
Copyright © 2013 Tech Science Press CMES, vol.92, no.5, pp.423-475, 2013

Applications of the MLPG Method in Engineering &
Sciences: A Review

J. Sladek1, P. Stanak1, Z-D. Han2, V. Sladek1, S.N. Atluri2

Abstract: A review is presented for analysis of problems in engineering & the
sciences, with the use of the meshless local Petrov-Galerkin (MLPG) method. The
success of the meshless methods lie in the local nature, as well as higher order
continuity, of the trial function approximations, high adaptivity and a low cost to
prepare input data for numerical analyses, since the creation of a finite element
mesh is not required. There is a broad variety of meshless methods available to-
day; however the focus is placed on the MLPG method, in this paper. The MLPG
method is a fundamental base for the derivation of many meshless formulations,
since the trial and test functions can be chosen from different functional spaces. In
the last decade, a broad community of researchers and scientists contributed to the
development and implementation of the MLPG method in a wide range of scientific
disciplines.
This paper first presents the basics and principles of the MLPG method, the mesh-
less local approximation techniques for trial and test functions, applications to elas-
ticity and elastodynamics, plasticity, fracture and crack analysis, heat transfer and
fluid flow, coupled problems involving multiphase materials, and techniques for
increasing the accuracy and computational effectiveness. Various applications to
2-D planar problems, axisymmetric problems, plates and shells or 3-D problems
are included.
An increased number of published papers in literature in the recent years can be
considered as a measure of the growing research activity in the general scope of the
MLPG method, and thus, several trends and ideas for future research interest are
also outlined.
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1 Introduction

Computer modeling is often viewed as a means of supporting a broad diversity
of science and technology areas. Since the development of advanced computers,
computational scientists have applied their knowledge as a new branch of science,
complementing the experiment and the traditional theory. Numerical models af-
ter successful validation, enable advanced design, optimization and control of new
products and processes. There are various numerical modeling techniques available
these days, among which the finite element method (FEM) is the most popular and
widely used, among engineers and scientists. Even though the method is well es-
tablished, robust and with enormous influence over the past decades, it still suffers
from several drawbacks. FEM requires the creation of a geometric mesh consist-
ing of finite elements discretizing the solution domain. In general it is desired that
the mesh is as ideal as possible and well-structured, since distorted geometry may
have a negative impact on the solution accuracy. Thus a human-labor intensive
process of constructing high quality meshes is required. Other problems of finite
element mesh may also appear, for example element locking in modeling of thin-
walled structures, costly remeshing or element distortion during large deformation
analyses. In cases of crack propagation analysis, the crack growth usually does not
coincide with the element boundaries and remeshing techniques must be applied to
tackle this problem.

In order to reduce the labor of creating the finite element mesh and reduce the com-
putational cost various mesh reduction techniques were researched and developed.
Among them the boundary element method (BEM) received the attention of many
researchers [Brebbia et al. (1984); Manolis and Beskos (1988); Balas, Sladek and
Sladek (1989); Banerjee (1994); Dominguez (1993); Wrobel and Aliabadi (2002)].
The BEM requires the construction of a mesh only on the boundary of the solution
domain, thus allowing for a significant reduction in the time consuming mesh gen-
eration. The conventional BEM is accurate for many engineering problems, how-
ever it requires the availability of fundamental solutions or the Green’s functions
to the governing partial differential equations (PDE). For the problems including
coupled problems with complex constitutive equations or continuously nonhomo-
geneous material properties, it is extremely difficult or even impossible to obtain
appropriate fundamental solutions unless some field variables are introduced into
the solution domain [Okada, Rajiyah, Atluri(1988); Okada, Rajiyah, Atluri (1989)].
Therefore, the application of the BEM is restricted to a relatively small class of en-
gineering problems, where fundamental solutions are available.

In order to overcome the drawbacks of the mesh-based methods meshless methods
have been developed for solving PDEs in engineering and the sciences. Focusing
only on nodes or points instead of elements used in conventional FEM or BEM,
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meshless approaches have certain advantages. The computational model is respre-
sented simply by a set of nodes scattered in the solution domain and on the bound-
ary. There is no connection between the nodes as in case of elements or any restric-
tion on their mutual position. The connectivity between nodes may be prescribed
during the computation process, thus reducing human labor related to creation of
the FE mesh. The problem of remeshing may be simply diminished by adding or
removing the nodes as needed, even during the computation and by redefining the
connectivity only in locations where the nodes were added. Higher order continuity
of physical fields in the solution domain can be preserved, which for example leads
to globally continuous stress fields, thus simplifying the post-processing.

The principal feature of the meshless methods is the use of appropriate approxima-
tion schemes that can approximate the data specified on the randomly located nodes
without use of predefined mesh. Depending mainly on the type of approximation
scheme various meshless methods can be specified, starting with smoothed par-
ticle hydrodynamics (SPH) [Gingold and Monaghan (1977); Monaghan (1988)],
that is considered as an initial idea of meshless modeling. Since the introduc-
tion of the diffuse element method [Nayroles, Touzot and Villon (1992)] many
other meshless methods originated including element-free Galerkin (EFG) method
[Belytschko, Lu and Gu (1994)], reproducing kernel particle methods (RKPM)
[Liu, Jun and Zhang (1995)], meshless method using radial basis functions (RBFs)
[Kansa (1990); Wedland (1999); Chen (2000)] or partition of unity finite element
method (PUFEM) [Babuska and Melenk (1997)]. Several review articles were pub-
lished that track the application of these methods [Belytschko et al. (1996); Liu et
al. (1996); Li and Liu (2002); Nguyen et al. (2008)]. In these above mentioned
methods the mesh is not required for the interpolation of the trial and test func-
tions; however the use of shadow elements is often inevitable for the integration in
the global weak-form based on the Galerkin approach. Therefore, these methods
can not be considered as truly meshless.

Need for a truly meshless method lead to development of meshless local Petrov-
Galerkin method (MLPG) [Atluri and Zhu (1998a)] and at the same time also local
boundary integral equation (LBIE) method [Zhu, Zhang and Atluri (1998); Atluri
et al. (2000)]. In both these methods no finite elements are required, neither for
interpolation of trial and test functions for the solution variables, nor for the inte-
gration of the symmetric or unsymmetric local weak-form of governing equations.
All integrals can be easily evaluated over regularly shaped, overlapping domains of
arbitrary shape (in general, circles for 2-D problems and spheres for 3-D problems)
and their respective boundaries. In each domain only one nodal point is located,
thus local sense of the approach is kept. The LBIE method can be considered
simply as a special case of the MLPG approach [Atluri, Cho and Kim (1999)].
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Unlike in the conventional Galerkin method where the trial and the test functions
are chosen from the same space, according the Petrov-Galerkin principle the trial
and the test functions are chosen from different functional spaces. The nodal trial
function may correspond to any one of moving least-squares (MLS) [Lancaster and
Salkauskas (1981)], partition of unity (PU), Shepard function, or RBF types of in-
terpolations [Kansa (1990); Atluri and Shen (2002a)]; and the test function may be
totally different, and may correspond to any one of MLS, PU, Shepard function,
RBF, a Heaviside step function, a Dirac delta function, the Gaussian weight func-
tion of MLS, a special form of the fundamental solution to the differential equation,
or any other convenient function, in the support domain of the test function. Atluri
and Shen (2002b) have derived six MLPG formulations depending on various test
functions applied and marked them MLPG1 – MLPG6. Tab. 1 shows characteristic
features of each formulation. MLPG5 formulation using Heaviside unit step func-
tion prooved to be promising, fast and robust method as it doesn’t involve either
domain or singular integrals for generation of stiffness matrix in linear elasicity
problems [Atluri and Shen (2002ab); Atluri (2004)]. MLPG5 become very popular
and a significant number of scientists is using it in their research.

Table 1: Meshless local Petrov-Galerkin methods as characterized by Atluri and
Shen (2002b)

Type of the method Test function utilized Type of the integral in the weak form
MLPG1 MLS weight function domain integral
MLPG2 Dirac delta function none
MLPG3 Discrete least-squares domain integral
MLPG4 Fundamental solution singular boundary integral
MLPG5 Heaviside unit step function regular boundary integral
MLPG6 same as the trial function domain integral

Different size of supports as well as shapes of trial and test functions are pos-
sible, which makes MLPG method very flexible. The MLPG method, based on
a local formulation, can include all the other meshless methods based on global
formulation, as special cases [Atluri (2004)]. Various methods have been devel-
oped based on the MLPG approach, including the primal MLPG method [Atluri
and Zhu (1998)], Local BIE [Zhu, Zhang and Atluri (1998); Atluri, Cho and Kim
(1999)] already introduced above; and also the finite volume method [Atluri and
Shen (2002a)], the BIE [Atluri, Han and Shen (2003)], the mixed finite volume
method [Atluri, Han and Rajendran (2004)], the mixed collocation method [Atluri,
Liu and Han (2006a)], the mixed finite difference method [Atluri, Liu and Han
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(2006b)], the Galerkin equivalent of the MLPG method [ Han & Atluri(2011)], and
several others as summarized in [Atluri (2004)].

This review paper attempts to focus primary on the developments of the MLPG
metod in various fields of engineering and scientific problems. The paper is orga-
nized as follows: Section 2 briefly describes the MLPG weak-form approach and
introduces the concept of the MLS meshless interpolation of scattered node data.
Section 3 gives detailed review of MLPG application to mechanics of solids. The
section is divided to four subsections and describes in detail elasticity and plasticity
problems, applications to plates and shells, solutions of the coupled multiphysics
problems and fracture analysis problems, respectively. In Section 4 the problems
of heat conduction and fluid flow are presented in detail. Advanced numerical
techniques for increasing the performance of the MLPG are introduced in Section
5. Finally, applications to some special problems of engineering and sciences are
presented and several future research perspectives are suggested in Section 6.

2 MLPG local weak form approach

In order to illustrate the principles of solving problems described by PDEs using
the MLPG method, the solution of potential problem described by the Poisson’s
equation is presented as in [Atluri and Shen (2002b)].

Many of the so-called meshless methods, such as the EFG method, are based on
the global weak form over the entire problem domain Ω. In the MLPG, however,
a local weak form over a local subdomain Ωs, which is located entirely inside the
global domain Ω is used, as shown in Fig. 1. This is the most distinguishing feature
of the MLPG. It is noted that the local sub-domain Ωs can be of an arbitrary shape.

Let us now consider the linear Poisson’s equation given in form

∇
2u(x) = p(x) , x ∈Ω (1)

where u is the unknown potential field , p represents a given source function and
Ω is the problem domain with outer boundary ∂Ω = Γ = Γu∪Γq, where boundary
conditions are specified as

u = ũ on Γu

∂u
∂n

= q = q̃ on Γq (2)

where ũ and q̃ are the prescribed potential and normal flux prescribed on the bound-
ary Γu and Γq, respectively, and n is the unit outward normal to the boundary Γ.
Several symmetric and unsymetric weak formulations are available as shown in
[Atluri and Shen (2002b)] and also monograph by Atluri (2004). The local weak
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Figure 1: Local boundaries for weak formulation, the domain Ωx for MLS ap-
proximation of the trial function, and support area of weight function around node
xi.

form (LWF) of Eq. (1) is obtained by integrating all terms over the local subdomain
Ωs . Applying Gauss divergence theorem to the LWF one obtains∫

LS

qw∗dΓ+
∫

Γsu

qw∗dΓ+
∫

Γsq

q̃w∗dΓ−
∫

Ωs

(
u,iw∗,i + pw∗

)
dΩ−α

∫
Γu

(u− ũ)w∗dΓ = 0

(3)

where w∗ is the test function, α is the penalty parameter used to impose essntial
boundary conditions, Ls is the part of the local boundary where no boundary condi-
tions are prescribed, Γsu and Γsq are parts of local boundary with prescribed essen-
tial and natural boundary conditions. In general, Γs = Γsu∪Γsq and ∂Ωs = Ls∪Γs.
For a subdomain located entirely inside the global domain Ω, there is no inter-
section between ∂Ωsand Γ, thus Ls = ∂Ωs and the integrals over Γsu and Γsq are
vanishing. It is posible further simplify Eq. (3) by choosing a test function w∗ such
that it vanishes over Ls, which is, usually, a circle (for an internal node) in a 2-D
problem, or the circular arc (for a node on the global boundary Γ) [Atluri and Zhu
(1998)]. If the Heaviside unit step function is used as the test function

w∗(x) =
{

1 at x ∈ (Ωs∪∂Ωs)
0 at x /∈ (Ωs∪∂Ωs)

(4)

in the local weak form (3), we obtain well known form MLPG5 [Atluri and Shen
(2002b)] . Finally, applying test function (4) into LWF (3) gives local integral
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equation∫
LS

qdΓ+
∫

Γsu

qdΓ+
∫

Γsq

q̃dΓ−
∫

Ωs

pdΩ−α

∫
Γu

(u− ũ)dΓ = 0 (5)

Note that the local weak form in Eq. (3) doesn’t depend on the size and shape of
Ωs, therefore simple regular shapes can be chosen to ease the implementation of
the method.

At this point suitable approximation scheme must be chosen to approximate a trial
function over an arbitrary solution domain using only values at finite number of
nodal points located inside the domain and on its boundary.

2.1 MLS approximation scheme

Moving least squares (MLS) approximation is widely used and considered superior
for various problems [Atluri, Kim and Cho (1999); Belytschko et al. (1996); Han
and Atluri (2003); Atluri (2004)]. In the following, the method is briefly introduced
to illustrate its basic concept and applicability for meshless formulations.

Let us consider a sub-domain Ωx of the problem domainΩ in the neighbourhood of
a point x for the definition of the MLS approximation of the trial function around x
(Fig. 1). To approximate the distribution of the trial function u in Ωx over a number
of randomly located nodes {xa} , a= 1,2, ...n , the MLS approximant uh(x)of u(x)
is defined by

uh(x) = pT (x)ã(x) , ∀x ∈Ωx (6)

where pT (x) =
[
p1(x), p2(x), ..., pm(x)

]
is a complete monomial basis of order m,

and ã(x) =
[
a1(x), a2(x), ..., am(x)

]T is composed of vectors

a j(x) =
[
a j

1(x), a j
2(x), a j

3(x)
]T

which are functions of the spatial co-ordinates x =

[x1, x2]
T for a 2-D problem.

The coefficient vector ã(x) is determined by minimizing a weighted discrete L2 -
norm defined as

J(x) =
n

∑
a=1

va(x)
[
pT (xa)ã(x)− ûa]2 , (7)

where va(x) > 0 is the weight function associated with the node a and the square
power is considered in the sense of scalar product. Recall that n is the number of
nodes in Ωx for which the weight function va(x)> 0 and ûa are the fictitious nodal
values, but not the nodal values of the unknown trial function uh(x) , in general. The
stationarity of J in Eq. (7) with respect to ã(x) leads to

A(x)ã(x)−B(x)û = 0 , (8)
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where

û =
[
û1, û2, ..., ûn]T

A(x) =
n

∑
a=1

va(x)p(xa)pT (xa) ,

B(x) =
[
v1(x)p(x1), v2(x)p(x2), ....,vn(x)p(xn)

]
. (9)

The solution of eq. (8) for ã(x)and the subsequent substitution into Eq. (6) lead to
the following expression

uh(x) = ΦΦΦ
T (x) · û =

n

∑
a=1

φ
a(x)ûa (10)

where

ΦΦΦ
T (x) = pT (x)A−1(x)B(x) . (11)

In eq. (10), φ a(x) is usually referred to as the shape function of the MLS approxi-
mation corresponding to the nodal point xa . From Eqs. (9) and (11), it can be seen
that φ a(x) = 0 when va(x) = 0. In practical applications, va(x) is often chosen in
such a way that it is non-zero over the support of the nodal point xi . The support
of the nodal point xa is usually taken to be a circle of the radius ri centred at xa

(see Fig. 1). The radius ri is an important parameter of the MLS approximation
because it determines the range of the interaction (coupling) between the degrees
of freedom defined at considered nodes.

Wide range of MLS weight function is available, depending on the level of conti-
nuity required by the analysed problem. A 4th-order spline-type weight function
[Atluri (2004)] is defined as

va(x) =

{
1−6

(da

ra

)2
+8
(da

ra

)3−3
(da

ra

)4
0≤ da ≤ ra

0 da ≥ ra , (12)

where da = ‖x−xa‖ and ra is the radius of the circular support domain. With Eq.
(12), the C1-continuity of the weight function is ensured over the entire domain.
The continuity of the MLS approximation is given by the minimum between the
continuity of the basis functions and that of the weight function. The size of the
support ra should be large enough to cover a sufficient number of nodes in the
domain of definition to ensure the regularity of the matrix A. The value of n is
determined by the number of nodes lying in the support domain with radiusra .
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The partial derivatives of the MLS shape functions are obtained as [Atluri (2004)]

φ
a
,k =

m

∑
j=1

[
p j
,k(A

−1B) ja + p j(A−1B,k +A−1
,k B) ja

]
, (13)

wherein A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect

to xk , which is given by A−1
,k =−A−1A,kA−1 .

The directional derivatives of u(x) are approximated in terms of the same nodal
values as

u,k(x) =
n

∑
a=1

φ
a
,k(x)û

a . (14)

The MLS approximation of primary field value (10) and its derivative (14) can
be also applied to enforce boundary conditions through collocation approach on
appropriate boundary nodes, thus the use of penalty method or Lagrange multipliers
can be avoided.

Finally eqs. (10) and (14) are inserted into LIE (5) in order to approximate the
unknown potential field and its flux and obtain discretized local integral equation
in form∫

LS

n
∑

a=1
φ a
,i ni(x)ûadΓ+

∫
Γsu

n
∑

a=1
φ a
,i ni(x)ûadΓ+

∫
Γsq

q̃dΓ−
∫

Ωs
pdΩ

−α
∫

Γu

(
n
∑

a=1
φ a(x)ûa− ũ

)
dΓ = 0

(15)

Note that after performing evaluation of all integrals and solution of obtained sys-
tem of algebraic equations the fictituous values of potential at nodal points are ob-
tained, therefore Eq. (10) must be applied to recover the actual values of potential
u.

3 Solids

Mechanics of solids covers a broad range of interesting topics. Significant number
of researchers conducting their research in the field of numerical methods is focused
especially to the analysis of physical behavior of various solids. In the following
subsections the application of the MLPG method to several key topics of solid
mechanics is presented.

3.1 Elasticity and plasticity

Since the introduction of MLPG to the scientific community, the method has been
applied to analyze broad range of engineering problems in mechanics. Ability of
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the MLPG to tackle linear and also nonlinear problems was soon recognized [Atluri
and Zhu (1998a), (1998b)]. The analysis of beams by MLPG with use of various
applied test functions and trial function approximations has been presented after-
wards [Atluri, Cho and Kim (1999); Raju and Phillips (2003)]. The researchers
also applied MLPG for elastostatics [Atluri and Zhu (2000)], elastodynamics [Ba-
tra and Ching (2002)] or solutions of non-hyper-singular traction and displacement
boundary integral equations [Han and Atluri (2003)]. Recent advances in the devel-
opment of the MLPG method are described in the monograph by Atluri and Sladek
(2009).

Han and Atluri (2004a) introduced MLPG approach for solution of 3-D elastostatic
and 3-D elastodynamical problems [Han and Atluri (2004b)] that reported the abil-
ity of MLPG to solve high-speed shock wave propagation problems and proved
certain advantages over FEM. Problems of singularities and material discontinuities
for 3-D elasticity were investigated by Li at al., (2003). They combined MLPG5
formulation together with MLPG2 (with Dirac’s delta function as test function)
to treat definition of boundary conditions and material discontinuitities. Meshless
analysis of solids considering anisotropic elasticity was studied by Sladek, Sladek
and Atluri, (2004a). Gu and Liu (2001a) employed MLPG for free and forced
vibration analysis of various solids. Application of the MLPG for strain-gradient
theory problems was presented in [Tang, Shen and Atluri (2003a)]. Micromechan-
ical analysis of textile-reinforced composites based on the representative volume
element (RVE) of the fiber and matrix was presented in [Dang and Sankar (2008)].
Advantages of the MLPG in discretization of the RVE with material discontinuity
over FEM are presented therein.

New procedure of analyzing transient elastodynamic problems was proposed by
Soares, Sladek and Sladek (2009). The authors combined Newmark algorithm with
the time-domain Green’s matrices of the elastodynamic problem in order to gener-
ate a recursive relationship for evaluation of displacements and velocities at each
time-step. Non-linear dynamic analyses were also considered [Soares, Sladek and
Sladek (2010)].

Meshless approaches proved to be successful in modeling of functionally graded
materials (FGM). These materials can be characterized as multiphase composites
with phase volume fractions gradually varying in space, in a pre-determined profile
[Suresh and Mortensen (1998)]. Difference between FGM material and standard
laminate composite can be observed in Fig. 2, where no distinct interface between
FGM constituents is observed. Since no finite elements are required in meshless
methods, continuous variation of material properties of FGMs can be prescribed to
nodal points instead of elements as in FEM, thus higher accuracy can be expected.
Standard BEM formulations cannot be used for analysis as fundamental solutions
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for general functionally graded materials are not available in 2-D and 3-D elasticity.
Elastodynamic behavior of continuously non-homogeneous solids was presented
by Sladek, Sladek and Zhang (2003a). Laplace transform technique has been ap-
plied to treat time dependency of unknown quantities. Sladek et al. (2006a) suc-
cessfully modeled linear viscoelastic solids with continuously non-homogeneous
material properties. 3-D elastic analysis of anisotropic functionally graded solids
by MLPG was presented in [Sladek, Sladek and Solek (2009)].

Figure 2: Difference between two-phase functionally graded material (a) and two-
layer composite

Influence of transient thermal load on elastic response of solids was analyzed by
Sladek et al. (2009a). Coupled thermoelastic theories were also considered [Sladek
et al. (2006b); Hosseini, Sladek and Sladek (2011)]. Hosseini et al. (2011) com-
bined the MLPG method with Monte-Carlo simulation to treat stochastic distribu-
tion of FGM material properties in thermoelastic transient analysis of thick hollow
cylinder. Akbari et al. (2010) performed meshless analysis based on the MLPG
approach for thermoelastic wave propagation in 2-D FGM domain.

For certain range of engineering problems the linear elasticity is no longer appli-
cable, thus engineers and scientists must also turn to various non-linear models
including also plasticity effects. Han, Rajendran and Atluri (2005) have presented
the MLPG approach for solution of non-linear problems including large deforma-
tions and rotations. Non-linear elasto-plastic analysis of 3-D solids was recently
studied in [Razaei Mojdehi, Darvizeh and Basti (2012)]. Von Mises yield criterion
was used as a yield function to determine whether the material has yielded. Hybrid
MLPG method was developed by Heaney, Augarde and Deeks (2010) for analysis
of elasto-plastic problems in geomechanics. Their formulation permits also for the
inclusion of the infinite boundaries.
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Because of the total elimination of the mesh, MLPG method prooved to be a
promising method for solving high-speed contact, impact and penetration prob-
lems with severe material-distortion [Han et al. (2006)]. MLPG solution approach
for impact response and ballistic penetration of ceramic materials was developed
by Liu et al., (2006). Fig. 3 shows final deformation and fragmentation of ceramic
plate after impact of a projectile.

Figure 3: Ballistic impact penetration of ceramic plate analyzed by MLPG method
[Liu et al. (2006)].

Many references can be identified for application of the LBIE/MLPG4 approach
with test functions defined as modified fundamental solution to analyzed differ-
ential equation. Implementation of LBIE approach for linear elasticity [Atluri
et al. (2000)], non-linear problems [Zhou, Zhang and Atluri (1999)] elasticity
with non-homogeneous material properties [Sladek, Sladek and Atluri (2000)],
elastodynamics [Sladek, Sladek and Van Keer (2003)], thermoelasticity [Sladek,
Sladek and Atluri (2001)], frequency domain elastic problems [Sellountos and
Polyzos (2003)], 2-D elastostatics [Sellountos, Vavourakis and Polyzos (2005)],
non-singular elasticity [Vavourakis and Polyzos (2007)] or incompressible and nearly
incompressible elastostatic problems [Vavourakis and Polyzos (2008)] can be ob-
served. Sellountos, Sequeira and Polyzos (2009) compared elastodynamic LBIE
formulations with RBF approximation for both transient and steady-state Fourier
transform domains. Problems involving 3-D axially symmetric FGM solids were
treated in [Sladek, Sladek and Zhang (2008a)]. Recently, new and simple LBIE
scheme using RBFs has been introduced for linear elasticity in [Sellountos, Poly-
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zos and Atluri (2012)]. In their approach stresses are evaluated without derivatives
of local RBFs via LBIE valid for stresses.

3.2 Plates and shells

Plate and shell structures are widely used in broad range of applications includ-
ing aerospace, automotive, maritime or civil structures. There are several theories
for description of behavior of plates and shells depending mainly on the thickness
of the structure. Classical thin plate Kirchhoff-Love theory assumes certain non-
physical simplifications related mainly to the omission of the shear deformation
and rotary inertia, which become pronounced for increased plate thickness. The
effects of rotary inertia and shear deformation are taken into account in the first or-
der shear deformation theory (FSDT) also known as Reissner-Mindlin plate theory
[Mindlin (1951)] and some higher order theories [Reddy (1997)].

Meshless methods are widely applied for the plate and shell analyses. Several re-
view articles can be found focusing mainly on the element-free Galerkin method
and reproducing kernel particle method [Liu et al. (1996); Li and Liu (2002);
Liew, Zhao and Ferreira (2011)]. Sladek, Sladek and Mang (2002) used LBIE
formulations for analysis of thin Kirchhoff plate. They overcome the high-order
derivatives by decomposing the original 4th order governing partial differential
equation (PDE) into two PDEs of the second order. The strong formulation for
solution of general thin plate bending problems has been developed by Sladek,
Sladek and Sator (2013) utilizing the combination of the decomposition technique
with meshless approximations for field variables. Long and Atluri (2002) first used
MLPG method with MLS approximation for solving the thin plate bending prob-
lem described by a standard Kirchhoff formulation of plate equation. Gu and Liu
(2001b) applied MLPG formulation for static and free vibration analysis of thin
plates. Application of Reissner-Mindlin theory for MLPG analysis of moderately
thick plates under dynamic load was performed in [Sladek et al. (2007a); Sladek et
al. (2007b)]. Original 3-D thick plate problem is reduced to a 2-D problem. This
approach was subsequently developed also for viscoelastic plates [Sladek, Sladek
and Zhang (2008b)] and plates under thermal load [Sladek et al. (2008a)]. Sladek
et al., (2010a) used the MLPG method to solve laminated plates described by the
Reissner-Mindlin theory. They obtained expressions for bending moment and shear
force by integration through the laminated plate thickness for considered constitu-
tive equations in each lamina. Geometric nonlinear MLPG analysis was presented
by Baltacioglu and Civalek (2010) for anisotropic composite plates resting on the
nonlinear two-parameter foundation. Von Karman equation has been applied for
derivation of governing equation of bending of thick rectangular plate. Wen and
Aliabadi (2012) applied local integral equation method for FGM plates described
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by Reissner theory. In their approach they used analytical approach for closed form
evaluation of domain and boundary integrals.

Higher order plate theory has been also successfully applied for thermoelastic and
dynamic analysis of FGM plates [Quian and Batra (2004); Qian, Batra and Chen
(2004a), (2004b)]. 3-D analysis of thick plates using MLPG method has been per-
formed by Soric et al. (2004). They have used two sets of nodes on upper and
lower plate surfaces with linear interpolation over the thickness for the in-plane
displacements and hierarchical quadratic interpolation for the transversal displace-
ments in order to eliminate the thickness locking phenomenon. Kinematics of 3-D
solid instead of the conventional plate assumptions has been also used by Li et
al. (2005) for the locking-free analysis of thick plates. Mixed MLPG approach
was applied by Jarak and Soric (2008) for 3-D analysis of rectangular plates. Use
of mixed approach is leading to independent MLS approximations of strains and
nodal displacements that also helps to eliminate shear locking effect.

A concept of 3-D solid was also adopted by Jarak, Soric and Hoster (2007) for
the analysis of shell structures. Soric and Jarak (2010) used mixed meshless ap-
proach for the analysis of shell-like structures. In their approach certain strain and
stress components are approximated independently, however after some manipula-
tions the global system of equations yields only nodal displacements as unknowns.
Reissner-Mindlin theory for shell analysis by the MLPG and LBIE is presented in
[Sladek et al. (2006c); (2007c)]. Sladek et al. (2008b) considered orthotropic and
FGM shells under transient load assuming Laplace transform technique for time
domain solution. Thermal analysis of shear deformable shallow shells with FGM
properties is conducted in [Sladek et al. (2008c)]. Meshless modeling of laminated
shells by a higher-order theory and multiquadric RBFs was presented in [Ferreira,
Roque and Jorge (2006)].

3.3 Coupled multiphysics problems

Some advanced materials combine superior mechanical properties, as well as in-
corporate inherent capability to sense and adapt their static and dynamic response.
Governing equations for these materials involve several physical fields that are mu-
tually coupled, thus change in one field induces some change also in another ones.
Typical example is a piezoelectric material. In piezoelectric materials the elastic
and electric fields are coupled as

σi j (x, t) =Ci jklεkl (x, t)− eki jEk (x, t) (16)

Di (x, t) = eiklεkl (x, t)+hikEk (x, t) (17)

where Di is a vector of electric displacements, Ci jkl , eki j and hik represent elastic,
piezoelectric and dielectric material constants, respectively. The electric field vec-
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tor Ek is defined as a negative gradient of electric potential. It is clearly observed
that piezoelectric constant eki j couples both fields. Governing equations for gen-
eral piezoelectric body under quasi-electrostatic assumption include the equation
of motion for elastic displacements ui and the first Maxwell’s equation of electro-
statics for the vector of electric displacements Di.

Finite element method dominated the numerical analysis of piezoelectric materi-
als [Benjeddou (2000)], however with the start of the new millenium the meshless
methods were also applied. Ohs and Aluru (2001) used meshless point colloca-
tion method for analysis of microelectromechanical systems (MEMS), Wu, Chiu
and Wang (2008a) applied RKPM for piezoelectric multilayered plates. MLPG
was applied for plane piezoelectricity [Sladek et al. (2006d)] and also to thermo-
piezoelectricity [Sladek et al. (2007d)] where pyroelectric coefficients has been
also considered. The MLS scheme is adopted for approximation of all physical
fields. Transient dynamic problems of 3-D axisymmetric piezoelectric solids with
continuously non-homogeneous material properties were analyzed by Sladek et al.,
(2008d). Advantage of axial symmetry in reduction of original 3-D problem into
2-D one was also utilized in analysis of piezoelectric FGM circular plates under
thermal and mechanical load [Sladek et al. (2013)]. Obtained results showed
that gradation of thermal expansion coefficients has larger influence on resulting
mechanical deflection and electric potential than the gradation of mechanical and
electrical parameters. Piezoelectric materials are often used in plate-like shapes,
therefore analysis of piezoelectric plates is increasingly important. Several solu-
tion approaches for piezoelectric plates and shells can be found in review article
by Wu, Chiu and Wang (2008b). Piezoelectric plates are usually poled in thickness
(vertical) direction, thus 3-D analysis should be expected. Sladek et al. (2010b)
used special approach to reduce this 3-D problem to 2-D. They obtained plate
equations for piezoelectric material from variational equation of electroelasticity by
means of appropriate expansion of the mechanical displacements and electric po-
tentials in powers of thickness coordinate. Computational cost is increased because
more unknowns must be computed for each node. Laminated plates with piezoelec-
tric layers based on the Reissner-Mindlin theory were also analyzed [Sladek et al.
(2012a)]. Proposed technique however assumes small thickness of the piezoelectric
layer which is sufficient if the layer acts as a sensor or actuator.

Magneto-electro-elasticity is also a coupled field phenomenon closely related to
piezoelectricity. As the name implies, the magnetic field is also considered to be
mutually coupled together with the electrical and elastic ones. Constitutive equa-
tions for magneto-electro-elastic material can be considered as an extension of eqs.
(16), (17) and are specified as

σi j (x, t) =Ci jklεkl (x, t)− eki jEk (x, t)−dki jHk (x, t) (18)
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Di (x, t) = eiklεkl (x, t)+hikEk (x, t)+αikHk (x, t) (19)

Bi (x, t) = diklεkl (x, t)+αkiEk (x, t)+ γikHk (x, t) (20)

where Bi is magnetic induction vector, symbols dikl , αik and γik represent piezomag-
netic constants, magnetoelectric constants and magnetic permeabilities, respec-
tively. Note that piezoelectric constant eikl , piezomagnetic dikl and magnetoelectric
constant αik provide mutual coupling.

Such materials belong to group of intelligent or smart materials. Smart materi-
als are characterized by ability of converting energy form one form into another
by response to an external impulse, thus for the magneto-electro-elastic material it
is conversion of mechanical energy to electric and magnetic energy and vice-versa.
Transient analysis of magneto-electro-elastic 2-D problems with non-homogeneous
material properties was given by Sladek et al. (2008e). MLPG was also applied for
the solution of problem including layered composites made of piezoelectric and
piezomagnetic layers [Sladek et al. (2012b)]. In certain sensory applications, it is
desirable to have high values of the magnetoelectric coefficient αik. As shown in
[Sladek et al. (2012c)] the total magnetoelectric coefficient of the structure com-
posed of piezoelectric and piezomagnetic layers can be enhanced if optimal gra-
dation of material properties is prescribed. Electromagnetic wave propagation can
be somehow linked to magneto-electro-elasticity as the set of Maxwell equations
is applied in both cases. Soares (2009a) presented MLPG modeling of electromag-
netic wave propagation problems.

There are several other coupled field problems where MLPG method was suc-
cessfully applied. Analysis of porous media includes coupling of solid skeleton
displacements and interstitial fluid pore pressures. The solution of pore-dynamic
problems by the MLPG method was modeled [Soares (2010)] considering elas-
tic and elasto-plastic materials. Parallelization of the MLPG was performed by
Bergamashi, Martinez and Pini (2009) for axisymmetric poroelastic problems. The
parallel code was based on a concurrent construction of the stiffness matrix by
the processors and on a parallel preconditioned iterative method for the solution
of the resulting linear system, that is offering high parallel efficiency. Soares et
al. (2012) solved poroelastic problems by modified MLPG formulations. They
used Taylor series expansions of unknown physical fields and solved related in-
tegrals analytically [Sladek and Sladek (2010)] what they termed as a “modified
methodology”. Iterative procedure is proposed by Soares (2011) for uncoupling of
coupled equations of poroelasticity leading to smaller and better conditioned sys-
tem of equations. Linear and nonlinear models can be analysed because nonlinear
relations can be carried out along the iterative steps, adding no extra computational
cost to the analysis. Similar iterative approach can be applied also for coupling of
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two interacting physical models. An iterative time-domain algorithm for acoustic-
elastodynamic coupled analysis was applied in [Soares (2009b)] considering mesh-
less local Petrov-Galerkin formulations. In such approach fluid and solid system
is analysed independently (as an uncoupled model) and successive renewal of the
variables at the common interfaces is performed, until convergence is achieved.

3.4 Fracture analysis

Assessment of structural parts for their ability to function well under presence of
cracks in the material is important for preserving their safe operation. Numerous
techniques were proposed for fracture analysis of cracked structures [Anderson
(2005)] among which numerical computer analysis is currently extensively used
FEM, BEM and meshless methods. With the introduction of quarter-point singular
elements the FEM dominated the numerical fracture analysis. However modeling
of crack growth in FEM is cumbersome, as costly remeshing is required in order
to match the geometry of the moving crack. Significant mesh refinement is also re-
quired at the crack tip. Extended finite element method (X-FEM) was developed on
the basis of finite element approximation enriched by special solutions based on the
concept of partition of unity [Babuska and Melenk (1997)] to alleviate the afore-
mentioned problems [Yazid, Abdelkader and Abdelmadjid (2009)]. The alternating
methods were developed to introduce more accurate fracture solutions into the finite
element solutions without remeshing. Various fracture solutions were introduced
for the alternating approach, including the analytical solutions [Wang, Brust, Atluri
(1997abc)] and the symmetric Galerkin BEM (SGBEM) [Nikshikov, Park, Atluri
(2001); Han, Atluri(2002,2003a); Dong, Atluri (2012)]. A comprehensive compar-
ison between the X-FEM and the SGBEM-FEM alternating method was reported
by [Dong, Atluri(2013bc)].

Meshless methods owing to their inherent nature can easily simulate crack propaga-
tion [Li and Liu (2004); Hagihara et al. (2007)]. Kim and Atluri (2000) introduced
into the MLPG the concept of primary and secondary nodes. Secondary nodes can
be easily added and/or moved without change of primary nodes in places where
improved accuracy of the solution is required, as in the case of crack growth.

Ching and Batra (2001) applied the MLPG method for determination of crack tip
fields in linear elastostatics. They enriched the polynomial basis functions with
appropriate functions to describe singular deformation fields near a crack tip and
used the diffraction criterion to determine J-integrals and stress intensity factors.
The authors then analyzed transient deformations in the crack and notch tip of linear
elastic plate [Batra and Ching (2002)]. They observed that the variation of shear
stress with distance r ahead of the notch tip exhibits a boundary layer effect, while
outside of this region stresses exhibit the 1

/√
r singularity. Applications of MLPG
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methods for dynamic fracture problems can be found in works by Gao, Liu and
Liu (2006) and Liu, Long and Li (2006). Long, Liu and Li (2008) analyzed elasto-
plastic fracture problems in 2-D solids with use of MLPG5 formulations. Cracks
occurring on the interface of two dissimilar materials are analyzed by Sladek et al.
(2009b). Ideas of structural health monitoring were considered in meshless analysis
of vibrations of cracked beams by Andreaus, Batra and Porfiri (2005). Cracks were
modeled as torsion springs with use of the Lagrange multipliers.

The advantages of meshless methods in modeling of the continuously non-homoge-
neous materials mentioned in previous sections can be also exploited for the frac-
ture analysis. Liu, Long and Li (2008) calculated stress intensity factors for the
mixed-mode problems in the isotropic FGM material. Crack analysis of 3-D ax-
isymmetric FGM bodies was presented in [Sladek et al., (2005a)] and the ap-
proaches for the meshless analysis of cracked continuously nonhomogeneous bod-
ies were summarized by Sladek, Sladek and Zhang (2008c)].

In recent years the researchers have paid increased attention to fracture analy-
sis of coupled problems of piezoelectricity and magnetoelectroelasticity. Cou-
pling of elastic, electric and/or magnetic fields leads to necessity to investigate not
only stress intensity factors (SIF) but also electrical displacement intensity factors
(EDIF) and/or magnetic induction intensity factors (MIIF) at the crack tip vicin-
ity. Intensity factors for cracks in piezoelectric and magnetoelectroelastic solids
are mostly evaluated from the asymptotic expansion of the physical fields in the
cracktip vicinity [Garcia-Sanchez et al. (2007)], and for 2-D problem are given as

KII

KI

KD

KB

=

√
π

2r

[
Re(Π)−1

]
u1
u3
ψ

µ

 (21)

where KII,KI,KD,KB are mode II and mode I SIFs, EDIF and MIIF, respectively,
Π is matrix determined by material properties [Garcia-Sanchez et al. (2007)] and
u1,u3,ψ,µ are displacements in directions x1,x3, electric and magnetic potentials,
respectively.

Cracked continuously nonhomogeneous piezoelectric solids were analyzed in [Sladek
et al. (2007e)]. Interface crack problems in the composite made of two dissimilar
piezoelectric materials were considered by Sladek et al. (2012d). In certain cases it
is impossible to obtain or measure quantities inside the cracked specimen, only on
its outer boundary. Inverse fracture problems are applied in these situations. Sladek
et al. (2009c) applied MLPG for the inverse problem of fracture in piezoelectric
solids. In such a case no electric boundary conditions are prescribed on the crack
surfaces, however boundary conditions on the outer edges are overspecified as both
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potentials and surface charge densities are prescribed there.

Specification of proper boundary conditions on the crack edges in piezoelectric and
piezomagnetic materials is cumbersome, because one has to model the medium in-
side the crack. Depending on the ratio of material properties of the medium inside
the crack and cracked solid, two extreme cases can be considered, namely perme-
able and impermeable boundary conditions. In reality, boundary conditions on the
crack faces are in between these two extreme cases, thus special techniques must
be adopted to determine the actual situation in the crack. Sladek et al. (2010c)
developed MLPG approach combined with iterative solution algorithm to consider
energetically consistent boundary conditions on the crack faces of piezoelectric
solid. Similar approach was applied also to magnetoelectroelastic solids [Sladek et
al. (2012d)]. Sladek et al. (2011) applied meshless analysis to compute fracture pa-
rameters in continuously nonhomogeneous magnetoelectroelastic solids with use of
interaction integral method to replace the asymptotic expansion technique. Further
works in the field of magnetoelectroelastic solids include MLPG fracture analyses
[Sladek et al. (2008f); Sladek and Sladek (2011)], analyses considering thermal
load [Feng, Han and Li (2009); Sladek et al. (2010d)] or coupling of MLPG to-
gether with FEM for axisymmetric problems [Li, Feng and Xu (2009)].

4 Fluid flow and heat conduction

Shortcomings of the mesh-based methods mostly related to time-consuming gen-
eration of good quality mesh (mainly in 3-D problems), prevention of element dis-
tortions, cumbersome adaptive calculations or problems of moving boundaries can
be observed also in the analyses of fluid flow and heat transfer problems. These
difficulties can be overcome easily by meshless methods. A number of meshless
methods have been applied by many researchers to numerically compute problems
of heat transfer and fluid flow. RKPM method was applied to viscous compressible
flow [Gunther et al. (2000)] and to 3-D heat transfer [Cheng and Liew (2012)],
SPH was used for conduction modeling [Cleary and Monaghan (1999)] or solitary
water wave mechanics [Lo and Shao (2002)], EFG for steady state heat conduction
[Singh, Sandeep and Prakash (2002)], finite point method [Onate et al. (1996)],
meshfree weak-strong (MWS) form method [Liu, Wu and Ding (2004)] for incom-
pressible fluid flow and virtual boundary collocation boundary method (VCBM)
for heat conduction in FGMs by Wang, Quin and Kang (2006) to mention just a
few. Applications of the MLPG approach to heat transfer and fluid flow problems
follows below.
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4.1 Heat conduction

Problems associated with heat conduction arise in many kinds of engineering ap-
plications and thus have attracted much research attention. Analytical solutions
are hard to obtain for complex problems that is leading to the use of numerical
solutions.

First applications of MLPG approach for the heat transfer problem in anisotropic
media dates back to paper by Sladek, Sladek and Atluri (2004b). Even sooner the
LBIE concept was applied to thermoelasticity [Sladek, Sladek and Atluri (2001)]
and to transient heat conduction in FGMs [Sladek, Sladek and Zhang (2003b);
Sladek et al. (2003)]. Batra, Porfiri and Spinello (2004) proposed efficient treat-
ment of material discontinuity in MLPG formulations of axisymmetric transient
heat conduction. Solutions for heat conduction in axisymmetric FGM bodies can
be found in [Sladek et al. (2007f)] and for 3-D FGM solids in [Sladek et al.
(2008g)]. MLPG collocation method have been developed for 2-D heat conduc-
tion problems [Wu, Shen and Tao (2007); Wu and Tao (2008)] and compared to
commercial mesh-based code FLUENT based on the finite volume method (FVM)
with excellent results in favor of the MLPG.

A standard inverse heat conduction problem is characterized by aim to compute un-
known temperature and heat flux at an unreachable boundary form scattered tem-
perature measurements at reachable interior or boundary of the domain. Sladek,
Sladek and Hon (2006) applied the MLPG for inverse heat conduction problems
in 2-D and 3-D axisymmetric bodies. It is well known that inverse problems are
in general unstable, thus singular value decomposition technique has been applied
by the authors to solve the ill-conditioned linear system of algebraic equations ob-
tained from the LIEs after application of MLS approximation. The unstabilities are
often caused by a noise in temperature measurements. Ling and Atluri (2006) have
analyzed the propagation of the solution-stabilities and the propagation of com-
puted temperature errors for the inverse heat conduction problem. The MLPG so-
lutions to inverse heat conduction problems in 3-D anisotropic FGM solids [Sladek
et al. (2012e)] and inverse problems of determining the unknown heat conduction
coefficients were also recently presented [Sladek et al. (2009d)].

Improvement of computational efficiency of the MLPG in heat conduction prob-
lems also attracted many researchers. Precise time step integration method has
been proposed by Li, Chen and Kou (2011) for the transient heat conduction anal-
ysis. They used the three-node triangular FEM shape functions as test functions to
reduce the order of integrands involved in domain integrals. Three types of LIEs for
transient heat conduction in FGM and anisotropic media are presented in [Sladek
et al. (2005b)]. The MLS approximation has been proposed in [Mirzaei and De-
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hghan (2011)] for performing the approximations in both time and space domains,
thus avoiding the use of the time difference discretization or Laplace transform
method to treat the time variable. The technique was applied to continuously non-
homogeneous functionally graded materials. Pini, Mazzia and Sartoretto (2008)
showed that the accurate solutions of 3-D potential problems can be obtained if
suitable cubature rules are identified, sparse data structures are efficiently stored
and certain strategies of avoiding unnecessary integral evaluations are used. So
called Direct MLPG (DMLPG) has been developed by Mazzia, Pini and Sartoretto
(2012) to alleviate some “tricky“ numerical integration of non-polynomial factors
in weak forms. DMLPG solutions for 2-D and 3-D potential problems have been
presented. A moving Kriging interpolation scheme [Lam, Wang and Hua (2004)]
was employed with MLPG method for solving the partial differential equations that
govern the heat flow in 2-D and 3-D spaces by Chen and Liew (2011). For the eval-
uation of the integrals in 3-D problems a local subdomain of polyhedral shape was
considered instead of spherical one. Baradaran and Mahmoodarabadi (2010) have
applied the genetic algorithm to determine the optimum parameters for radius of
local subdomains and radius of support domains on the accuracy and efficiency of
the MLPG solution for the 3-D heat conduction problem.

Figure 4: Transient temperature distributions 15 sec. after the welding process
starts as calculated by the MLPG with adaptive nodal density. [Shibahara and Atluri
(2011)].
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The MLPG method was also applied to several interesting problems of heat con-
duction including heating of composite FGM strips by the Gaussian laser beam
[Ching and Chen (2006)], radiative heat transfer [Liu (2006)] or coupled radiative
and conductive heat transfer [Liu, Tan and Li (2006); Liu and Tan (2007)]. Shiba-
hara and Atluri (2011) have recently developed the MLPG approach for the analysis
of transient heat conduction due to a moving heat source that occurs in the welding
process of metals. Adaptive approach has been proposed (see Fig. 4) involving the
addition and elimination of nodal points which has lead to higher accuracy of the
solution.

4.2 Fluid flow problems

The mesh-free or meshless methods are an extensive research area of computa-
tional fluid dynamics (CFD) problems; and steeply growing mainly in the recent
few years. Two major fields of interest are analyzed, namely convection-diffusion
problems and incompressible flow problems. In these problems certain numerical
oscillations are present that are produced by the convection term, which produces
some artificial diffusion.

First application of the MLPG method for the convection-diffusion problems has
been developed by Lin and Atluri (2000) and followed by the application for the in-
compressible flow described by Navier-Stokes equation [Lin and Atluri (2001)]. In
their pioneering works Lin and Atluri applied modified mixed formulation based
on the primitive variable methodology. The small perturbation term was added
to continuity equation in order to satisfy Babuška-Brezzi condition, which pro-
vides sufficient conditions for a stable mixed formulation. Two types of upwind
schemes were developed to overcome existing numerical oscillations. The first up-
wind scheme (US1) is based on the shift of the maximum value of the test function
opposite to the streamline direction, but the position of test function and the inte-
gration domain is not changed, while second upwind scheme (US2) shifts the local
subdomain opposite to the streamline direction as shown in Fig. 5

Arefmanesh, Najafi and Abdi (2005) proposed so called “meshless control volume
method” based on the MLPG formulation. They presented solutions for 1-D and
2-D transient heat conduction and 1-D and 2-D advection-diffusion problems. The
MLPG solution of the Navier-Stokes equation for the incompressible fluid flow in
terms of stream function and vorticity formulation was given in [Wu, Liu and Gu
(2005)]. Arefmanesh, Najafi and Abdi (2008) considered the energy equations to-
gether with the stream-vorticity formulation to compute non-isothermal fluid flow
problem and the unity was applied as weight function in their approach. Wu et al.
(2010) proposed the streamline upwind Petrov-Galerkin (SUPG) scheme [Brooks
and Hughes (1982)] to overcome the influence of false diffusion in the incompress-
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Figure 5: Shift of the local subdomain in the upwind scheme(US2) developed by
Lin and Atluri (2000)

ible fluid flow analysis. The SUPG method only adds a stability term in the upwind
direction, thus it is convenient to implement to the MLPG solution approach. Com-
parison of the convection-diffusion problem solutions stabilized by SUPG method
and upwind scheme US2 developed by Lin and Atluri (2000) together with non-
stabilized MLPG solution given in [Wu et al. (2012)] proved SUPG approach
is robust also at high Peclet numbers, while the MLPG without any stabilization
gives somewhat poor results. Mohammadi (2008) presented new type of upwind
scheme to stabilize the convection operator in the streamline direction. In this up-
winding technique, instead of moving subdomains, the weight function is shifted
in the direction of flow. Application to incompressible fluid flow described by
stream-vorticity formulation was developed using the Heaviside step function and
quadratic spline as the test functions, and RBF interpolation was employed for the
creation of a shape function.

In the abovementioned studies [Wu, Liu and Gu (2005); Arefmanesh, Najafi and
Abdi (2008); Mohammadi (2008)] the vorticity-stream function method was ap-
plied which can satisfy the incompressible mass condition automatically. However,
this method has certain limitations as it cannot be directly extended to solve 3-D
and most of 2-D complex geometries. That’s why primitive variable method is often
considered as an alternative [Wu et al. (2010), (2012)]. Najafi, Arefmanesh and En-
jilela (2012) presented MLPG solution to the incompressible fluid flow in terms of
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primary variables using the characteristic-based split (CBS) scheme for discretiza-
tion. The investigators were able to obtain stable results for higher Reynolds num-
bers fluid flow applications compared to results by Lin and Atluri (2001), however
still considering the laminar flow region.

The MLPG method was applied for the laminar incompressible fluid flow problems
in 2-D domains characterized by non-steady fluid motion around flexible bound-
aries with harmonic, undulatory or contraction-expansion movements [Avila and
Atluri (2009)]. A fully implicit pressure correction approach, which requires at
each time step an iterative process to solve the equations which govern the flow
field, and the equations that model the corrections of pressure and velocities, has
been used. Avila, Han and Atluri (2011) developed a novel MLPG-Finite-Volume
mixed method for analyzing steady state Stokesian flows, that is based on the in-
dependent meshless interpolations of the deviatoric velocity strain tensor, the volu-
metric velocity strain tensor, the velocity vector and the pressure. Loukopoulos and
Bourantas (2012) presented MLPG6 approach for the solution of the Navier-Stokes
and energy equations. Note that in the MLPG6 method, the test function is chosen
to be the same as the trial function, thus leading to Galerkin formulation.

Water wave problems are special class of fluid flow problems as free surface of
the fluid must be considered. Mesh-based solutions require intense remeshing as
elements can frequently become over-distorted during the simulation of water wave
evolutions. Ma (2005) first introduced MLPG method for 2-D nonlinear water
wave problems. In his formulation a time marching scheme is applied that at each
time step solves the boundary value problem for the pressure by the MLPG, and
the velocity and nodal positions are updated by numerical integration. Ma and
Zhou (2009) have used the MLPG method based on the Rankine source solution
(MLPG_R) for the analysis of 2-D breaking waves. For the indentification of the
free surface particles a new technique called Mixed Particle Number Density and
Auxiliary Function Method (MPAM) has been suggested. MLPG_R technique has
been further developed also for the 3-D breaking waves [Zhou and Ma (2010)].

Nanofluid flow in a complex geometry cavity has been studied by Arefmanesh,
Najafi and Nikfar (2010). The governing equations for the nanofluid flow have
been determined in terms of the stream-vorticity formulation and a parametric study
has been conducted to observe the nanofluid convective heat transfer performance.
The formulation has been then extended to the analysis of the natural convection
of Al2O3–water nanofluid in a cavity with wavy side walls given by Nikfar and
Mahmoodi (2012).

The scientific study of the flow of conducting fluids in the presence of transverse
magnetic fields has attracted attention owing to its applications in such diversified
fields as astrophysics, geology, power generation, flow-metry or design of ther-
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monuclear reactors. The unsteady magnetohydrodynamic (MHD) flow through
pipe has been analyzed using the MLPG by Dehghan and Mirzaei (2009). Maxwell
equations have been considered together with fluid flow equations to determine the
induced magnetic field accross the various sections of the pipes with various wall
conductivities

5 Advanced numerical techniques for the improvements of the MLPG

Since its introduction to scientific community, MLPG method has proved to be
an efficient and accurate numerical technique for solution of broad range of prob-
lems. However, there are still great possibilities for improvements of the MLPG
formulations in order to increase the robustness, accuracy and stability, improve
convergence rate or decrease the computational time. Several numerical techniques
related to these issues are presented next.

Kim and Atluri (2000) were among the first ones, who analysed and controlled the
errors of the MLPG method together with MLS approximation. They introduced
the concept of primary and secondary nodes that can be applied at any location
where the solution quality needs to be improved, leading to the adaptive calculation
technique.

It is a well-known fact that the accuracy of the numerical approximation decreases
with increased order of derivative to be approximated. Atluri, Han and Atluri
(2004) proposed MLPG “Mixed” approach for solving elasto-static problems in
which both strains and displacements are interpolated separately through MLS
scheme. Strain-displacement relationships are then enforced directly by colloca-
tion at nodal points. The proposed approach leads to a meshless finite-volume
method and the expensive process of differentiation of the MLS interpolation for
displacements is eliminated. Similar mixed scheme has been proposed for elastic-
ity problems with independent interpolations of nodal displacements and stresses
[Atluri, Liu and Han (2006a)]. Atluri, Liu and Han (2006b) developed the mixed
MLPG approach combined with the finite difference method (FDM). FDM was
used for the evaluation of derivatives of stresses using the scattered nodal values
in the local domain of definition. Comparison of various primal and mixed MLPG
approaches for the 4th order ordinary differential equation can be found in [Atluri
and Shen (2005)]. The mixed MLPG methods avoid the need for a direct evaluation
of high order derivatives of the primary variables in the local weak forms, and thus
reduce the continuity requirement on the trial function.

Various meshless interpolation schemes can be applied for the approximation of
trial functions in the MLPG method and each of them can have significant influence
on the quality of obtained results. A critical assessment of the MLPG and LBIE by
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Atluri, Kim and Cho (1999) investigated characteristics of MLS method, Shepard
function and partition of unity, and pointed out their advantages and disadvantages.
MLS method have been used probably most extensively within the MLPG. The
MLS scheme is strongly influenced by the support radius of weight function ap-
plied for the creation of the MLS shape function. Nie, Atluri and Zuo (2006) have
presented technique for the specification of the optimal value of the radius of the
support domain. Good insight to the behavior of various meshless approximation
techniques based on the RBFs can be found in the paper by Sladek, Sladek and
Zhang (2006). Meshless polynomial interpolations combined with multiquadric
RBFs are compared in [Sladek, Sladek and Tanaka 2005] for potential problems in
non-homogeneous media. For higher accuracy of polynomial-based interpolations
higher-order polynomials as interpolants are generally used. Numerical interpola-
tion by high-order polynomials and treatment of ill-posed problems that may arise
has been presented by Liu and Atluri (2009). Numerical stability, accuracy and cost
effectivity of MLS – central approximation node (MLS-CAN) approximation has
been investigated by Sladek, Sladek and Zhang (2008d) for the problems involving
non-homogeneous elastic solids.

Sellountos, Vavourakis and Polyzos (2005) have proposed meshless method based
on the LBIE approach called singular/hypersingular MLPG (LBIE) to avoid the
derivatives of the MLS shape functions and thus treat displacement and tractions as
independent variables in elastostatics. The representation of the displacement field
at the internal points is accomplished with the aid of the displacement local bound-
ary integral equation, while for the boundary nodes both the displacement and the
corresponding traction local boundary integral equations are employed. Numerical
integration of singularities appearing in LBIEs has been investigated in [Sladek et
al. (2000)]. The authors recomend to recast the singular integrands into smooth
functions, which can be integrated by standard quadratures of the numerical inte-
gration with sufficient accuracy. Vavourakis, Sellountos and Polyzos (2006) have
provided detailed comparison study of five different MLPG (LBIE) formulations
and concluded that derivatives of shape functions decrease solution accuracy and
uniform distribution of nodes provides best results. The effect of nodal distribution
on the accuracy of MLPG formulations was also presented in [Augarde and Deeks
(2005)]. Han and Atluri (2007) have used the regularization technique to avoid
the hypersingularities in the BIEs by the systematic decomposition of the kernel
functions of BIEs.

Prolonged numerical evaluation of integrals in LIEs is often considered as a dis-
advantage of meshless methods. Use of analytical integration instead of Gauss-
Legendre or other numerical quadrature schemes allows for significant reduction of
CPU times needed for the creation of the system matrix. Sladek and Sladek (2010)
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have reduced the emount of evaluations of the shape functions and their derivatives
to nodal points instead of the integration points by introducing the analytical inte-
grations in LIEs implemented by meshless approximations for field variables. Fur-
thermore, they have developed a modified differentiation scheme for approximation
of higher order derivatives of displacements appearing in the discretized formula-
tions. Applications of this approach for heat conduction problem have been also
proposed [Sladek, Sladek and Zhang (2010), (2011)]. Soares, Sladek and Sladek
(2012) have extended the idea of analytical integrations to the solution of elastody-
namic problems by the MLPG. So called „modified methodology“ has been pro-
posed involving analytical evaluation of integrals and Taylor series expansion of
unknown field variables. Such MLPG formulation has lead to better computational
efficiency, especially for large scale problems. Very recently, Wen and Aliabadi
(2013) have derived exact forms of integrals in the meshless LBIE method for elas-
tostatic problems. A completed set of closed forms of the local boundary integrals
with RBFs has been obtained. Significant reduction of computational time has been
reported.

Certain computational time savings can be obtained if proper solver is applied for
the solution of the system of LIEs. Yuan, Chen and Liu (2007) have proposed new
system solver for the direct solution method of quasi-unsymmetric sparse matrix
(QUSM) which is arising in the MLPG. They utilized the fact that QUSM is un-
symmetric in its numerical values, but nearly symmetric in its nonzero distribution
of upper and lower triangular portions. In order to efficiently treat a large system of
non-linear algebraic equations (NAE), Liu and Atluri (2008) have developed a new
iterative time integration method. Fictituous time integration has been considered
in order to derive a natural system of explicit ordinary differential equations from
the given system of NAEs.

A detailed convergence study of the MLPG1 method (MLS as a weight function)
was performed for the diffusion equation by Sterk and Trobec (2008) to optimize
the number of support nodes, quadrature domain size and other parameters. Abbas-
bandy and Shirzadi (2011) have presented a new treatment of non-classical bound-
ary conditions for the MLPG solution of diffusion equation based on the finite
differences and the MLS approximations. Ferronato, Mazzia and Pini (2010) have
suggested a new technique for the improvement of solution accuracy of finite ele-
ment mesh. In their approach a limited number of moving MLPG nodes is added
over a coarse mesh in order to increase the accuracy in specific regions of the solu-
tion domain without remeshing or mesh refinement.

With massive use of multiprocessor computers also the parallel computation tech-
niques become more available for the researchers. Trobec, Sterk and Robic (2009)
have presented approach for parallelization of the MLPG1 and analyzed computa-
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tional complexity of the MLPG1 with respect to FEM and finite difference method
(FDM). They have showed that MLPG1 remains competitive for larger scale prob-
lems and significant speed up can be obtained by parallelisation as shown in Fig.
6.

Figure 6: Measured speed up of the parallel MLPG1 with optimal parameters as
a function of the number of processors p. [Trobec et al., 2009].

6 Special applications & further research perspectives

Except of the traditional problems of solid and fluid mechanics, the MLPG method
is capable to efficiently analyze also some special problems that appeared mostly
in the recent past. These new problems can also point out to several new directions
in the development of MLPG family of methods.

Elimination of the domain mesh in meshless method enables efficient simulation
of nonlinear and multiscale problems. Shen and Atluri (2004a) applied the MLPG
method for the multiscale simulations of the interactions between atomistic and
continuum regions. They introduced several alternate time-dependent interfacial
conditions by decomposing the displacement of atoms into long and short-wave
components. Tangent stiffness formulation for the MLPG multiscale analysis has
been given in [Shen and Atluri (2005)]. More information on the multiscale sim-
ulation, nanotechnology and micro-mechanics of materials can be found in review
paper by Shen and Atluri (2004b) and monograph by Atluri (2004). The MLPG
approach for the higher order gradient theories has been introduced in [Tang, Shen
and Atluri (2003b)]. The two-dimensional Toupin-Mindlin strain gradient theory
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applied by the researchers is from a mathematical point of view a generalization
of the Poisson-Kirchhoff plate theories, involving, in addition to the fourth-order
derivatives of the displacements, also a second-order derivative. Treatment of dis-
continuity between two and different material regions in meshless methods be-
comes also important field of study [Matsuda and Noguchi (2006); Wang, Sun and
Li (2009)]. Nematic liquid crystals are the key component of the modern liquid
crystal displays (LCD). The behavior of nematic liquid crystals involving topolog-
ical defects can be described by the Q-tensor based model. The MLPG solution
of Q-tensor equations by Pecher, Elston and Raynes (2006) have shown a high de-
gree of continuity and high accuracy of the meshfree approach used. The MLPG
solution of magnetic diffusion in non-magnetic conductors has been developed by
Johnson and Owen (2007). Another possible new research direction of the MLPG
method has been pointed out by Dehghan and Mirzaei (2008) who have performed
the MLPG solution of the generalized 2-D non-linear Schrodinger equation.

In the theory of self-organization of biological systems one can observe the coupled
pair of nonlinear reaction-diffusion equations responsible for appearance of diffu-
sion driven instabilities. Such cases may also appear in the mixing of two chemical
agents under specific conditions. Abbasbandy et al. (2011) applied MLPG method
for solution of these equations and Shirzadi, Sladek and Sladek (2013) proposed
LBIE solution with the test function in the form of modified fundamental solution
of the Laplace operator.

Interesting application of the MLPG method in cloth simulation has been presented
by Yuan et al. (2008). The micro-mechanical material model of woven fabric
composite material has been proposed in [Wen and Alliabadi (2010)]. The material
models considered in the paper are based on a repeated unit cell approach and
two smooth fibre modes. Elastic moduli of such composite have been determined
numerically.

Meshless methods are well suited also for the shape optimization, since nodal
points can be added or eliminated easily. Structural topology-optimization based on
the MLPG mixed collocation method has been applied in the paper by Li and Atluri
(2008a,b). Problem of compliance minimization of elastic structures has been pur-
sued. Design sensitivity analysis (DSA) and topology optimization by meshless
natural neighbour Petrov-Galerkin (NNPG) method has been successfully used by
Wang et al. (2008). The NNPG is considered as a special case of generalized
MLPG method.

Regarding the analyzed problems presented in this section and previous sections as
well, the possible future research directions of the MLPG method can be outlined
as:
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• improvment of the unified and somewhat universal theory of the approxima-
tion properties and stability of the MLPG for various meshless interpolation
schemes to reduce CPU

• crack propagation and evaluation of time dependent fracture parameters with
use of adaptive calculations

• large –scale stabilized fluid flow problems in 3-D domains

• analysis of new types of materials such as carbon nanotubes or quasicrystals
[Shechtman et al., 1984]

• biomechanical analysis – investigation of mechanical behavior of living tis-
sue

• analysis of problems outside of the field of classical mechanics, such as quan-
tum mechanics, chemistry or biology

• coupling of the MLPG with other numerical methods such as FEM, BEM in
order to exploit the benefits of each formulation

• increase of the computational effectiveness through development of new sys-
tem solvers or parallelization of computation for multiprocessor and cloud
systems

• possible development of the MLPG code suitable for commercial use

The research in the field of meshless methods still advances and new computa-
tional methods are being developed. Several truly meshless methods have recently
received increased attention such as point interpolation method (PIM) [Liu and
Gu (2001)], finite cloud method [Aluru and Li (2001)], method of fundamental
solutions (MFS) [Marin (2008); Tsai (2011)] or meshless Trefftz based methods
[Liu (2008a),(2008b); Liu, Yeih and Atluri (2009); Dong, Atluri (2012abd,2013a);
Bishay, Atluri(2012,2013); Bishay, Sladek, Sladek, Atluri(2012)]. However, MLPG
still remains competitive and has a good perspective in the future.

7 Conclusion

In this paper we have tried to give an overview of the principles and application of
the meshless local Petrov-Galerkin (MLPG) method. Properties and advantages of
the MLPG are discussed and compared to standard mesh-based methods. MLPG
is a truly meshless method thus it involves not only a meshless interpolation of
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trial functions but also a meshless integration of the local weak form and as a con-
sequence no background mesh or elements are required. The MLPG approach
provides the flexibility in choosing the trial and test functions as well as the size
and shape of local subdomains. Therefore, MLPG is characterized as more flexi-
ble and capable to handle in easier way the problems from which the conventional
mesh-based methods suffer.

Extensive literature review related to broad range of topics is presented. Signif-
icant research papers from the very recent past and others published since 1998
when the MLPG has been first introduced [Atluri and Zhu (1998a)] are included.
Broad range of research areas in the field of computational mechanics are included
and advantages of MLPG in each field are emphasized. Absence of the finite el-
ement mesh has prooved to be convenient for the analysis of continuously non-
homogeneous solids. Benefits of higher order continuity are conveniently utilized
when solving fracture mechanics problems, since a smoother stress distribution
around the crack tip can be obtained. Flexibility and simple implementation are
suitable for various coupled problems including piezoelectricity or magnetoelec-
troelasticity. Elimintation of the shear locking in the analysis of thin waled struc-
tures, plates and shells gives good promise for the future applications. Handling of
large deformations is simplified since the distortion of nodal points positions have
a smaller influence on accuracy compared to finite elements. Adaptive calcula-
tion and shape optimization is also carried out more naturally. After elimination of
artificial numerical oscillations the advantages of meshless concept can be fully ex-
ploited also in case of fluid flow problems. Application of sophisticated techniques
for analytical integration of integrals in the weak form offers fast computation of
large-scale problems.

Increased number of journals, researchers and scholars give good promise for the
future that the MLPG will receive adequate attention also among the community of
university students and design engineers such as strongly established finite element
method.
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