this paper, our study focuses on fractional
integral- differential equations of Bratu-type by using the second kind Chebyshev
wavelet operational matrix of fractional order integration with using the block pulse
functions. Compared with the methods in the Ref. [Yi and Chen (2012); Chen, Sun,
Li and Fu (2013); Wang, Meng, Ma, and Wu (2013); Wei, Chen, Li and Yi (2012)],
we give some exact theoretical analysis to support the numerical results of this
paper, so our manuscript is well constructed. According to the estimated absolute
errors, they are very close to the exact absolute errors, and they can be used for
measurement when the exact solution of the equation is not give. Therefore, we
say those are better than the method in the Ref. [Yi and Chen (2012)].

Consider the equation as follows:

Dαu(x)+λ

∫ x

0
k(x, t)eu(t)dt +g(x) = 0 , n−1 < α ≤ n, 0≤ x, t ≤ 1 (1)

subject to the initial conditions

u( j)(0) = b j , j = 0,1, . . . ,n−1 (2)

2 Preliminaries and notations

In this section, we will use some definitions and mathematical preliminaries of the
fractional calculus theory as follows [Podlubny (1999)].

The Rieman-Liouville fractional integration of order α > 0 is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, n−1 < α ≤ n (3)
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wherenis a positive integer.

The Caputo fractional differential operator Dα of order α > 0 is defined as

Dα f (t) =
1

Γ(n−α)

∫ t

0
(t− τ)n−α−1 f (n)(τ)dτ (4)

It has the following two basic properties for n−1 < α ≤ n

Dα Iα f (t) = f (t) (5)

and

IαDα f (t) = f (t)−
n−1

∑
k=0

f (k)(0+)
tk

k!
, t > 0 (6)

where nis a positive integer.

3 The second kind Chebyshev wavelet and operational matrix of fractional
integration

3.1 The second kind Chebyshev wavelet [Wang and Fan (2012)]

Wavelets constitute a family of functions constructed from dilation and translation
of a single function ψ(t)called the mother wavelet.

Definition 1. The following functions

ψab(t) = |a|−
1
2 ψ(

t−b
a

), a,b ∈ R,a 6= 0 (7)

form a family of continuous wavelets.

If we restrict the parameters aand bto discrete values as a = a−k
0 , b = nb0a−k

0 ,
a0 > 1,b0 > 0, where nandkare positive integers, the family of discrete wavelets
are defined as

ψkn(t) = |a0|
k
2 ψ(ak

0t−nb0) (8)

where ψkn form a wavelet basis for L2(R). In particular, when a0 = 2 and b0 = 1,
ψkn form an orthogonal basis.

The second Chebyshev wavelet ψnm(t) = ψ(k,n,m, t)involve four arguments,
where n = 1,2, · · · ,2k−1,kis assumed any positive integer,mis the degree of the sec-
ond kind Chebyshev polynomials and tis the normalized time. They are defined on
the interval [0,1) as

ψnm(t) =

{
2

k
2 Ũm(2kt−2n+1), n−1

2k−1 ≤ t < n
2k−1

0, otherwise,
(9)
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where

Ũm(t) =

√
2
π

Um(t) (10)

and m = 0,1, · · · ,M− 1.In Eq.(10), the coefficients are used for orthonormality.
Um(t) is the second kind Chebyshev polynomials of degree m with respect to the
weight function ω(t) =

√
1− t2 on interval [−1,1] and satisfying the following

recursive formula

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)−Um−1(t), m = 1,2, · · · . (11)

We should note that in dealing with the second kind Chebyshev wavelet, the weight
function ω̃(t) = ω(2t−1) has to be dilated and translated as

ωn(t) = ω(2kt−2n+1) (12)

3.2 Function approximation

A function f (t) defined on the interval [0,1)may be expanded as

f (t) =
∞

∑
n=1

∞

∑
m=0

cnmψnm(t) (13)

where cnm = ( f (t),ψnm(t))ωn =
∫ 1

0 ωn(t)ψnm(t) f (t)dt.

If the infinite series in Eq.(13) is truncated, then Eq.(13) can be written as

f (t)≈
2k−1

∑
n=1

M−1

∑
m=0

cnmψnm(t) =CT
Ψ(t) (14)

where C and Ψ(t) are 2k−1M×1 matrices given by

C = [c10,c11, · · · ,c1(M−1),c20, · · · ,c2(M−1), · · · ,c2k−10, · · · ,c2k−1(M−1)]
T ,

Ψ(t) = [ψ10,ψ11, · · · ,ψ1(M−1),ψ20, · · · ,ψ2(M−1), · · · ,ψ2k−10, · · · ,ψ2k−1(M−1)]
T (15)

Any function
∫ x

0 ψ

(
x
′
)

dx
′
= Pψ(x) may be also approximated as

k(x, t)≈Ψ
T (x)KΨ(t) (16)

where
∫ x

0 ψ

(
x
′
)

dx
′
= Pψ(x) is a 2k−1M×2k−1M matrix.
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3.3 The second kind Chebyshev wavelet product operational matrix

The following property of the product of two the second kind Chebyshev wavelet
vector functions will also be used as

Ψ(t)ΨT (t)C ≈ C̃Ψ(t) (17)

where C̃ is 2k−1M×2k−1M product operation matrix. For k = 2, M = 3 we have

C̃ = 2

√
2
π

[
C̃1 O
O C̃2

]
(18)

where C̃i (i = 1, 2) are 3×3 matrices given by

C̃i =

 ci0 ci1 ci2
ci1 ci0 + ci2 ci1
ci2 ci1 ci0 + ci2

 (19)

3.4 The operational matrix of fractional integration

Taking the collocation points ti = 2i−1
2kM , i = 1,2, · · · ,2k−1M , then the second kind

Chebyshev wavelet matrix Ψm×m will be defined as

Ψm×m = [Ψ(t1),Ψ(t2), · · · ,Ψ(tm)] (20)

where m = 2k−1M.

We define an m-set of Block Pulse Functions (BPFs) [Wang and Fan (2012)], the
set of these functions over the interval [0,T ) is defined as

ϕi(t) =
{

1, (i−1) T
m ≤ t < i T

m
0, otherwise

(21)

where i = 1,2, · · · ,m, T
m = h.

The BPFs have two useful properties which will be used further.

i) Disjointedness

ϕi(t)ϕ j(t) =
{

0, i 6= j,
ϕi(t), i = j,

t ∈ [0,T ), i, j = 1,2, · · · ,m (22)

ii) Orthogonality∫ 1

0
ϕi(t)ϕ j(t)dt =

{
0, i 6= j,
h, i = j,

t ∈ [0,T ), i, j = 1,2, · · · ,m (23)
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Letting Φ(t) = [ϕ1(t), ϕ2(t), . . . ,ϕm(t)], Kilicman and Al Zhour had given the
BPFs operational matrix of fractional integration Fα as

Iα
Φ(t)≈ FαΦ(t) (24)

where

Fα =

(
1
m

)α 1
Γ(α +2)


1 ξ1 ξ2 · · · ξm−1
0 1 ξ1 · · · ξm−2
0 0 1 · · · ξm−3
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 (25)

with ξk = (k+1)α+1−2kα+1 +(k−1)α+1.

Now we derive the second kind Chebyshev wavelet operational matrix of the frac-
tional integration. Let

Iα
Ψ(t)≈ Pα

Ψ(t) (26)

Pα is called the second kind Chebyshev wavelet operational matrix of the fractional
integration.

When T = 1, the relationship between the second kind Chebyshev wavelet and the
BPFs is

Ψ(t) = Ψm×mΦ(t) (27)

Then we have

Iα
Ψ(t)≈ Iα

Ψm×mΦ(t) = Ψm×mIα
Φ(t) = Ψm×mFαΦ(t) (28)

From Eq.(26) and Eq.(27), we obtain

Iα
Ψ(t)≈ Pα

Ψ(t) = Pα
Ψm×mΦ(t) (29)

Then the second kind Chebyshev wavelet operational matrix of the fractional inte-
gration is given by

Pα = Ψm×mFαΨ
−1
m×m (30)

For instance, M = 3, k = 2 and α = 0.5, we have

P0.5 =



0.1513 −0.2077 −0.1558 −3.7364 −1.5403 −0.0746
0.2077 0.5841 0.2077 1.8244 0.1826 0.0033
−0.1212 −0.1615 0.1860 −0.7450 −0.2871 −0.0096
0 0 0 0.1513 −0.2077 −0.1558
0 0 0 0.2077 0.5841 0.2077
0 0 0 −0.1212 −0.1615 0.1860

 .
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4 Numerical Algorithm of the problem (1)

Consider the nonlinear fractional integral-differential equations of Bratu-type:

Dαu(x)+λ

∫ x

0
k(x, t)eu(t)dt +g(x) = 0,

u( j)(0) = b j, 0≤ x, t ≤ 1, n−1 < α ≤ n,

λ is arbitrary parameter, k(x, t) ∈ L2 ([0,1]× [0,1]), g(x) is a known function.

Let Dαu(x) ≈ CT Ψ(x) , g(x) ≈ GT Ψ(x), k(x, t) ≈ ΨT (x)KΨ(t), eu(t) ≈
N
∑

i=0

[u(t)]i

i! ,

then

u(x)≈CT PαΨ(x)+
n−1
∑

k=0
u(k)(0) xk

k! =CT PαΨ(x)+QΨ(x)

=
(
CT Pα +Q

)
Ψ(x)

(31)

where coefficient Q is known and can be obtained by using the initial conditions.

Substituting Eq.(27) into Eq.(31), we get

u(x)≈
(
CT Pα +Q

)
Ψ(x) =

(
CT Pα +Q

)
Ψm×mΦ(x) (32)

Define
(
CT Pα +Q

)
Ψm×m = [a1,a2, . . . ,am] = A, then u(x)≈ AΦ(x).

Applying the properties of BPFs, we have

[u(x)]i ≈ [ai
1,a

i
2, . . . ,a

i
m]Φ(x) = AiΦ(x) (33)

Substituting the above expanded forms into Eq.(1), we can obtain

Dαu(x)+λ
∫ x

0 k(x, t)eu(t)dt +g(x)

≈CT Ψ(x)+λ
∫ x

0 ΨT (x)KΨ(t)
N
∑
j=0

[u(t)] j

j! dt +GT Ψ(x)

≈CT Ψ(x)+λΨT (x)K
∫ x

0 Ψm×mΦ(t)
N
∑
j=0

ΦT (t)AT
j

j! dt +GT Ψ(x)

≈CT Ψ(x)+λΨT (x)KΨm×m
N
∑
j=0

1
j!
∫ x

0 ÃT
j Φ(t)dt +GT Ψ(x)

≈CT Ψ(x)+λΨT (x)KΨm×m
N
∑
j=0

1
j! Ã

T
j F1Φ(x)+GT Ψ(x) = 0

(34)

where ÃT
j is the product operational matrix of AT

j .



360 Copyright © 2013 Tech Science Press CMES, vol.92, no.4, pp.353-368, 2013

Putting the collocation points{xi}2k−1M
i=1 into Eq. (34), Eq.(34) will be

CT
Ψ(xi)+λΨ

T (xi)KΨm×m

N

∑
j=0

1
j!

ÃT
j F1Φ(xi)+GT

Ψ(xi) = 0 (35)

Solving the nonlinear algebraic equations Eq.(35) by using the Newton iteration
method, we get the vectorCT , and then we obtain the approximate solution u(x) =(
CT Pα +Q

)
Ψ(x).

5 Existence of uniqueness and convergence

Theorem1. (Uniqueness theorem) Eq. (1) has a unique solution whenever 0 < β <
1, where β= λML

Γ(α)α(α+1) , M = sup
0≤x,t≤1

|k(x, t)|< ∞.

Proof. Suppose t ∈ [0,1], then u(t) is bounded. Therefore the nonlinear term eu(t)

in Eq. (1) is Lipschitz continuous with|eu− eu∗ | ≤ L |u−u∗|, L > 0.

Letuandu∗be two different solutions of Eq. (1) , then we can get

Dαu(x) =−λ

∫ x

0
k(x, t)eu(t)dt−g(x) (36)

Dαu∗(x) =−λ

∫ x

0
k(x, t)eu∗(t)dt−g(x) (37)

Using Rieman-Liouville fractional integration, we have

IαDαu(x) =− 1
Γ(α)

∫ x

0
(x−ξ )α−1g(ξ )dξ

− λ

Γ(α)

∫ x

0

∫
ξ

0
(x−ξ )α−1k(ξ , t)eu(t)dtdξ

(38)

IαDαu∗(x) =−
1

Γ(α)

∫ x

0
(x−ξ )α−1g(ξ )dξ

− λ

Γ(α)

∫ x

0

∫
ξ

0
(x−ξ )α−1k(ξ , t)eu∗(t)dtdξ

(39)

Because IαDαx(t) = x(t)−
n−1
∑

k=0

tk

k! x
(k)(0+), so Eq. (38) and Eq. (39) can transform

as

u(x)−
n−1

∑
j=0

x j

j!
u( j)(0) =− 1

Γ(α)

∫ x

0
(x−ξ )α−1g(ξ )dξ

− λ

Γ(α)

∫ x

0

∫
ξ

0
(x−ξ )α−1k(ξ , t)eu(t)dtdξ

(40)
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u∗(x)−
n−1

∑
j=0

x j

j!
u( j)
∗ (0) =− 1

Γ(α)

∫ x

0
(x−ξ )α−1g(ξ )dξ

− λ

Γ(α)

∫ x

0

∫
ξ

0
(x−ξ )α−1k(ξ , t)eu∗(t)dtdξ .

(41)

Then we have

|u−u∗| =
∣∣∣− λ

Γ(α)

∫ x
0
∫ ξ

0 (x−ξ )α−1k(ξ , t)eu(t)dtdξ + λ

Γ(α)

∫ x
0
∫ ξ

0 (x−ξ )α−1k(ξ , t)eu∗(t)dtdξ

∣∣∣
=
∣∣∣− λ

Γ(α)

∫ x
0
∫ ξ

0 (x−ξ )α−1k(ξ , t)
[
eu(t)− eu∗(t)

]
dtdξ

∣∣∣
≤ λ

Γ(α)

∫ x
0
∫ ξ

0 (x−ξ )α−1k(ξ , t)
∣∣∣eu(t)− eu∗(t)

∣∣∣dtdξ

≤ λML
Γ(α)

∫ x
0
∫ ξ

0 (x−ξ )α−1 |u−u∗|dtdξ

= λML
Γ(α)

∫ x
0 (x−ξ )α−1 |u−u∗|ξ dξ

= λML
Γ(α)
|u−u∗|

∫ x
0 ξ (x−ξ )α−1dξ

= λML
Γ(α)
|u−u∗|

(
xα+1

α
− xα+1

α+1

)
= λML

Γ(α)
|u−u∗|xα+1 1

α(α+1)
≤ λML

Γ(α)α(α+1) |u−u∗|

Therefore |u−u∗|
(

1− λML
Γ(α)α(α+1)

)
≤ 0.

This implies that |u−u∗|(1−β )≤ 0, where β= λML
Γ(α)α(α+1) .

As 0< β < 1, |u−u∗|= 0, imply u= u∗, so we can prove Eq.(1) has the uniqueness
solution.

Theorem2. (Convergence theorem) The series solution (16) of problem (1) using
the second kind Chebyshev wavelet method converges toward u(x)

Proof Suppose L2(R) be the Hilbert space and ψk,n(t) = |a|−
1
2 ψ(ak

0t−nb0), where
ψk,n(t) form a basis of L2(R). When a0 = 2 and b0 = 1,ψk,n(t) form an orthonormal
basis.

For k = 1, let u(x) =
M−1
∑

i=0
c1iψ1i(x), where c1i = 〈u(x),ψ1i(x)〉 and 〈· , ·〉represents

the inner product, we have u(x) =
n
∑

i=1
〈u(x),ψ1i(x)〉ψ1i(x).

Let’s denote ψ1i(x) as ψ(x), γ j = 〈u(x),ψ(x)〉.
Define the sequence of partial sums {Sn} of γ jψ(x j), let Sn and Sm be arbitrary
partial sums with n ≥ m. We will prove that {Sn} is a Cauchy sequence in Hilbert
space.
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Let Sn=
n
∑
j=1

γ jψ(x j), then

〈u(x),Sn〉=

〈
u(x),

n
∑
j=1

γ jψ(x j)

〉
=

n
∑
j=1

γ j
〈
u(x),ψ(x j)

〉
=

n
∑
j=1

γ jγ j

=
n
∑
j=1

∣∣γ j
∣∣2.

We will assert that ‖Sn−Sm‖2 =
n
∑

j=m+1

∣∣γ j
∣∣2 for n > m.

Now∥∥∥∥∥ n
∑

j=m+1
γ jψ(x j)

∥∥∥∥∥
2

=

〈
n
∑

i=m+1
γiψ(xi),

n
∑

j=m+1
γ jψ(x j)

〉
=

n
∑

i=m+1

n
∑

j=m+1
γiγ j
〈
ψ(xi),ψ(x j)

〉
=

n
∑

j=m+1
γ jγ j

=
n
∑

j=m+1

∣∣γ j
∣∣2,

i.e. ‖Sn−Sm‖2 =
n
∑

j=m+1

∣∣γ j
∣∣2 for n > m.

According to Bessel’s inequality, we have
∞

∑
j=1

∣∣γ j
∣∣2 is convergent and ‖Sn−Sm‖2→

0, as n,m→∞, i.e. ‖Sn−Sm‖→ 0 and {Sn} is a Cauchy sequence and it converges
to say S. We claim that u(x) = S.

In fact〈
S−u(x),ψ(x j)

〉
=
〈
S,ψ(x j)

〉
−
〈
u(x),ψ(x j)

〉
=
〈

lim
n→∞

Sn,ψ(x j)
〉
− γ j

= lim
n→∞

〈
Sn,ψ(x j)

〉
− γ j

= γ j− γ j

= 0 .

Hence, u(x) = S and
n
∑
j=1

γ jψ(x j) converges to u(x).

This completes the proof.
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6 Error Analysis

Let’s consider ek,M,α(x) = u(x)−uk,M,α(x) as the error function of the approximate
solution uk,M,α(x) for u(x), where u(x) is the exact solution of Eq. (1).

Therefore, uk,M,α(x) satisfies the following problem

Dαuk,M,α(x)+λ

∫ x

0
k(x, t)euk,M,α (t)dt +g(x)+Rk,M(x) = 0,

0≤ x, t ≤ 1, n−1 < α ≤ n,

where Rk,M(x) is the residual function.

Rk,M(x) =−Dαuk,M,α(x)−λ

∫ x

0
k(x, t)euk,M,α (t)dt−g(x). (42)

We proceed to find an approximation euk,M,α (t) to the error function eu(t) in the same
way as we did before for the solution of the problem (1). Subtracting Eq. (42) from
Eq. (1), the error function eu(t) satisfies the problem

Dα [u(x)−uk,M,α(x)]+λ

∫ x

0
k(x, t)

[
eu(t)− euk,M,α (t)

]
dt−Rk,M(x) = 0 (43)

namely

Dαek,M,α(x)+λ

∫ x

0
k(x, t)

N

∑
i=0

[u(t)]i− [uk,M,α(t)]
i

i!
dt−Rk,M(x) = 0. (44)

It should be noted that in order to construct the approximate euk,M,α (t) to eu(t), only
Eq. (44) needs to be recalculated in the same way as we did before for the solution
of Eq. (1).

7 Numerical examples

Example1. Consider the following equation

D0.5u(x)+
∫ x

0
eu(t)dt +g(x) = 0 ,

subject to the initial conditions u(0) = 1, g(x) = −1.1284x0.5− e1(ex− 1). The
exact solution is u(x) = x+1.

Take N = 2k−1M, the absolute errors for different k,M,Nare shown in Table 1.
Using the error estimation in section 6, we can also obtain the estimated absolute
errors which are shown in Table 2.
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Table 1: Absolute errors forM = 3and different values ofk,N
x k = 2,N = 6 k = 3,N = 12 k = 4,N = 24 k = 5,N = 48 k = 6,N = 96
0.1 2.2875e-003 8.1865e-004 5.7142e-004 9.1786e-005 7.1786e-006
0.2 1.8938e-003 7.7151e-004 5.0586e-004 8.2651e-005 6.1650e-006
0.3 1.5116e-003 7.4436e-004 4.5134e-004 7.5165e-005 5.6126e-006
0.4 1.1344e-003 6.9015e-004 3.9816e-004 7.0019e-005 4.7125e-006
0.5 9.8256e-004 6.2983e-004 3.0167e-004 6.3286e-005 4.0187e-006
0.6 9.4160e-004 5.5743e-004 2.2438e-004 5.8132e-005 3.1865e-006
0.7 9.0197e-004 4.9917e-004 1.1285e-004 4.6729e-005 2.6159e-006
0.8 8.8176e-004 4.2215e-004 8.8512e-005 4.1101e-005 1.3346e-006
0.9 8.2835e-004 3.3462e-004 8.1021e-005 2.9621e-005 8.8761e-007

Table 2: Estimated absolute errors forM = 3and different values of k,N
x k = 2,N = 6 k = 3,N = 12 k = 4,N = 24 k = 5,N = 48 k = 6,N = 96
0.1 2.5162e-003 8.4698e-004 6.1153e-004 9.4165e-005 7.4126e-006
0.2 2.2128e-003 8.0128e-004 5.3184e-004 8.6012e-005 6.5815e-006
0.3 1.9764e-003 7.6127e-004 4.9476e-004 7.9159e-005 6.1012e-006
0.4 1.4166e-003 7.2186e-004 4.3571e-004 7.4651e-005 5.2170e-006
0.5 1.0136e-003 6.6235e-004 3.4553e-004 6.6025e-005 4.4175e-006
0.6 9.7543e-004 5.8341e-004 2.6348e-004 6.1145e-005 3.6547e-006
0.7 9.3562e-004 5.2874e-004 1.4542e-004 5.7109e-005 3.0178e-006
0.8 9.1549e-004 4.5189e-004 9.2436e-005 4.5162e-005 1.7219e-006
0.9 8.5658e-004 3.7264e-004 8.7178e-005 3.2420e-005 9.8978e-007

From the Table 1, we can conclude that the numerical solutions are more and more
close to the exact solution when k,N increase. We observe from Table 1 and Table
2 that the actual and estimated absolute errors are almost the same. Hence, the
estimated absolute errors can be used for measurement when the exact solution of
any problem is unknown.

Example 2. Consider the following fractional differential equation

Dαu(x)+3
∫ x

0
(x− t)eu(t)dt +g(x) = 0, 0 < x, t < 1

such that the initial conditions u(0) = 0, g(x) = −1
2 x3− 1

x . The exact solution of
the problem for α = 1 is given by u(x) = lnx. The comparison of numerical results
for α = 0.5, α = 0.75, α = 1 and the exact solution for α = 1 are shown in Fig. 1.
From the Fig. 1, we can see clearly that the numerical solutions are in very good
agreement with the exact solution when α = 1.

However, a closer look at the Fig. 1 reveals that the numerical solutions for α = 1
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deviate a little from the exact solution for x in [0.1,0.2]. This is an indication of
instability on part of the second kind Chebyshev wavelet method, in contrast to
other methods.

Figure 1: Numerical solution and exact solution ofα = 1

Table 3: The absolute errors for differentN

x
Present method Method in [Wazwaz (2005)]
k = 3,N = 12 k = 4,N = 24 N = 12 N = 24

0.1 5.235824e-005 8.214678e-006 6.126552e-005 8.241752e-006
0.2 4.814652e-005 8.024885e-006 6.521678e-005 9.712684e-006
0.3 4.643165e-005 7.747140e-006 7.017520e-005 1.127595e-005
0.4 3.543645e-005 7.421648e-006 8.434743e-005 1.576124e-005
0.5 2.814260e-005 7.112765e-006 8.621648e-005 2.312878e-005
0.6 1.754389e-005 6.512749e-006 9.517855e-005 2.926857e-005
0.7 9.326556e-006 6.220874e-006 1.328752e-004 3.512786e-005
0.8 8.486315e-006 5.721658e-006 1.821547e-004 4.012735e-005
0.9 8.054321e-006 5.357824e-006 2.012765e-004 4.714378e-005

In Table 3, we list the results obtained by the second kind Chebyshev wavelet
method proposed in this paper together with Adomian Decomposition method
[Wazwaz (2005)] results. Compared to the Adomian Decomposition method, tak-
ing advantage of above method can greatly reduce the computation. Moreover, the
method in this paper is easier for implementation.
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8 Conclusion

The purpose of this paper is to develop an effective and accurate method for solving
the fractional integral and differential equations of Bratu-type. We derive the sec-
ond kind Chebyshev wavelet operational matrix of fractional order integration and
use the wavelet basis together with operational matrix to reduce the fractional in-
tegral and differential equations to a system of nonlinear algebraic equations. The
sufficient condition that guarantees a unique solution to be the given problem is
obtained. The convergence and error analysis of the method is also given. Ac-
cording to the numerical example results, it is observed that the method is a good
approximation for the fractional Bratu-type problem.
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