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Construction of Operator-Orthogonal Wavelet-Based
Elements for Adaptive Analysis of Thin Plate Bending

Problems

Y.M. Wang1,2, Q. Wu1

Abstract: A new kind of operator-orthogonal wavelet-based element is constructed
based on the lifting scheme for adaptive analysis of thin plate bending problems.
The operators of rectangular and skew thin plate bending problems and the suffi-
cient condition for the operator-orthogonality of multilevel stiffness matrix are de-
rived in the multiresolution finite element space. A new type of operator-orthogonal
wavelets for thin plate bending problems is custom designed with high vanishing
moments to be orthogonal with the scaling functions with respect to the operators
of the problems, which ensures the independent solution of the problems in each
scale. An adaptive operator-orthogonal wavelet method is proposed to approxi-
mate the exact solution of engineering problems by directly adding wavelets into
the local domains until the relative error estimation satisfies the accuracy require-
ment. Numerical examples demonstrate that the operator-orthogonal method is an
accurate and efficient method for bending analysis of thin plate.

Keywords: operator-orthogonal wavelet; thin plate; multiresolution analysis; lift-
ing scheme.

1 Introduction

The wavelets have received an increased attention in the last decades in various
engineering disciplines, including signal processing, processing of images, pattern
recognition, diagnosing disturbances, mathematical modeling, etc. The generality
of their applicability stands directly on the attractive properties, such as period-
icity, orthogonality and linear independency [Chui, (1992); Daubechies (1992)].
Current wavelet-based numerical algorithms can be roughly classified as wavelet
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Galerkin [Amaratunga and Williams (1994); Mehraeen and Chen (2006)], wavelet
finite element [Chen and Yang (2004); Xiang (2007, 2012)], and wavelet collo-
cation methods [Bertoluzza and Naldi, (1996); Vasilyev (1995), Libre (2008)],
etc. The wavelet implementation in the finite element analysis, named as wavelet
finite element method, has attracted many researchers in the field of numerical
computation [Dahlke (1997); Cohen (2003); Amaratunga (1994); Dahmen (2001);
Sandeep (2011); Ho (2011); Xiang (2009); Lepik (2005)] and structural analy-
sis[Chen (2004, 2006, 2010); Diaz (2009); He (2012); Mitra (2005); Li, Dong and
Chen (2010,2012); Li and Zhang (2009); Yang (2013)]. Generally, the wavelet
finite elements are constructed by adopting the shape functions to be expressed
in a form of a product of wavelet functions and wavelet coefficients [Ko, Kurdila
and Pilant (1995); Mallat (1999)]. A distinguished feature of wavelet finite ele-
ment method is that it combines the versatility of the conventional finite element
method with the accuracy of wavelet functions approximation and various in basis
functions for engineering problems. Diaz constructed Daubechies wavelet finite el-
ements for beam and plate structures and obtained higher computational accuracy
than traditional finite element analysis [Diaz, Martin and Vampa (2009)]. Zhou
presented a modified Daubechies wavelet approximation for deflections of beams
and square thin plates with both homogeneous and non-homogeneous boundary
conditions based on the modified approximations and Hamilton’s principle [Zhou
and Zhou (2008)]. Pahlavan proposed spectral formulation of finite element meth-
ods using Daubechies compactly-supported wavelets for elastic wave propagation
simulation [Pahlavan (2013)].

Since Daubechies wavelet has no explicit expressions, traditional numerical inte-
grals such as Gauss integral cannot provide desirable precision for the computation
of stiffness matrix [Chen (2004)]. There are various wavelet basis functions with
explicit expressions adopted for the construction of wavelet-based elements, such
as B-spline wavelets, triangle Hermite wavelet, etc. Xiang presented wavelet-based
beam and plate elements using B-spline wavelets on the interval for the bending
and vibration analysis of typical structures such as beam, thin plate, etc [Xiang and
Liang (2011); Xiang, Chen and He (2008); Xiang, Chen and He (2007)]. Han pro-
posed a wavelet-based stochastic finite element method for the bending analysis of
thin plates, which combines the wavelet-based finite element method with Monte
Carlo method [Han, Ren and Huang (2007)]. Zupan proposed spatial triangle Her-
mite wavelet beam element formulation to solve spatial bending and torsion struc-
ture [Zupan, Zupan and Saje (2009)]. Because traditional wavelets are constructed
by the dilation and translation of mother wavelet functions, the characteristics of
wavelet bases are unable to be changed before solving engineering problems, which
results in strong coupling and slow convergence rate in the multiscale computation
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of structural analysis.

The emergence of second generation wavelet theory [Sweldens (1997); Sweldens
(1996)] has overcome the shortcomings of traditional wavelet-based method. Sec-
ond generation wavelet is no longer dependent on the telescopic and translation
transform, but prediction coefficients and update coefficients to construct wavelet
bases flexibly with desired properties, such as compact support, symmetry, high-
order vanishing moments. Thus, it provides a great deal of flexibility, and it can be
designed according to the properties of the given problem. The second-generation
wavelet has gradually being applied to the field of structural analysis. Vasilyev et
al. established second-generation wavelet collocation method to solve elliptic and
evolution equations over general geometries, such as high-dimensional, spherical
domains, etc [Vasilyev (2000, 2003, 2005)]. Wang developed a multiscale lift-
ing algorithm of second-generation wavelet-based finite element method for solv-
ing partial differential equations employing the selection of appropriate prediction
and update coefficients according to the analyzed problems [Wang, Chen and He
(2012)]. Behera presented the multilevel adaptive second generation wavelet collo-
cation method for solving non-divergent barotropic vorticity equation over spheri-
cal geodesic grid [Behera (2013)].

In recent years, the generalization of the lifting scheme provides a simple way
of constructing biorthogonal wavelet basis functions according to the solution re-
quirements, such as high vanishing moments, high approximation order, symme-
try, compact support, etc [Davis (1999); Shui (2004)]. The customization of sec-
ond generation wavelets in the multiresolution finite element space over general
geometries with the objective of developing scale-decoupling algorithms is dis-
cussed by Amaratunga, Castrillon, He, etc [Amaratunga and Sudarshan (2006);
Castrillón-Candàs and Amaratunga (2003); Sudarshan (2006); He, Chen and Xi-
ang (2007)]. Amaratunga presented a framework for the construction of operator-
customized wavelets from general finite element interpolation functions, which
are scale-orthogonal to the scaling functions at each level with respect to an el-
liptic partial differential operator [Amaratunga and Sudarshan (2006)].Castrillon
used spatially adaptive lifting wavelets to represent integral operator defined on the
three-dimensional geometry, which leads to highly sparse stiffness matrix and less
computational time [Castrillón-Candàs and Amaratunga (2003)]. D’Heedene con-
structed decoupling lifting wavelets for arbitrary order Lagrange finite element ba-
sis functions on unstructured grid [D’Heedene, Amaratunga and Castrillón-Candás
(2005)]. Sudarshan et al. have described a multiresolution modelling with operator-
customized wavelets and demonstrated a combined approach for goal-oriented er-
ror estimation and adaptivity, where operator-customized wavelets can be con-
structed from general finite element interpolation functions based on lifting scheme



20 Copyright © 2013 Tech Science Press CMES, vol.93, no.1, pp.17-45, 2013

or Gram–Schmidt orthogonalization [Sudarshan (2006)]. He proposed a new wavelet
construction method by designing a suitable prediction operator and update op-
erator according to the requirements of structural analysis [He, Chen and Xiang
(2007)]. Quraishi developed a second generation wavelet-based finite element
method for solving elliptic PDEs on two dimensional triangulations using cus-
tomized operator dependent wavelets [Quraishi and Sandeep (2011)]. However, the
present wavelets are seldom constructed with user-defined properties especially for
multiscale computation of structural problems, such as the operator-orthogonality
corresponding to the inner products between scaling functions and wavelets [Wang,
Chen and He (2010)].

In this paper, a general construction method of operator-orthogonal wavelet-based
elements based on the lifting scheme is presented for adaptive analysis of bending
problems of thin plate. An outline of the paper is as follows. Section 2 intro-
duces the multiresolution finite element space. Section 3 discusses the construc-
tion of operator-orthogonal wavelet for thin plate analysis according to the oper-
ators of the thin plate bending problems. Section 4 presents adaptive scheme for
operator-orthogonal wavelet method based on the two-level error estimation. Sec-
tion 5 demonstrates the numerical performance of the adaptive operator-orthogonal
wavelet method and conclusions are drawn in Section 6.

2 Multiresolution finite element space

2.1 Multiresolution analysis

The second generation version of multiresolution analysis (MRA) is an impor-
tant property in the multilevel approximation of engineering problems. [Sweldens
(1997); Sweldens (1996)]. A multiresolution analysis R of L2 is a sequence of
closed subspaces R = {Vj ⊂ L2| j ∈ J ⊂ Z}, such that

1. Vj ⊂Vj+1,

2.
⋃

j∈J Vjis dense inL2,

3. for each j ∈ J, Vj has a Riesz basis given by scaling functions
{

φ j,k|k ∈ K( j)
}

,

where j is the level of resolution, J is an integer index set associated with resolu-
tion levels, K( j) is some index set associated with scaling functions of level j, Vj

denotes approximation spaces of level j. For each Vj, there exists a complement
of Vj in Vj+1, namely as Wj. Let the spaces Wj be spanned by wavelets, ψ j,m(x)
for every m ∈ M( j), M( j) = K( j + 1)\K( j), where M( j) is the difference set of
K( j+1) and K( j). Furthermore, let l ∈ K( j+1) be the index at level j+1.
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2.2 Hermite MRA

As stated in Reference [Bathe (1996)], it is possible to construct a valid multireso-
lution analysis of V provided the interpolating functions are complete and compat-
ible. Based on this premise, the scaling functions of multiresolution finite element
space Vj can be chosen as the finite element interpolating functions and the wavelets
are the detail interpolating polynomials in the wavelet space Wj. A multiresolution
decomposition of a finite element space at different levels of resolution is spatial
hierarchy:

Vj =Wj−1⊕Vj−1 =Wj−1⊕Wj−2⊕·· ·⊕W0⊕V0 (1)

Since the finite element spaces are nested, the relation between scaling function
φ j,k and wavelet ψ j,m at level j and j+1satisfies

φ j,k = ∑
l

h j,k,lφ j+1,l, (2)

ψ j,m = ∑
l

g j,m,lφ j+1,l, (3)

where h j,k,l and g j,m,l are referred to as low-pass and high-pass filters, respectively.
A multiresolution analysis allows the approximation of finite energy functions,
u(x) ∈ L2(R), by a sequence of spaces Vj. u j(x) can be decomposed into its pro-
jection on a coarse approximation space V0 along with the projections at multiple
levels of wavelet spaces

u j(x) = u j−1(x)+d j−1(x) = u0(x)+
j−1

∑
i=0

di(x) = ∑
l

u0,lφ0,l +
j−1

∑
i=0

∑
m

ri,mψi,m (4)

where u j(x) and d j(x) are the projections of the function u(x) in the space Vj and
Wj. u0,l and r j,m are the projection coefficients of u(x) in the space Vj and Wj

respectively. Eq.(4) means that the function u(x) can be approximated with the
projection u j(x) in Vj and the projection eventually captures all the details of the
initial function u(x) as scale j gets larger (i.e. j→ ∞), such as

lim
j→∞

∥∥u(x)−u j(x)
∥∥= 0 (5)

The larger the scale the lesser the approximating error, so the details will eventually
become arbitrarily small, such as

lim
j→∞

d j(x) = 0 (6)
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Figure 1: Refinement relation of bicubic Hermite functions
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Figure 2: Bicubic Hermite scaling function and wavelet (a) scaling function (b)
wavelet

Two-dimensional bicubic Hermite interpolation functions satisfy [Li and Yan (2002);
Chien and Shih (2009); Wang (2002)][
φ j,k

]
= G j,l

[
φ j+1,l

]
(7)

where[
φ j,k

]
=
[

φ
(0,0)

j,k
φ

(1,0)

j,k
φ

(0,1)

j,k
φ

(1,1)

j,k

]T
(8)

and the nodal degrees of freedom for φ
(0,0)

j,k
, φ

(1,0)

j,k
and φ

(1,1)

j,k
are the function value,

the first partial derivatives and the cross derivative. The coefficicent matrix G j,l
in Eq.(7) is determined by the nodal values of scaling functions on the two adja-
cent scale. Fig.1 shows the refinement relation of bicubic Hermite interpolation
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functions, where the black points denote the scaling functions, the hollow points
denote the wavelet functions, the central black points denote scaling functions on
the scale j and j+1. Fig.2 shows bicubic Hermite scaling functions and wavelets.

3 Operator-orthogonal wavelets for thin plate

3.1 The operators of thin plate

In this section, two kinds of operator-orthogonal wavelets are constructed by the
lifting scheme according to the operators of thin plate bending problems in the
multiresolution finite element space.

3.1.1 Rectangular thin plate

Fig.3 shows the solving domain ω of a rectangular thin plate, the side length lx and
ly, respectively.

Figure 3: Solving domain of rectangular thin plate

The physical equation of thin plate bending problems is

∂ 2Mx

∂x2 +2
∂ 2Mxy

∂x∂y
+

∂ 2My

∂x2 +q = 0 (9)

According to Kirchoff plate theory, the generalized function of potential energy for
a thin plate is

∏p =
1
2

∫∫
Ω

κκκ
TDDDκκκdxdy−

∫∫
Ω

wqdxdy (10)

where w is the displacement of the thin plate, q is uniform load, κκκ is generalized
strain,

κκκ =

{
−∂ 2w

∂x2 −
∂ 2w
∂y2 −2

∂ 2w
∂x∂y

}T

(11)
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DDD is the elastic matrix in the form

DDD = D0

 1 µ 0
µ 1 0
0 0 (1−µ)/2

 (12)

where D0 = Et3

12(1−µ2)
is the bending stiffness. µ is Poisson’s ratio, E is Young’s

modulus, and t is the thickness. Applying the principle of minimum of total po-
tential energy, δΠp = 0, we obtain multiscale system of equations for thin plate in
terms of Hermite scaling functions and wavelets at level j+1:

K j+1u j+1 = P j+1 (13)

where the stiffness matrix of thin plate on the scale j( j ≥ 0, j ∈ Z) can be denoted
as

K j+1 =

[
K j(φ j,k,φ j,k′) K j(φ j,k,ψ j,m)
K j(ψ j,m,φ j,k) K j(ψ j,m,ψ j,m′)

]
(14)

where the individual entries in K j+1 are given as

K j(φ j,k,φ j,k′) = a(φ j,k,φ j,k′) (nodal finite element matrix at level j), (15)

K j(φ j,k,ψ j,m) = a(φ j,k,ψ j,m) (interaction matrix at level j), (16)

K j(ψ j,m,φ j,k) = a(ψ j,m,φ j,k) = K j(φ j,k,ψ j,m), (17)

K j(ψ j,m,ψ j,m′) = a(ψ j,m,ψ j,m′) (detail matrix at level j). (18)

where the node set k′ ∈ K( j), m′ ∈M( j).

The stiffness matrix of thin plate in the multiresolution space is

K j(φ j,k1 ,φ j,k2) =D0

∫ ∫
Ωe

{
∂ 2φ j,k1

∂x2
∂ 2φ j,k2

∂x2 +
∂ 2φ j,k1

∂y2
∂ 2φ j,k2

∂y2

+2(1−µ)
∂ 2φ j,k1

∂x∂y
∂ 2φ j,k2

∂x∂y
+2µ

∂ 2φ j,k1

∂x2
∂ 2φ j,k2

∂y2

}
dxdy

(19)

The distributed forces P j+1 and lump forces P̂ j+1 on the scale j are

P j+1 =
∫∫

Ωe
q(x)φ j+1dxdy (20)

P̂ j+1 = ∑
j+1

Pj+1φ j+1 (21)
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The operator of thin plate bending problems can be derived as

a(ψ j,m,φ j,k) =D0

∫ ∫
Ωe

{
∂ 2ψ j,m

∂x2
∂ 2φ j,k

∂x2 +
∂ 2ψ j,m

∂y2
∂ 2φ j,k

∂y2

+2(1−µ)
∂ 2ψ j,m

∂x∂y
∂ 2φ j,k

∂x∂y
+2µ

∂ 2ψ j,m

∂x2
∂ 2φ j,k

∂y2

}
dxdy

(22)

It is much desirable that the multilevel stiffness matrix are operator-orthogonal,
which means that the details do not have any influence on the coarser solution and
the engineering problems can be solved on different scales independent of each
other. The sufficient condition for the operator-orthogonality of multilevel stiffness
matrix is to construct new wavelets orthogonal with respect to the operators of the
engineering problems in the multiresolution finite element space.

K j(ψ j,m,φ j,k) = a(ψ j,m,φ j,k) = 0 (23)

According to Eqs. (2) and (3), the scaling functions and wavelet at a certain level
j can be represented as a linear combination of scaling functions on the finer level
j + 1. Therefore, the operator-orthogonality in Eq. (23) at level j ensures that
the operator-orthogonality at random level j̃( j̃ ∈ J) be satisfied [Amaratunga and
Sudarshan (2006)]

a(ψ j,m,φ j,k) = H̃ j̃,̃ka(ψ j,m,φ j̃,̃k) = 0 (k̃ ∈ K( j̃)) (24)

a(ψ j,m,ψ j̃,m̃) = G̃ j̃,̃ka(ψ j,m,φ j̃,̃k) = 0 (m̃ ∈M( j̃)) (25)

where H̃ j̃,̃k and G̃ j̃,̃k are the low-pass and high-pass filter matrices, respectively.

3.1.2 Skew thin plate

Fig.4 shows the solving domain Ω of a skew thin plate, α denotes the skew angle
of thin plate.

The oblique coordinate system is constructed when the operator-orthogonal wavelet
method is used to solve skew thin plate bending problems. The relationship be-
tween the oblique coordinate system xoy and the Cartesian coordinate system x̂oŷ
has the form[

x
y

]
=

[
1 −1/ tanα

0 1/sinα

][
x̂
ŷ

]
(26)
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Figure 4: Solving domain Ω of skew thin plate

The generalized function of potential energy of skew thin plate in the Cartesian
coordinate system can be derived as

ΠΠΠp =
D0

2

∫∫
Ω

{(∂ 2w
∂ x̂2 +

∂ 2w
∂ ŷ2 )

2−2(1−µ)[
∂ 2w
∂ x̂2

∂ 2w
∂ ŷ2

− (
∂ 2w
∂ x̂∂ ŷ

)2]}dx̂dŷ−
∫∫
Ω

q(x̂, ŷ)wdx̂dŷ
(27)

According to the principle of minimum of total potential energy, δΠΠΠp = 0, the
multilevel system of equations for skew thin plate on the scale j+1 can be derived
as

K j+1u j+1 = P j+1 (28)

where the distributed forces P j+1 and lump forces P̃ j+1 on the scale j+1 are

P j+1 = sinα

∫ ∫
Ωe

q(x)φ j+1dxdy (29)

P̃ j+1 = sinα ∑
j+1

Pj+1φ j+1 (30)

where Pj+1 is concentrated loads. The stiffness matrix of skew thin plate in the
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multiresolution space is

K j(φ j,k1 ,φ j,k2) =D0

∫∫
Ωe

{
∂ 2φ j,k1

∂x2
∂ 2φ j,k2

∂x2 +
∂ 2φ j,k1

∂y2
∂ 2φ j,k2

∂y2

−4cosα(
∂ 2φ j,k1

∂x2
∂ 2φ j,k2

∂x∂y
+

∂ 2φ j,k1

∂y2
∂ 2φ j,k2

∂x∂y
)

+2(1−µ sin2
α + cos2

α)
∂ 2φ j,k1

∂x∂y
∂ 2φ j,k2

∂x∂y

+2(µ sin2
α + cos2

α)
∂ 2φ j,k1

∂x2
∂ 2φ j,k2

∂y2

}
dxdy

(31)

The operator of skew thin plate problems is

a(ψ j,m,φ j,k) =D0

∫ ∫
Ωe

{
∂ 2ψ j,m

∂x2
∂ 2φ j,k

∂x2 +
∂ 2ψ j,m

∂y2
∂ 2φ j,k

∂y2

−4cosα(
∂ 2ψ j,m

∂x2
∂ 2φ j,k

∂x∂y
+

∂ 2ψ j,m

∂y2
∂ 2φ j,k

∂x∂y
)

+2(1−µ sin2
α + cos2

α)
∂ 2ψ j,m

∂x∂y
∂ 2φ j,k

∂x∂y

+2(µ sin2
α + cos2

α)
∂ 2ψ j,m

∂x2
∂ 2φ j,k

∂y2

}
dxdy

(32)

3.2 Construction of operator-orthogonal wavelets

The lifting scheme proposed by Sweldens is a flexible method for the construction
of various new wavelet bases with the desired characteristics. For any multires-
olution space, a compactly supported lifting wavelet is built by adding adjacent
scaling functions φ j,k into the original wavelets ψold

j,m , which is usually selected by
the scaling function φ j+1,m [Sweldens (1997); Sweldens (1996)]:

ψ j,m = ψ
old
j,m−∑

k
s j,k,mφ j,k = φ j+1,m−∑

k
s j,k,mφ j,k (33)

where s j,k,m are the lifting coefficients. Substituting Eqs. (2) and (3) into Eq. (33),
we obtain

ψ j,m = ∑
l

g j,m,lφ j+1,l−∑
k

s j,k,m(∑
l

h j,k,lφ j+1,l)=H j+1,lφ j+1,l (34)

In order to meet the operator-orthogonality in the multiscale computation of engi-
neering problems, the lifting coefficient matrix H j+1,l can be computed using tech-
niques for computing a basis for the null space of the interaction matrix a(φ j,k∗,
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φ j+1,l) as

a
(
φ j,k∗,ψ j,m

)
= H j+1,la

(
φ j,k∗,φ j+1,l

)
= 0 (35)

where φ j,k∗ are all scaling functions on the domains Ω j, k∗ are the nodes of scal-
ing functions on Ω j. For general engineering problems, the operator-orthogonal
wavelet bases can be constructed with n+1 vanishing moments with respect to the
variables xand y[

a
(
φ j,k∗,ψ j,m

)
a(xnyn,ψ j,m)

]
= H j+1,l

[
a
(
φ j,k∗,φ j+1,l

)
a
(
xnyn,φ j+1,l

) ]= 0 (36)

The number of the solution of Eq. (36) determines the number of lifted wavelets.
The principle of constructing lifted wavelets is to choose proper lifted coefficients
from Eq. (36) such that the lifted wavelets are compactly support and the lifting
coefficient vectors are linearly independent. Fig.5 shows bicubic Hermite operator-
orthogonal wavelets constructed form bicubic Hermite scaling functions with one
vanishing moments according to Eq.(36).

(a)                                                              (b) 
Figure 5: Bicubic Hermite operator-orthogonal wavelets with one vanishing mo-
ments

4 Adaptive operator-orthogonal wavelet-based method

4.1 Error analysis

The error estimator of the operator-orthogonal wavelet solution is the key param-
eter to test the accuracy of operator-orthogonal wavelet method. A two-level er-
ror estimator ε j (also called global error estimator) of operator-orthogonal wavelet



Construction of Operator-Orthogonal Wavelet-Based Elements 29

method is chosen to be the uniform norm of the difference e j between the operator-
orthogonal wavelet solution ū j+1 and ū j at two levels j+1 and j respectively in the
form

ε j =
∥∥e j
∥∥

∞
= max

∣∣ū j+1− ū j
∣∣ (37)

The dimensionless form of global error estimator η j (also called global relative
error estimator) on the domain Ω j for the operator-orthogonal wavelet method can
be defined as

η j =
max

∣∣ū j+1− ū j
∣∣

max
∣∣ū j+1

∣∣ (38)

The local error estimator λ r
j of an operator-orthogonal wavelet solution in any local

domain Ωr
j (r = 1,2, · · · is the number of local domains) is

λ
r
j =
∣∣ūr

j+1− ūr
j

∣∣ (39)

According to the refinement relation in Eq. (4), the operator-orthogonal wavelet
solution can be obtained by using all the operator-orthogonal wavelets on the do-
main Ωr

j. As the scale becomes larger, it can be ensured that the error estimator
becomes small to satisfy a random threshold value.

4.2 Adaptive operator-orthogonal wavelet algorithm

Reference [Wang, Chen and He (2010)] proposed a multiscale operator-orthogonal
wavelet method, also called the multiscale refinement, which gradually approxi-
mates the exact solution by adding operator-orthogonal wavelets into global solving
domain. In order to solve engineering problems efficiently, an adaptive operator-
orthogonal wavelet algorithm, also called adaptive refinement, is proposed. The
engineering problems can be solved using the proposed method by adding operator-
orthogonal wavelets into local domains with error estimators higher than the given
threshold. The adaptive operator-orthogonal wavelet algorithm is given below:

Given error toleranceτ , the threshold value for wavelet refinement ϑ(0 < ϑ ≤ 1),
given initial domain Ω0 at the scale j = 0 and the local domains Ωr

j, the engineering
problems can be solved according to the following steps:

(1) Calculate initial operator-orthogonal wavelet solution u in the solving domain
Ω0;

(2) Calculate global relative error estimate η j, if η j < τ , stop the calculation and
output the result;

(3) Calculate all the local error estimate λ r
j in the local domains Ωr

j and determine
the maximum local error estimates λ max

j = max(λ r
j );
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(4) Generate all local domains that satisfy λ r
j ≥ ϑλ max

j , and save a list of local
domains Ω̃r

j;

(5) Add detail matrices K j(ψ j,m,ψ j,m′) into the multi-scale stiffness matrices K j+1

in the local domains Ω̃r
j and let j = j+1;

(6) Solve the multiscale operator-orthogonal wavelet equations and update the operator-
orthogonal wavelet solutions and solving domains Ωr

j, go to (2).

The key for the proposed numerical method is the procedures (3) and (4), in which
the local domains are selected according to the local error estimate and the thresh-
old value condition. The operator-orthogonality of multilevel stiffness and mass
matrices ensures the incremental computation of eigenvalue solution by the adap-
tive operator-orthogonal wavelet algorithm. Since the steering parameter ϑ is cho-
sen randomly, an increasing number of operator-orthogonal wavelets can be added
into the local domains and the convergence rate of the solution can be adjusted to
users’ computational requirements.

5 Numerical examples

In this section, numerical experiments are presented to demonstrate the efficiency
and flexibility of adaptive operator-orthogonal wavelet algorithm. As common
structural problems [Rao and Chaudhary (1988); Morley (1963); Timoshenko and
Woinowsky-Krieger (1959)], rectangular and skew thin plates are solved by mul-
tiscale [He, Chen and Xiang (2007); Wang, Chen and He (2010)] and adaptive
operator-orthogonal wavelet method, respectively. In the numerical examples, the
threshold values for multiscale and adaptive operator-orthogonal wavelet algorithms
are set to be equivalent for the comparison of the accuracy and efficiency. We
choose a random threshold value of 0.5 in the numerical examples.

Example 1 Bending analysis of square thin plate simply supported on all four sides
on all four sides, the parameters are given as: plate length L, thickness t, singular
load q0 = qe−100∗[(x/L−0.5)2+(y/L−0.5)2], elastic modulus E, Poisson’s ratioµ .

The bicubic Hermite operator-orthogonal wavelets shown in Fig.6 are constructed
according to the operator-orthogonality in Eq.(18). Fig.7 shows the relative error
of the displacements of square thin plate using multiscale and adaptive operator-
orthogonal wavelet solution (Abbreviated as multiscale and adaptive wavelet algo-
rithms) with increasing number of levels and degrees of freedoms. It can be seen
that the multi-scale and adaptive operator-orthogonal wavelet method has almost
the same convergence rate, but the adaptive operator-orthogonal wavelet method
approximates the exact solution with fewer degrees of freedom. Fig.8 shows de-
formation of square plate simply supported on all four sides. The contour plots
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                             (a)                                                         (b)   

 

   (c) 

Figure 6: Bicubic Hermite wavelets with (a) two (b) two (c) three vanishing mo-
ments

of the deformed plate along y direction are shown in Fig.9, the bottom dotted line
is the deformation of middle line along y direction and the upper line is the sim-
ply supported side. Table 1 illustrates the convergence rate of the displacements
by multiscale and adaptive operator-orthogonal wavelet solution with respect to
number of levels and degrees of freedoms, respectively. The comparison of the
central displacement, central moment and torque moment of the corner points ob-
tained by multiscale, adaptive operator-orthogonal wavelet solution and traditional
Shell63 element solution (commercial software ANSYS) with 100×100 meshes is
shown in Tables 2. It can be seen that the operator-orthogonal wavelet solutions are
match well with those of ANSYS and the degrees of freedom (DOFs) of adaptive
operator-orthogonal wavelet method are much less than the other methods.

Example 2 Bending analysis of skew thin plate subjected to uniform load, the
parameters are given as: plate length L, thickness t, uniform load q, elastic modulus
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Table 1: Operator-orthogonal wavelet solution for the displacements of square plate
simply supported on all four sides

Space
Multiscale Adaptive

DOFs ε j (10−2)
w 100D0/qL4

η j(%) DOFs ε j (10−2)
w 100D0/qL4

η j(%)

V0(j=0) 36 —— —— 36 —— ——
W0(j=0) 64 0.90303 20.4754 32 0.92721 21.1063
W1(j=1) 224 0.52636 14.2061 40 0.56845 16.2794
W2(j=2) 832 0.15164 4.6232 156 0.16651 5.1581
W3(j=3) 3200 0.08288 2.5763 582 0.08770 2.7215

Table 2: Central displacements and moments of square plate simply supported on
all four sides

Method w 100D0/qL4 Mx10/qL2 My10/qL2 Mxy10/qL2 DOFs
ANSYS 0.033339 0.061465 0.061465 0.019865 61206
Multiscale operator-
orthogonal wavelet

0.033308 0.060239 0.060239 0.019322 66564

Error(%) 0.0930 1.9946 1.9946 2.7335
Adaptive operator-
orthogonal wavelet

0.033296 0.060173 0.060173 0.019208 5682

Error(%) 0.1290 2.1020 2.1020 3.3073
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Figure 7: Convergence rate of square plate simply supported on all four sides with
(a) number of levels (b) degrees of freedom
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Figure 8: Deformed plate

E, Poisson’s ratio µ , bevel angle α .

Fig.10 shows bicubic Hermite operator-orthogonal wavelets satisfying the operator-
orthogonality in Eq.(25). Fig.11 illustrates the relative error of the displacements
of skew plate using multiscale and adaptive operator-orthogonal wavelet solution
with increasing number of levels and degrees of freedoms for the skew plate, re-
spectively. Fig.12 shows deformation of clamped skew plate, which is subjected to
uniform load. The contour plots of the deformed plate along y direction are shown
in Fig.13, the deformation of middle line along y direction is shown as dotted.
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Figure 9: Contour plots along y direction
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Figure 10: Bicubic operator-orthogonal Hermite wavelets with (a) two (b) three (c)
three vanishing moments



Construction of Operator-Orthogonal Wavelet-Based Elements 35

Table 3 illustrates the convergence rate of the displacements of clamped skew
plate under α=45˚ using the multi-scale and adaptive operator-orthogonal wavelet
method, respectively. The comparison of the central displacement, central mo-
ment and torque moment of the corner points obtained by multiscale, adaptive
operator-orthogonal wavelet solution and ANSYS Shell63 element solution with
100×100 meshes is shown in Tables 4. It can be seen that numerical solution
of the problems using three methods has the same convergence rate, but adaptive
operator-orthogonal wavelet method approximates the analytic solution with fewer
degrees of freedom. Table 5 illustrates the adaptive operator-orthogonal wavelet
solution on the scale j=3 and the solution in Reference [Rao, 1988; Morley, 1963]
of skew plate under different oblique angle. Table 6 shows the adaptive operator-
orthogonal wavelet solution on the scale j=4 of central displacement and moment
and those of the other FEM (Zienkiewicz, 1988) for the skew plate under skew an-
gle α=60˚. Both the displacement and moment results indicate that the adaptive
operator-orthogonal wavelet method has higher accuracy and less meshes. It can
be seen that the analyzed problem is computed with much fewer degrees of free-
dom although the adaptive solution is close to the solution obtained by multi-scale
refinement.
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Figure 11: Convergence rate of skew plate under angle α=45˚ with (a) number of
levels (b) degrees of freedom

Example 3 Bending analysis of skew thin plate simply supported on two parallel
sides, fixed on the other two sides, the parameters are given as: plate length L,
thickness t, load q0 = qsin(πx

L )sin(πy
L ), elastic modulus E, Poisson’s ratio µ , bevel

angle α .

The construction method of operator-orthogonal wavelets is the same as those in
Fig.10. Fig.14 shows the convergence rate of the displacements of skew plate using
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Figure 12: Deformed plate
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Figure 13: Contour plots along y direction

Table 3: Operator-orthogonal wavelet solution for the displacements of clamped
skew plate under α=45˚

Space
Multiscale Adaptive

DOFs ε j (10−2)
w 100D0/qL4

η j(%) DOFs ε j (10−2)
w 100D0/qL4

η j(%)

V0(j=0) 36 —— —— 36 —— ——
W0(j=0) 64 0.32409 9.0685 56 0.33117 9.2813
W1(j=1) 224 0.03304 0.9086 184 0.03428 0.9501
W2(j=2) 832 0.00279 0.0754 366 0.00280 0.0759
W3(j=3) 3200 0.00020 0.0053 836 0.00020 0.0053

multiscale and adaptive operator-orthogonal wavelet solution with increasing num-
ber of levels and degrees of freedoms. Fig.15 shows deformation of skew thin plate
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Table 4: Central displacements and moments of clamped skew plate
Method w 100D0/qL4 Mx10/qL2 My10/qL2 Mxy10/qL2 DOFs
ANSYS 0.037699 0.098505 0.13401 0.034579 61206
Multiscale operator-
orthogonal wavelet

0.037721 0.098987 0.13464 0.034127 66564

Error(%) 0.0584 0.4893 0.4701 1.3072
Adaptive operator-
orthogonal wavelet

0.037706 0.098853 0.13418 0.033759 6042

Error(%) 0.0186 0.3533 0.1269 2.3714

Table 5: Central displacement w× 1000×D0/qL4of skew plates for simply sup-
ported and clamped boundary conditions at all four sides ( j=3)

Skew
angle
α

Simply supported skew
plate subjected to uniform
load of intensity q

Clamped skew plate subjected
to uniform load of intensity q

Adative
operator-
orthogonal
wavelet

(Rao,
1988)

(Morley,
1963)

Adative
operator-
orthogonal
wavelet

(Rao,
1988)

(Morley,
1963)

90˚ 4.0624 4.06 4.06 1.2719 1.27 1.26
85˚ 4.0143 4.01 4.01 1.2511 – –
80˚ 3.8739 3.87 3.87 1.2031 1.20 1.20
75˚ 3.6317 3.64 – 1.1229 – –
70˚ 3.3052 – – 1.0160 1.02 1.02
60˚ 2.5525 2.56 2.56 0.7629 0.771 0.769
55˚ 2.1331 2.14 0.6306 – –
50˚ 1.7116 1.72 1.72 0.4980 0.503 0.500
45˚ 1.3108 1.32 – 0.3771 – –
40˚ 0.9437 0.958 0.958 0.2652 0.269 0.270
30˚ 0.3894 0.406 0.408 0.1043 0.108 –

simply supported on two parallel sides, fixed on the other two sides. The contour
plots of the deformed plate along y direction are shown in Fig.16, the bottom dotted
line is the maximum deformation along y direction and the upper line is the sim-
ply supported side. Table 7 illustrates the convergence rate of the displacements
of skew plate under skew angle α=30˚ by the multi-scale and adaptive operator-
orthogonal wavelet method, respectively. The comparison of maximum displace-
ments and moments by multiscale and adaptive operator-orthogonal wavelet-based
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Table 6: Comparison of adaptive operator-orthogonal wavelet results ( j=4) of cen-
tral displacement and moment of the skew plate under α=60˚ with those of tradi-
tional FEM (Zienkiewicz, 1988)

(a) Central displacement w×100×D0/qL4

Mesh DKQ ACQ LSL-Q12 MITC4 MiSP4 MMiSP4 DSQ
8×8 0.7876 0.7920 0.7918 0.7610 0.7781 0.7604 0.7840
12×12 0.7909 0.7927 0.7927 0.7785 – – –
16×16 0.7920 0.7930 – – 0.7894 0.7832 0.7871
Exact 0.7945
Adaptive operator-
orthogonal wavelet

0.7914

(b) Central moment My×10/qL2

Mesh DKQ ACQ LSL-Q12 MITC4 MiSP4 MMiSP4 DSQ
8×8 0.9605 0.9990 0.9777 0.9090 0.9423 0.9052 0.9609
12×12 0.9602 0.9777 0.9680 0.9370 – – –
16×16 0.9601 0.9700 – – 0.9567 0.9466 0.9602
Exact 0.9589
Adaptive operator-
orthogonal wavelet

0.9622

(a)                                                                   (b) 
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Figure 14: Convergence rate of skew plate under oblique angle α=60˚ with (a)
number of levels (b) degrees of freedom

solution with Shell63 element solution with 100×100 meshes is given in Table
8. The adaptive operator-orthogonal wavelet method shows its advantage over the
other two other methods in solving skew plate bending problems with less compu-
tational cost.
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6 Conclusions

Based on the derivation of the operator of thin plate bending problems, the lift-
ing scheme is used to construct operator-orthogonal wavelets to meet operator-
orthogonality of thin plate problems. The numerical examples demonstrate that the
operator-orthogonal wavelet-based method realizes independent and accurate solu-
tion of thin plate problems in each scale, which is a useful tool to deal with high
performance computation in structural analysis. Compared with the traditional fi-
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Table 7: Operator-orthogonal wavelet solution for the displacements of skew plate
under oblique angle α=30˚

Space Multiscale Adaptive
DOFs ε j (10−3)

w 100D0/qL4
η j(%) DOFs ε j (10−3)

w 100D0/qL4
η j(%)

V0(j=0) 36 – – 36 – –
W0(j=0) 64 0.75039 18.0295 40 0.76390 18.3671
W1(j=1) 224 0.52387 12.3858 76 0.55323 13.0952
W2(j=2) 832 0.22428 5.1605 248 0.23156 5.3342
W3(j=3) 3200 0.08148 1.8665 820 0.08137 1.8659

Table 8: Maximum displacements and moments of skew plate
Method w 100D0/qL4 Mx10/qL2 My10/qL2 Mxy10/qL2 DOFs
ANSYS 0.0043764 0.031042 0.057672 0.023103 61206
Multiscale
operator-
orthogonal wavelet

0.0043773 0.031353 0.058538 0.022591 66564

Error(%) 0.0206 1.0019 1.5016 2.2162
Adaptive operator-
orthogonal wavelet

0.0043759 0.031329 0.058405 0.022482 7216

Error(%) 0.0114 0.9246 1.2710 2.6880

nite element method, the adaptive operator-orthogonal wavelet method uses less
degrees of freedom to approximate the exact solution of engineering problems.
It also shows that operator-orthogonal wavelets bases are attractive for multiscale
computation. The advantage of the proposed method over traditional finite ele-
ment method is that it adds the operator-orthogonal wavelets into the local domains
based on two-level error estimation until the solution error satisfies the accuracy
requirement. It is promising that the proposed method can be extended to three-
dimensional or general structural analysis.
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