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Solution of Quadratic Integral Equations by the Adomian
Decomposition Method

Shou-Zhong Fu1, Zhong Wang1 and Jun-Sheng Duan1,2,3

Abstract: Quadratic integral equations are a class of nonlinear integral equations
having many important uses in engineering and sciences. In this work we display
an efficient application of the Adomian decomposition method to the quadratic in-
tegral equations of Volterra type. The analytical approximate solution obtained can
be directly inserted into the original equation to verify the accuracy and estimate
the error with a computing software. Four numerical examples demonstrate the
efficiency of the method.

Keywords: Quadratic integral equations, Adomian decomposition method, Ado-
mian polynomials, Nonlinear integral equations.

1 Introduction

Integral equations play an important role in functional analysis and in their ap-
plications in engineering, mathematical physics, economics and other fields. In
particular, quadratic integral equations have many useful applications in describing
numerous events and problems of the real world. For example, quadratic integral
equations are often applicable in the theory of radiative transfer, the kinetic theory
of gases, the theory of neutron transport, the queuing theory and the traffic theory
(see e.g. [Agarwal, O’Regan, and Wong (1999); Corduneanu (1991); Hu, Khavani,
and Zhuang (1989); Wazwaz (2011)]).

For the solutions of general integral equations, various methods have been pro-
posed, including analytical and numerical methods [Corduneanu (1991); Wazwaz
(2011); Zou and Li (2010); Liu and Atluri (2009); Kelmanson and Tenwick (2010);
Banaś, Caballero, Rocha, and Sadarangani (2005)]. In [El-Sayed, Hashem, and

1 School of Mathematics and Information Sciences, Zhaoqing University, Zhaoqing, Guang Dong
526061, P.R. China

2 School of Sciences, Shanghai Institute of Technology, Shanghai 201418, P.R. China
3 Corresponding author. Email: duanjssdu@sina.com;duanjs@sit.edu.cn



370 Copyright © 2013 Tech Science Press CMES, vol.92, no.4, pp.369-385, 2013

Ziada (2010)] the quadratic integral equations of Volterra type in the form of

x(t) = a(t)+g(t,x(t))
∫ t

0
f (s,x(s))ds (1)

have been investigated by the Picard iterative method and the Adomian decompo-
sition method (ADM). But we find the ADM was not applied appropriately. In
this work we present efficient applications of the ADM to the quadratic integral
equations in Eq. (1).

The ADM [Adomian and Rach (1983); Adomian (1983, 1994); Wazwaz (2011);
Lai, Chen, and Hsu (2008)] is a well-known method for practical solution of linear
or nonlinear and deterministic or stochastic operator equations, including ordinary
differential equations, partial differential equations, integral equations, integro-
differential equations, etc. The ADM provides efficient algorithms for analytic
approximate solutions and numeric simulations for real-world applications in the
applied sciences and engineering. The accuracy of the analytic approximate solu-
tions obtained can be verified by direct substitution. Advantages of the ADM over
Picard iterated method in resolution were demonstrated in [Rach (1987)]. A key
notion is the Adomian polynomials, which are tailored to particular nonlinearities
to solve nonlinear operator equations.

The ADM decomposes the solution into a series

x(t) =
∞

∑
n=0

xn(t), (2)

and then decomposes the analytic nonlinear term Nx(t) into a series

Nx(t) =
∞

∑
n=0

An(t), (3)

where the An(t), depending on x0(t),x1(t), . . . ,xn(t), are called the Adomian poly-
nomials, and are obtained for the nonlinearity Nx(t)=F(t,x(t)) by the formula [Ado-
mian and Rach (1983)]

An(t) =
1
n!

[
∂ n

∂λ n F(t,
∞

∑
k=0

xk(t)λ k)

]
λ=0

, n = 0,1,2, · · · , (4)

where λ is a grouping parameter of convenience.
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The first five Adomian polynomials are

A0(t) = F(t,x0),
A1(t) = F ′(t,x0)x1,

A2(t) = F ′(t,x0)x2 +F ′′(t,x0)
x2

1
2! ,

A3(t) = F ′(t,x0)x3 +F ′′(t,x0)x1x2 +F(3)(t,x0)
x3

1
3! ,

A4(t) = F ′(t,x0)x4 +F ′′(t,x0)
(

x2
2

2! + x1x3

)
+F(3)(t,x0)

x2
1x2
2! +F(4)(t,x0)

x4
1

4! ,

where F ′,F ′′,F(3), . . . stand for the partial derivatives of F about its second argu-
ment.

Recently new, efficient algorithms for the Adomian polynomials were presented by
Duan (2010a,b, 2011). Here we list Duan’s Corollary 3 algorithm in [Duan (2011)]
as follows.

An(t) =
n

∑
k=1

F(k)(t,x0)Ck
n, n≥ 1, (5)

where

C1
n = xn, n≥ 1, (6)

Ck
n =

1
n

n−k

∑
j=0

( j+1)x j+1Ck−1
n−1− j, 2≤ k ≤ n. (7)

The recurrence operations in Eqs. (6) and (7) do not involve the differentiation,
but only require the elementary operations of addition and multiplication. So it
is eminently convenient for computer algebra systems such as MATHEMATICA,
MAPLE or MATLAB to generate the Adomian polynomials. In Appendix A, we
present the MATHEMATICA code based on this algorithm.

For other algorithms for the Adomian polynomials see [Adomian and Rach (1983,
1992a); Rach (1984, 2008); Wazwaz (2000, 2009); Abdelwahid (2003); Abbaoui,
Cherruault, and Seng (1995); Zhu, Chang, and Wu (2005); Biazar, Ilie, and Khoshke-
nar (2006); Azreg-Aïnou (2009); Duan (2010b,a, 2011); Duan and Guo (2010)].

The convergence of the ADM has been proved by several investigators [Cherru-
ault and Adomian (1993); Abbaoui and Cherruault (1994); Gabet (1994); Rach
(2008); Abdelrazec and Pelinovsky (2011)]. For example, Abdelrazec and Peli-
novsky (2011) have published a rigorous proof of convergence for the ADM under
the aegis of the Cauchy-Kovalevskaya theorem for initial value problems. A key
concept is that the Adomian decomposition series is a computationally advanta-
geous rearrangement of the Banach-space analog of the Taylor expansion series
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about the initial solution component function, which permits solution by recursion.
For a bibliography and recent developments of the ADM see [Rach (2012); Duan,
Rach, Baleanu, and Wazwaz (2012)].

2 Resolution by the ADM

We consider the following quadratic integral equations [El-Sayed, Hashem, and
Ziada (2010); Banaś, Caballero, Rocha, and Sadarangani (2005)]

x(t) = a(t)+g(t,x(t))
∫ t

0
f (s,x(s))ds, (8)

where a(t) is a specified continuous function, and f and g have partial derivatives
of arbitrary order with respect to their second arguments.

The ADM decomposes the solution into a series x(t) = ∑
∞
n=0 xn(t), then decom-

poses the nonlinear functions f (t,x(t)) and g(t,x(t)) into the series of the Adomian
polynomials

f (t,x(t)) =
∞

∑
n=0

Bn(t), g(t,x(t)) =
∞

∑
n=0

Cn(t), (9)

where

Bn(t) =
1
n!

[
∂ n

∂λ n f (t,
∞

∑
k=0

xk(t)λ k)

]
λ=0

, n = 0,1,2, · · · , (10)

and Cn(t) is defined in a similar manner. Thus the nonlinearity in Eq. (8) is decom-
posed into

Nx(t) = g(t,x(t))
∫ t

0
f (s,x(s))ds =

∞

∑
n=0

An(t), (11)

where the Adomian polynomials are

An(t) =
n

∑
k=0

Cn−k(t)
∫ t

0
Bk(s)ds. (12)

Here we present the rational expression for the Adomian polynomials compared
with that in [El-Sayed, Hashem, and Ziada (2010)].

Especially, if g(t,x(t)) is linear in x(t), i.e. g(t,x(t)) = b(t) + c(t)x(t), then the
Cn(t) would be

C0(t) = b(t)+ c(t)x0(t), Cn(t) = c(t)xn(t), n≥ 1. (13)
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The Adomian recursion scheme for the solution components is

x0(t) = a(t), (14)

xn+1(t) = An(t), n≥ 0. (15)

We can use several modified recursion schemes for different computational ad-
vantages, such as the modified recursion schemes proposed in [Wazwaz (1999);
Wazwaz and El-Sayed (2001); Duan (2010a); Duan and Rach (2011); Duan, Rach,
and Wang (2013)]. We note that in the modified recursion schemes in [Duan
(2010a); Duan and Rach (2011); Duan, Rach, and Wang (2013)], a parameter was
introduced in order to extend the effective region of convergence of the decompo-
sition series solution.

The n-term approximation for the solution is

ϕn(t) =
n−1

∑
k=0

xk(t). (16)

In the sequel we consider four numeric examples. Examples 1 and 2 have exact
analytic solutions, while Examples 3 and 4 do not have exact analytic solutions.
We emphasize that if we use the Picard iterative method in Examples 3 and 4, the
integration could not be calculated analytically.

In the case of absence of the exact solution, such as in Examples 3 and 4 below,
the accuracy of the analytic approximate solutions ϕn(t) can be readily verified by
direct substitution for considering the absolute error remainder function

|ERn(t)|=
∣∣∣∣ϕn(t)−a(t)−g(t,ϕn(t))

∫ t

0
f (s,ϕn(s))ds

∣∣∣∣ (17)

by using MATHEMATICA.

Example 1. Consider the quadratic integral equation

x(t) = t2− t10

35
+

t
5

x(t)
∫ t

0
s2 x2(s)ds, 0≤ x≤ 1. (18)

The equation has the exact solution x∗(t) = t2.

We decompose the solution into x(t) = ∑
∞
n=0 xn(t), and nonlinearity into

Nx(t) = x(t)
∫ t

0
s2 x2(s)ds =

∞

∑
n=0

An(t), (19)
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where

An(t) =
n

∑
k=0

xn−k(t)
∫ t

0
s2 Bk(s)ds, Bk(t) =

k

∑
i=0

xi(t)xk−i(t). (20)

By the Adomian recursion scheme

x0(t) = t2− t10

35
, (21)

xn+1(t) =
t
5

An(t), n≥ 0, (22)

we obtain

x1(t) = t10

35 −
29t18

18375 +
61t26

2113125 −
t34

4930625 ,

x2(t) = 29t18

18375 −
1927t26

14791875 +
150434t34

34391109375 −
400574t42

5215984921875
+ 387353t50

545659325859375 −
93t58

32646284453125 ,
. . . .

Hence the approximate sequence of the solution is

ϕ1(t) = t2− t10

35 ,

ϕ2(t) = t2− 29t18

18375 +
61t26

2113125 −
t34

4930625 ,

ϕ3(t) = t2− 4t26

39445 +
143459t34

34391109375 −
400574t42

5215984921875
+ 387353t50

545659325859375 −
93t58

32646284453125 ,
. . . .

We note that the terms ∓ t10

35 appearing in x0(t) and x1(t) are called the noise terms
[Adomian and Rach (1986, 1992b); Wazwaz (1997)]. The exact solution u∗(t) is
obtained by cancelling the noise term − t10

35 in x0(t).

Table 1: The maximal error parameters MEn (Example 1).
n 1 2 3 4 5 6 7 8

MEn 0.0285714 0.00154957 0.0000973117 6.53177×10−6 4.55482×10−7 3.25589×10−8 2.36821×10−9 1.74487×10−10

In order to examine the convergence we calculate the maximal error parameters

MEn = max
0≤t≤1

|ϕn(t)− t2|. (23)
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Figure 1: The logarithmic plots of the values of ME1 through ME8 (Example 1).

The values of MEn for n = 1,2, . . . ,8 are listed in Table 1. The logarithmic plots
of the values of ME1 through ME8 are displayed in Fig. 1, which demonstrates an
approximately exponential rate of convergence for the decomposition series.

If we use Wazwaz’s modified recursion scheme [Wazwaz (1999)]

x0 = t2, (24)

x1 = − t10

35
+

t
5

A0, (25)

xn+1 =
t
5

An(t), n≥ 1, (26)

we obtain A0 = x0(t)
∫ t

0 s2 x2
0(s)ds = t9

7 , and x1(t) = 0. Hence xn(t) = 0 for all n≥ 1.
The exact solution is obtained u∗(t) = t2.

Example 2. Consider the quadratic integral equation

x(t) = t3− t19

100
− t20

110
+

t3

10
x2(t)

∫ t

0
(s+1)x3(s)ds, 0≤ x≤ 1. (27)

The equation has the exact solution x∗(t) = t3.

We decompose the solution into x(t) = ∑
∞
n=0 xn(t), and decompose the nonlinearity

Nx(t) = x2(t)
∫ t

0
(s+1)x3(s)ds

into

Nx(t) =
∞

∑
n=0

An(t), An(t) =
n

∑
k=0

Cn−k(t)
∫ t

0
(s+1)Bk(s)ds, (28)
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where

Ck(t) =
k

∑
i=0

xi(t)xk−i(t), Bk(t) =
k

∑
j=0

j

∑
i=0

xi(t)x j−i(t)xk− j(t). (29)

By the Adomian recursion scheme

x0(t) = t3− t19

100
− t20

110
, (30)

xn+1(t) =
t3

10
An(t), n≥ 0, (31)

we calculate that the solution components

x1(t) = t19

100 +
t20

110 −
41t35

130000 −
19t36

33000 −
89t37

338800 +
183t51

45500000 + · · ·−
t105

9985162000000 ,

. . . ,

and the approximate sequence of the solution

ϕ1(t) = t3− t19

100 −
t20

110 ,

ϕ2(t) = t3−0.000315385t35−0.000575758t36−0.000262692t37 +4.02198×10−6t51

+0.0000110338t52 +0.0000100873t53 +3.07324×10−6t54−2.75483×10−8t67

−1.00819×10−7t68−1.38333×10−7t69−8.43403×10−8t70

−1.92791×10−8t71 +1.05911×10−10t83 +4.84184×10−10t84

+8.85249×10−10t85 +8.09136×10−10t86 +3.69726×10−10t87

+6.75669×10−11t88−1.72414×10−13t99−9.45221×10−13t100

−2.15888×10−12t101−2.62948×10−12t102−1.80128×10−12t103

−6.58026×10−13t104−1.00149×10−13t105,

ϕ3(t) = t3−0.0000125824t51−0.0000345005t52−0.0000315262t53−9.60073×10−6t54

+3.69878×10−7t67 + . . . ,
. . . .

We note that the exact solution u∗(t) = t3 is obtained by cancelling the noise term
− t19

100 −
t20

110 in x0(t).

Table 2: The maximal error parameters MEn (Example 2).
n 1 2 3 4 5 6 7 8

MEn 0.0190909 0.00112599 0.0000833805 6.83848×10−6 5.94711×10−7 5.37331×10−8 4.98753×10−9 4.72338×10−10

We check the convergence by calculating the maximal error parameters

MEn = max
0≤t≤1

|ϕn(t)− t3|. (32)
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Figure 2: The logarithmic plots of the values of ME1 through ME8 (Example 2).

The values of MEn for n = 1,2, . . . ,8 are listed in Table 2. The logarithmic plots
of the values of ME1 through ME8 are displayed in Fig. 2, which demonstrates an
approximately exponential rate of convergence for the decomposition series.

If we use Wazwaz’s modified recursion scheme [Wazwaz (1999)]

x0 = t3, (33)

x1 = − t19

100
− t20

110
+

t3

10
A0, (34)

xn+1 =
t3

10
An(t), n≥ 1, (35)

we obtain A0 = x2
0(t)

∫ t
0(s+ 1)x3

0(s)ds = t17

11 + t16

10 , and x1(t) = 0. So xn(t) = 0 for
all n≥ 1. The exact solution is obtained u∗(t) = t3.

Example 3. Consider the quadratic integral equation

x(t) = t3 +
t2

4
(1+ x(t))+

1
4
(1+ x(t))

∫ t

0
cos

x2(s)
1+ x2(s)

ds, 0≤ t ≤ 1. (36)

The equation does not have an exact analytic solution.

Using the decomposition of the solution x(t) = ∑
∞
n=0 xn(t), the nonlinearity

Nx(t) = (1+ x(t))
∫ t

0
cos

x2(s)
1+ x2(s)

ds

is decomposed into

Nx(t) =
∞

∑
n=0

An(t), An(t) =
n

∑
k=0

Cn−k(t)
∫ t

0
Bk(s)ds, (37)
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where

C0(t) = 1+ x0(t), Ck(t) = xk(t), k ≥ 1,

and the Adomian polynomials for f (x(t)) = cos x2(t)
1+x2(t) are

B0(t) = cos
x2

0(t)
1+ x2

0(t)
,

B1(t) = − 2x0(t)x1(t)(
x2

0(t)+1
)

2
sin

x2
0(t)

x2
0(t)+1

,

B2(t) =
−2x2(t)x3

0(t)+3x2
1(t)x

2
0(t)−2x2(t)x0(t)− x2

1(t)
(x2

0(t)+1)3 sin
x2

0(t)
x2

0(t)+1

−
2x2

0(t)x
2
1(t)

(x2
0(t)+1)4 cos

x2
0(t)

x2
0(t)+1

,

. . . .

By the parametrized recursion scheme [Duan (2010a); Duan and Rach (2011);
Duan, Rach, and Wang (2013)]

x0 = c, (38)

x1 = −c+ t3 +
t2

4
(1+ x0(t))+

1
4

A0, (39)

xn+1 =
t2

4
xn(t)+

1
4

An(t), n≥ 1, (40)

we obtain the approximate sequence of the solution such as for c = 0.5,

ϕ2(t) = 0.367525t +0.375t2 + t3,
ϕ3(t) = 0.268857t +0.331288t2 +1.1778t3 +0.326846t4 +0.25t5,
ϕ4(t) = 0.239709t +0.333811t2 +1.1557t3 +0.388937t4 +0.346312t5

+0.123425t6 +0.0424382t7,
. . . .

The curves of the approximate solutions ϕn(t) for n = 2,3,4,5,6 are plotted in
Fig. 3, where ϕ5(t) and ϕ6(t) overlap.

In order to examine the convergence we consider the absolute error remainder func-
tion

|ERn(t)|=
∣∣∣∣ϕn(t)− t3− t2

4
(1+ϕn(t))−

1
4
(1+ϕn(t))

∫ t

0
cos

(ϕn(s))2

1+(ϕn(s))2 ds
∣∣∣∣ .
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Figure 3: Curves of the approximate solutions ϕn(t) for n = 2 (dot line), n = 3
(dot-dash line), n = 4 (dot-dot-dash line), n = 5 (solid line) and n = 6 (dash line)
(Example 3).

Table 3: The absolute error remainder function |ERn(t)| (Example 3).
t 0 0.2 0.4 0.6 0.8 1

|ER3(t)| 0 0.00442553 0.00832103 0.00146290 0.0622715 0.259762
|ER4(t)| 0 0.000995395 0.000130127 0.000642902 0.0195373 0.112419
|ER5(t)| 0 0.000951998 0.00113826 0.00115901 0.00715229 0.0582594
|ER6(t)| 0 0.000108734 0.000192676 0.000501003 0.00302914 0.0348328
|ER7(t)| 0 0.000329753 0.000274385 0.0000755925 0.00109902 0.0114960
|ER8(t)| 0 0.000110965 0.000183536 0.000174717 0.000208731 0.00388898

(41)

We calculate |ERn(t)| for n = 3,4, . . . ,8 at t = 0,0.2,0.4,0.6,0.8,1, respectively,
and list the results in Table 3.

Example 4. Consider the quadratic integral equation

x(t) = e−t +
1
2

t2 e−t x(t)
∫ t

0
e−s ln(1+ sx(s))ds, 0≤ t ≤ 2. (42)

The equation does not have an exact analytic solution.

We decompose the solution into x(t) = ∑
∞
n=0 xn(t), and the nonlinearity

Nx(t) = x(t)
∫ t

0
e−s ln(1+ sx(s))ds
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into

Nx(t) =
∞

∑
n=0

An(t), An(t) =
n

∑
k=0

xn−k(t)
∫ t

0
e−s Bk(s)ds, (43)

where the Adomian polynomials for f (x(t)) = ln(1+ t x(t)) are

B0(t) = ln(1+ t x0(t)),

B1(t) =
tx1(t)

tx0(t)+1
,

B2(t) =
t
(
2(tx0(t)+1)x2(t)− tx2

1(t)
)

2(tx0(t)+1) 2 ,

B3(t) =
t
(
t2x3

1(t)−3t (tx0(t)+1)x2(t)x1(t)+3(tx0(t)+1) 2x3(t)
)

3(tx0(t)+1) 3 ,

. . . .

From the recursion scheme

x0 = 0, (44)

x1 = e−t +
1
2

t2 e−t A0, (45)

xn+1 =
1
2

t2 e−t An(t), n≥ 1, (46)

we obtain the approximate sequence of the solution

ϕ2(t) = ϕ3(t) = e−t ,

ϕ4(t) = e−t + 1
8 e−2tt2 + e−4t

(
− t2

8 −
t3

4

)
,

ϕ5(t) = e−t + 23
216 e−2tt2 + e−4t

(
− t2

8 −
t3

4

)
+ e−5t

(
t2

54 +
t3

18 +
t4

12

)
,

. . . .

Table 4: The absolute error remainder function |ERn(t)| (Example 4).
t 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

|ER3(t)| 0 0.000195686 0.00157691 0.00410976 0.00680731 0.00884484 0.00989530 0.0100149 0.00944188 0.00844876 0.00726669
|ER4(t)| 0 0.0000105471 0.000136179 0.000419007 0.000717199 0.000894629 0.000921634 0.000842118 0.000715015 0.000582861 0.000466660
|ER5(t)| 0 9.26944×10−7 0.0000237930 0.000116835 0.000292902 0.000507293 0.000695039 0.000810830 0.000842408 0.000802853 0.000716466
|ER6(t)| 0 9.29067×10−8 4.10764×10−6 0.0000260772 0.0000743638 0.000136215 0.000189122 0.000218407 0.000222298 0.000207160 0.000181365

The curves of the approximate solutions ϕn(t) for n = 3,4,5 are plotted in Fig. 4,
where ϕ4(t) and ϕ5(t) overlap.
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Figure 4: Curves of the approximate solutions ϕn(t) for n = 3 (dot line), n = 4
(solid line) and n = 5 (dash line) (Example 4).

Furthermore, we check the absolute error remainder function

|ERn(t)|=
∣∣∣∣ϕn(t)− e−t − 1

2
t2e−t

ϕn(t)
∫ t

0
e−s ln(1+ sϕn(s))ds

∣∣∣∣ .
We calculate |ERn(t)| for n = 3,4,5,6 at t = 0,0.2,0.4,0.6, . . . ,2, respectively, and
list the results in Table 4.

3 Conclusions

We demonstrate an efficient application of the ADM to the quadratic integral equations.
The ADM gives a sequence of analytical approximate solutions, which can be veri-
fied by direct substitution. This is convenient for the error estimation and parameter
analysis for engineering problems. Four numerical examples demonstrate the effi-
ciency of the method and the fast convergent rate of the decomposition solutions.

If we use the Picard iterative method in Examples 3 and 4 we would encounter
integrations which can not be calculated analytically. The numeric examples dis-
play that the ADM is more efficient for the analytic approximate solutions of the
nonlinear equations than the Picard iterative method.
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Appendix A: MATHEMATICA code for the Adomian polynomials based on
Duan’s Corollary 3 algorithm [Duan (2011)]

Adomian[f_, M_]:= Module[{c, n, k, j, der},
Table[c[n, k], {n, 1, M}, {k, 1, n}];
der=Table[D[f[Subscript[u,0]], {Subscript[u,0],k}], {k,1,M}];
A[0]=f[Subscript[u,0]];
For[n=1, n<=M, n++, c[n,1]=Subscript[u,n];
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For[k=2, k<=n, k++,
c[n,k]=Expand[1/n*Sum[(j+1)*Subscript[u,j+1]*c[n-1-j,k-1],
{j,0,n-k}]]];
A[n]=Take[der,n].Table[c[n,k], {k,1,n}]];
Table[A[n], {n,0,M}]]




