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Half Space Acoustic Problems Analysis by Fast Multipole
Boundary Face Method

Xianhui Wang1, Jianming Zhang1,2, Xingshuai Zheng1, Fenglin Zhou1

Abstract: In this paper, a half space adaptive fast multipole boundary face
method (FMBFM) is presented for solving the three-dimensional half space ex-
terior acoustic problems. In the presented method, the Burton-Miller equation
based on the conventional boundary integral equation (CBIE) and its hyper-singular
boundary integral equation (HBIE) is used to deal with the fictitious eigenfrequen-
cies problem. The half space Green’s function is employed, thus the tree structure
in the fast multipole method can be used only for the real domain. The higher order
elements and an adaptive tree structure are used to improve the efficiency of the
FMBFM. This half space adaptive FMBFM for half space acoustic problems is an
extension of the adaptive FMBFM for full space acoustic problems developed by
the authors. Numerical examples for half space acoustic problems in this paper
demonstrate the efficiency and validity of this method.

Keywords: fast multipole boundary face method, Burton-Miller equation, acous-
tic problems, half space, modified hyper-singular boundary integral equation

1 Introduction

Acoustic problems in half space are a major subject in engineering. Many research
works have been done on this aspect (Seybert et al., 1988; Seçgin et al., 2010; Cao
et al., 2010). The half space Green’s function (Seybert et al., 1988) can be applied
by adding the source solution at the image point to the original full-space Green’s
function for dealing with half space problems. Sound source localization and iden-
tification of a refrigerator were accomplished by using the half space boundary
element method (BEM) (Seçgin et al., 2010). Using the half space Green’s func-
tion, the discretization of the rigid infinite plane is removed and only the boundaries
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of the structure need to be discretized. However, the computational scale in these
study all are relatively small.

The boundary face method (BFM) (Zhang et al., 2009; Qin et al., 2010), based on
the boundary integral equation, is a numerical method. It is a generalization of the
conventional BEM and boundary node method (Mukherjee et al., 1997; Zhang et
al., 2001). The BFM is implemented directly using the boundary representation (B-
rep) data structure that is used in most CAD packages for geometry modeling. The
Sommerfeld radiation condition for acoustic exterior problems in BFM at infinity
can be satisfied automatically. All these advantages make the BFM an attractive
candidate for analyzing the exterior acoustic problems. Several works have been
published to improve or extend the applicability of the BFM (Gu et al., 2011; Zhou
et al., 2011).

The fast multipole method (FMM) (Rokhlin, 1985; Greengard, 1987) is employed
to improve the effective of the BFM in this paper. Some of the research on fast
multipole fast multipole boundary integral equation method can be found in Refs.
(Aoki, et al., 2004; Brancati et al., 2009; Chen, et al. 2001; Wang, et al. 2005;
Wang, et al. 2012; Qian, et al. 2013).The applications of FMM for acoustic prob-
lems have been more than 20 years. Rokhlin proposed a diagonal formed FMM
for Helmholtz equation (Rokhlin, 1993). A huge improvement could be provided
in the efficiency of the FMM. Shen proposed an adaptive FMM for 3-D full space
acoustic problems (Shen et al., 2007). The performance of adaptive FMM algo-
rithm can be several times faster than that of the non-adaptive one. An adaptive
algorithm for the fast multipole BEM based on a new definition of the interaction
list is proposed (Bapat et al., 2010). This algorithm can reduce the moment-to-local
(M2L) translations by about 30-40% and therefore improve the efficiency for the
FMM. An analytical integration method is given by Wu to compute the moments in
the diagonal form FMM (Wu et al., 2012). A comparison of the fast multipole with
hierarchical matrices for the Helmholtz integral equation is presented (Brunner, et
al. 2010). An investigation of the FMM for the Helmholtz equation with complex
frequency is given (Frangi, et al. 2010). An adaptive fast multipole boundary face
method (Wang et al., 2013) with higher order elements for 3D full space acoustic
problems is presented by Wang. Bapat applied the adaptive FMM for 3D half space
acoustic problems (Bapat et al., 2009). Using the half-space Green’s function, only
the local expansion is different from that for 3D full space FMM. The total CPU
time and memory storage are also reduced by about a half for large scale half space
acoustic problems. However, in this half space adaptive FMM, only the CBIE is
used, thus the presented method can not get unique solution for the exterior acoustic
problems at the fictitious frequencies.

In this paper, a half space adaptive fast multipole boundary face method (FMBFM)
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based on the Burton-Miller equation (Burton et al., 1971) is presented for half space
acoustic problems in 3D. The half space Green’s function is employed in this study.
The Burton-Miller equation, which is widely used in exterior full space acoustic
problems, is rarely used in exterior half space acoustic problems. However, in this
paper, a Burton-Miller equation based on the CBIE and its HBIE is used to deal
with the problem of non unique solution. In the half space adaptive FMBFM, the
analytical integrations cannot be performed, thus we employed higher order ele-
ments to improve the accuracy and efficiency. The FMBFM has been integrated
into the widely used commercial CAD package UG-NX, and thus it is able to han-
dle problems with complicated geometries. The tree data structure (Zhang et al.,
2006), which is used in full space adaptive FMBFM, will be used in this half space
adaptive FMBFM.

The paper is organized as follows: Section 2 mainly reviews the BIEs and the BFM
for the acoustic wave problems. In Section 3, the multipole expansion formulations
are described followed by several numerical examples which are given to demon-
strate the efficiency and validity of the present FMBFM in Section 4. The paper
ends with conclusions in Section 5.

2 The BIE formulations and the BFM

2.1 The BIE formulations for acoustic problems

The integral representation of the solution to the Helmholtz equation is:

c(P0)ϕ(P0) =
∫

S
G(P0,P

′
0,P)q(P)dS(P)−

∫
S

∂G(P0,P
′
0,P)

∂n
ϕ(P)dS(P)+ϕ

I(P0),

(1)

here

G(P0,P
′
0,P) =

eikr

4πr
+

eikr′

4πr′
(2)

in which r is the distance between source point P0 and field point P. r’ is the
distance between point P

′
0 and field point P. P

′
0 is mirror image point of source

point P0 (Fig. 1). For a soft infinite symmetry plane, the plus sign in G(P0,P
′
0,P)

should be changed to a minus sign. ϕ I(P0) denotes a prescribed incident wave but
it does not exist in radiation problems. c(P0)=1/2 if the surface S is smooth around
source point P0. E is the exterior region (acoustic medium). V is the interior region
(a body or scatter). The Eq. (1) is called as CBIE.
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Figure 1: The graphic of half space problems

The boundary conditions for the governing equation of acoustic wave problems can
be described as:

Dirichlet type φ = φ̄ , ∀x ∈ S
Neumann type q = ∂φ

∂n = q̄ = ikcρvn, ∀x ∈ S
Impedance type φ = Zvn, ∀x ∈ S

, (3)

where c denotes the sound velocity in medium. .ρ is the mass density. vn is the nor-
mal velocity. n is the outward normal. Z denotes the specific acoustic impedance.
The quantities with overline indicate given values. i =

√
−1.

It is worth noting that q(P)=0 and φ (P)=0 if the body V is contact with the plane
SH since they are not in the acoustic medium.
Based on the CBIE, its HBIE can be given as the following forms:

c(P0)
∂φ(P0)

∂n0
=
∫

S

∂G(P0,P
′
0,P)

∂n0

∂φ(P)
∂n

dS(P)−
∫

S

∂ 2G(P0,P
′
0,P)

∂n∂n0
φ(P)dS(P)+

∂φ I(P0)

∂n0
,

P0 ∈ S, (4)

here n0 is the outward normal at source point P0. We set{
G(P0,P) = eikr

4πr

G(P0,P) = eikr′

4πr′
, (5)



Half Space Acoustic Problems Analysis 73

and we reset the represent ∂G(P0,P
′
0,P)

∂n0
as the following forms:

∂G(P0,P
′
0,P)

∂n0
=

∂G(P0,P)
∂n0

+
∂G(P

′
0,P)

∂n′0
, (6)

here n
′
0 is the mirror image normal of n0. For example, if the half space plane is

z=0, and n0 = (0,0,1), then n
′
0 = (0,0,−1).

As the weakly singular form of the HBIE (Liu et al., 1999), the hyper-singular
integral integrand for half space problems can be given in the following weakly
singular forms:∫

S

∂ 2G(P0,P
′
0,P)

∂n∂n0
φ(P)dS(P)

=
∫

S
[
∂ 2G(P0,P)

∂n∂n0
− ∂ 2G0(P0,P)

∂n∂n0
]φ(P)dS(P)+

∫
S

∂ 2G(P
′
0,P)

∂n∂n′0
φ(P)dS(P)

+
∫

S

∂ 2G0(P0,P)
∂n∂n0

[φ(P)−φ(P0)−
∂φ

∂ tα
(P0)(tα − t0α)]φ(P)dS(P)

+ eαk
∂φ

∂ tα
(P0)

∫
S
[
∂G0(P0,P)

∂n0
nk(P)+

∂G0(P0,P)
∂n

nk(P0)]dS(P),

(7)

here G0(P0,P) = 1/4πr, tα and t0α are parametric coordinates of P and P0, respec-
tively, α=1,2. k=1, 2, 3.

Based on the Burton-Miller equation (Burton et al.), a complex linear combination
(CHBIE) of the CBIE (1) and HBIE (4) is obtained to yield a unique solution for
all the wave numbers:

β

[∫
S

∂ 2G(P0,P
′
0,P)

∂n∂n0
φ(P)dS(P)

]
+
∫

S

∂G(P0,P
′
0,P)

∂n
φ(P)dS(P)+ c(P0)φ(P0)

= β

[∫
S

∂G(P0,P
′
0,P)

∂n0

∂φ(P)
∂n

dS(P)− c(P0)
∂φ(P0)

∂n0

]

+
∫

S
G(P0,P

′
0,P)

∂φ(P)
∂n

dS(P)+β
∂φ I(P0)

∂n0
+φ

I(P0)

∀P0 ∈ S, (8)

β=i/k is used as the imaginary coupling parameter of the Burton-Miller’s formula-
tion (Meyer et al., 1978), k is the wave number. Since the hypersingular integral has
been converted to a weakly singular form, thus we could calculate all the integrals
directly in the Burton-Miller equation.
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2.2 The BFM for acoustic problems

As in the BEM, only the boundary discretization is required in the BFM for acous-
tic problems. The essential difference between BFM and BEM is that boundary
elements are defined in different spaces. Namely, elements employed in BFM lo-
cate in the two-dimensional parametric space of the boundary surface. While in the
BEM, elements locate in the three-dimensional physical space. In addition, the el-
ements in BFM are only for integral computation. However, in BEM, the elements
must be used for integral computation, variable interpolation and computing model
approximation.

By dividing the boundary S into M elements and applying the shape functions on
the element, we have the following approximations for variation of pressure and
velocity:

φ(P) =
NE

∑
k=1

Nk(P)φk =
NE

∑
k=1

Nk(t1, t2)φk,

q(P) =
NE

∑
k=1

Nk(P)qk =
NE

∑
k=1

Nk(t1, t2)qk,

(9)

where φ k and qk denote the value of φ and q at the kth node, respectively. Nk(.)
is the serendipity quadratic shape function associated with the kth node, which is
defined in the two-dimensional parametric space. NE is the number of nodes in the
element.

The discretized form of the Eq. (8) can be obtained as the following forms:

M

∑
j=1

NE

∑
α=1

hα
i jφα =

M

∑
j=1

NE

∑
α=1

gα
i jqα +bi, for node i = 1,2, . . .N, (10)

here bi is from the incident wave for the scattering problems, N denotes the total
number of nodes, and

hα
i jφα=

[
β
∫

S j

∂ 2G(Pi,P
′
i ,P)

∂n(P)∂n(Pi)
Nα(P)dS(P)+

∫
S j

∂G(Pi,P
′
i ,P)

∂n(P) Nα(P)dS(P)+σ(Pi,Pα)c(Pi)

]
φα

gα
i jqα=

[
β
∫

S j

∂G(Pi,P
′
i ,P)

∂n(Pi)
Nα(P)dS(P)+

∫
S j

G(Pi,P
′
i ,P)Nα(P)dS(P)−σ(Pi,Pα)βc(Pi)

]
qα

(11)

here the S jdenotes the element j, and if the αth node in the element j coincides
with theith node, σ(Pi,Pα) = 1; Else σ(Pi,Pα) = 0. In the implementation, we only
need to replace the corresponding terms in Eq. (11) by regularization terms.
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3 The multipole expansion formulations

The formulations of the multipole expansion for half space acoustic problems are
described in this section for 3D case.

3.1 The multipole expansion formulations for Helmholtz problems

The fundamental solution G(x,x′,y) for Helmholtz equation in 3-D can be ex-
panded into the following series:

G(x,x′,y) =
ik
4π

∞

∑
n=0

(2n+1)
n

∑
m=−n

Im
n (k,y− yc)[Om

n (k,x− yc)+Om
n (k,x

′− yc)],

|y− yc|< |x− yc| , (12)

in which, yc is an expansion point near y, and the function Im
n and Om

n can be ex-
pressed as:{

Im
n = jn(k |x|)Y m

n ( x
|x|)

Om
n = h(1)n (k |x|)Y m

n ( x
|x|)

(13)

where Im
n is the complex conjugate of Im

n . h(1)n and jn are the nth order spherical
Hankel function of first kind and nth order spherical Bessel function, respectively.
Y m

n denotes the spherical harmonics function which can be written as:

Y m
n (x) =

√
(n+m)!
(n−m)!

Pm
n (cosθ)eimψ , (14)

here the coordinates of x in a spherical coordinate system is (.ρ ,.θ ,.ψ). Pm
n is the

associated Legendre function.
With applying the expansion (13), we can evaluate the integral with kernel G(x,x′,y)
in Eq.(1) through the following equation:∫

Sc

G(x,x′,y)q(y)dS(y) =
ik
4π

∞

∑
n=0

(2n+1)
n

∑
m=−n

Mn,m(k,yc)[Om
n (k,x− yc)+Om

n (k,x
′− yc)],

|y− yc|< |x− yc| , (15)

∫
Sc

∂G(x,x′,y)
∂n

q(y)dS(y) =
ik
4π

∞

∑
n=0

(2n+1)
n

∑
m=−n

Hn,m(k,yc)[Om
n (k,x− yc)+Om

n (k,x
′− yc)],

|y− yc|< |x− yc| , (16)
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where Mn,m(k,yc) and Hn,m(k,yc) denote the multipole moments centered at yc,
their forms are:

Mn,m(k,yc) =
∫

Sc

Im
n (k,y− yc)q(y)dS(y), (17)

Hn,m(k,yc) =
∫

Sc

∂ Im
n (k,y− yc)

∂n
φ(y)dS(y), (18)

3.2 Multipole conversion

When the multipole moments center shifts yc to yc′ , which is called moment to
moment (M2M) translation, the multipole moments are translated according to the
following form:

Mn,m(k,yc′) =
∞

∑
n′=0

(2n′+1)
n′

∑
m′=−n′

n+n′

∑
l=|n−n′|
n′+n−l:even

(−1)m′Wn,n′,m,m′,lI
−m−m′
l (k,yc− yc′)Mn′,−m′(k,yc),

(19)

where Wn,n′,m,m′,l is calculated by the following formula:

Wn,n′,m,m′,l = (2l +1)in
′−n+l

(
n n′ l
0 0 0

)(
n n′ l
m m′ −m−m′

)
, (20)

and
(
• • •
• • •

)
denotes the Wigner 3j symbol.

The local expansion for the G(x,x′,y)integral in Eq. (1) can be described as the
following form:∫

Sc

G(x,x′,y)q(y)dS(y) =
ik
4π

∞

∑
n=0

(2n+1)
n

∑
m=−n

Ln,m(k,y,xL)Im
n (k,x− xL), (21)

In the moment to local (M2L) translations, the local expansion coefficients are
given by the following form:

Ln,m(k,y,xL) =
∞

∑
n′=0

(2n′+1)
n′

∑
m′=−n′

n+n′

∑
l=|n−n′|
n′+n−l:even

Wn′,n,m′,m,lN−m−m′
l (k,xL− yc)Mn′,m′(k,yc),

|x− xL|< |yc− xL| ,
(22)

here xL is the local expansion center and Nm
n is defined as:

Nm
n = h(1)n (k |x|)Y m

n (
x
|x|

), (23)
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If the local expansion center shifts form xL to xL′ , the form of the L2L translation
is:

Ln,m(k,y,xL) =
∞

∑
n′=0

(2n′+1)
n′

∑
m′=−n′

n+n′

∑
l=|n−n′|
n′+n−l:even

Wn′,n,m′,−m,lIm−m′
l (k,xL′− xL)Ln′,m′(k,y,xL),

(24)

M2M, M2L, L2L translations are illustrated in Fig. 2.

Figure 2: Conversion of the FMM: M2M, M2L, L2L translations

Similar translation can be applied in calculation of the integrals in Eq. (7).

Finally, we substitute the above FMM formulations to Eq. (8), for the ith node x,
and the αth node which is in the jth element, the related term in Eq. (8) can be
evaluated using the local expansion:

hα
i jφα or gα

i jqα =
ik
4π

∞

∑
n=0

(2n+1)
n

∑
m=−n

Lm
n (k,yα ,xL)[Im

n (k,xL)+β
∂ Im

n (k,xL)

∂n0
],

(25)
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here x is far away from any point in element j. To calculate the integral over the
elements which are near the field point x, the conventional Gaussian numerical
integration method is applied in this paper.

Since only the real boundary discretization is required, the adaptive tree structure is
constructed in the real domain in the half space adaptive FMBFM. And the adaptive
tree structure is the same as that in the full space adaptive FMBFM (Wang et al.,
2013). The block diagonal pre-conditioner used in the GMRES is calculated once,
and then stored for all iterations. This work can further improve the efficiency of
the FMBFM.

4 Numerical results

The proposed techniques have been implemented in C++. In this section, three
numerical examples are presented to demonstrate the performance of the method.
For the purpose of error estimation, a formula is defined as

e =
1
|u|max

√
1
N

N

∑
i=1

(u(e)i −u(n)i )2 (26)

where u(e)i and u(n)i refer to the exact and numerical solutions respectively and |u|max
is the maximum value of uover N nodes.

All the computations are performed on a PC with an Intel(R) Dual-Core CPU (2.6
GHZ) and 2GB memory. The rigid half space plane is the plane z=0 in all the
examples in this paper. In all the numerical examples, the sound pressure φ we
used is complex value. The maximum number of the quadratic elements in leafs
is 20. The multipole expansion terms p is 6. In the GMRES solver, we stop the
iteration when the relative error is less than 10−4.

4.1 Validation of the half space adaptive FMBFM

As the first numerical example, a half sphere (Fig. 3) is analyzed to demonstrate
the validity of the half space adaptive FMBFM for acoustic problems in an half
infinite acoustic domain. The radius of the half sphere is a=1, and centered at (0,
0, 0). The wave number is k=π . The half sphere is modeled by 160 sphere surface
elements and 246 contact surface elements. The half sphere is impinged upon by
a plane incident wave traveling in the +x direction. This example is equivalent to
the example a sphere impinged upon by a plane incident wave traveling in the +x
direction in the full space. The analytical solution to this problem can be expressed
by:

φ
s(r,θ) =

∞

∑
m=0
− im(2m+1) j′m(ka)

h′m(ka)
Pm(cosθ)hm(kr), (27)
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Figure 3: A half sphere model, which is meshed with 160 sphere surface elements

Figure 4: Pressure at r=3a from the scattering sphere at the wave numberk=π .

Figure 5: A rigid ball modeled with 136 elements
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wherer is the distance between the computed point and the center of the sphere, θ

is an angle from the direction of the incoming wave. Pm is the Legendre function
of the first kind. hm denotes the spherical Hankel function of the first kind. Fig. 4
shows the variation of sound potential φ at a distance r=3a, which is plotted ver-
sus the polar angle θ . The wave number in this problem is a characteristic wave
number, which satisfies ka=π and under which the CBIE usually suffers from the
non-uniqueness solution problem (The results obtained by the half space adaptive
FMBFM based on CBIE (blue dots) are shown in Fig. 4). From the Fig. 4, we iden-
tify again that the results obtained by the half space adaptive FMBFM based on the
Burton-Miller equation coincide with the analytical solutions. It demonstrates that
the non-uniqueness difficulty of acoustic problems at the characteristic frequency
can be circumvented by the half space adaptive FMBFM with CHBIE. Moreover,
the results demonstrate that the half space adaptive FMBFM with quadratic ele-
ments is accurate.

Furthermore, a unit rigid ball model (Fig. 5) is plotted to verify the adaptive
FMBFM for radiation problems. The rigid ball is meshed with 136 discontinuous
quadrilateral quadratic elements (1088 nodes). The results of half space adaptive
FMBFM are compared with those of full space. The wave number k=0.5, The
boundary condition on the sphere is the Neumann boundary condition with the
value given by (0.0, -207.515). The results from full space here is come from the
results in Reference (Wu et al., 2012), denoted by ||φ ||M. The results of half space
FMBFM is ||φ ||. The distance h between the center of the sphere and the rigid
plane varies from 0 to 10. The case when h=0 indicates that the sphere is cut into
two parts by the z=0 plane, as in the Fig. 3. The analytical result is available for
the first case when h=0, that is, ||φ ||=37.1214. Table 1 shows the results for the
radiating sphere model. It shows that the results of half space adaptive FMBFM
is in agreement with those of full space. Especially in the case h=0, the results
of half space adaptive FMBFM agree with the analytical very well. In addition,
the number of elements used in half space adaptive FMBFM is only half of the
that in full space for noncontact case. This example indicates that the half space
adaptive FMBFM with quadratic elements is an efficient tool for both contact and
noncontact half space acoustic problems.

Table 1: Results for the radiating sphere model

Distance h h=0 h=2 h=5 h=10
||φ || 37.1204 70.291 52.1029 33.4164
||φ ||M 37.1061 70.2517 52.0589 33.3992
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4.2 Performance study of the half space adaptive FMBFM

Figure 6: A simple block model

Figure 7: The influence of the multipole expansion terms for the sound pressure at
(4,0,0)

In order to further study the performances of the half space adaptive FMBFM
with quadratic elements, a pulsating block model (Fig. 6), which occupies in [-
0.5,0.5]×[-0.5,0.5]×[0,1.0], with wave number k=5.0, is used for illustrating the
accuracy of the half space adaptive FMBFM. The block contacts with the plane
z=0. The boundary condition for the model is normal velocity v0=1.0, ρ=1.22
kg/m3 and the sound velocity c=340.0 m/s. The overall dimensions of the model
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Figure 8: The influence of the tolerance for the sound pressure at (4,0,0)

Figure 9: The influence of the max number of nodes in a leaf for the CPU time

are [-0.5,0.5]×[-0.5,0.5]×[0,1.0] in x, y, z directions, respectively. Fig. 7 shows
the influence of the number of multipole expansion terms for the sound pressure.
From the Fig. 7 we identify clearly that the numerical value of sound pressure be-
come stabilization at p=5. Fig. 8 shows the influence of the tolerance for the sound
pressure. From the Fig. 8 we identify clearly that the numerical value of sound
pressure become stabilization at 10−3. Fig. 9 shows the influence of the max num-
ber of nodes in a leaf for the CPU time. From the Fig. 9 we identify clearly that
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less CPU time is consumed when the max number of nodes in a leaf is 20. Thus in
this paper we set the multipole expansion terms p=6, the tolerance for convergence
is 10−4, and the max number of elements in a leaf is 20.

 
Figure 10: The pressure from the half space and form the full space FMBFM.

Figure 11: The CPU time used for the half-space and for full-space FMBFM.
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Then, we test the performances of the half space adaptive FMBFM and the full
space adaptive FMBFM. Here, the DOFs denotes the number of nodes in the model
shown in Fig .6, and the mesh size in the corresponding full space model is the same
as that in the half space. The wave number k=0.5. The sound potentials for the sam-
ple point (4, 0, 0) are shown in Fig. 10. From the Fig. 10, we identified clearly that
the results obtained by the half space FMBFM coincide with the results obtained by
full space FMBFM. The CPU time consumed in two methods is compared in Fig.
11. As shown in Fig. 11, the half-space FMBFM consumes less total CPU time
than the full space FMBEM, especially for a large number of nodes. Fig.11 also
indicates suggests the O(NlogN) efficiency of the presented method. This example
demonstrates that the half space FMBFM is accurate and more efficient than the
full space FMBFM.

4.3 Sound barrier models

Figure 12: Half space sound barriers model

In the final example, the influence of a sound barrier (Fig. 12) placed between a
point source and the sound field is tested using the half space adaptive FMBFM.
The sound barrier is [5, 6 ]×[-15, 15]×[0, 5] in x, y, z directions, respectively.
The 2D diagram of the sound barriers and sound field is show in Fig. 13. The
incident point source is placed at (0, 0, 1) in 3D space. The wave number is k=1.
In total 2478 quadrilateral quadratic elements (19824 nodes) are employed to mesh
the model. The number of the field points in this example is 516. And all the
field points locate on the quadrangle area which are [16, 26]×[-5, 5] in z=0 plane.
Fig. 14 shows the contour plot of the dB on the back surface of the barrier with
respect to the source. Fig. 15 gives the sound pressure level in decibel when no
barrier is present. Fig. 16 shows the contour plot of the dB on the sound field with
barrier. It consumes 2480s for computation of the sound field with barrier. From the
contour we can identify that the sound pressure decreases a lot owing to the barrier.
The maximum of the sound pressure is 77.32dB without barrier, but only 67.96dB
with the barrier. The results and performance of the adaptive half space FMBFM
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in simulations of the sound barrier shows that the half space adaptive FMBFM is
efficient and able to handle practical problems.

Figure 13: Half space sound barriers model and sound field (2D view)

Figure 14: Contour plot of sound pressure level (dB) on the sound barrier.
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Figure 15: Contour plot of sound pressure level (dB) on the sound field without
barrier.

Figure 16: Contour plot of sound pressure level (dB) on the sound field with barrier.
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5 Conclusions and discussion

In this paper, a half space adaptive fast multipole boundary face method with higher
order elements is presented to solve the half space exterior acoustic problems in
3D. The half-space Green’s function is adopted in the BIE formulation, thus the
discretisation of the boundary is only necessary for the boundaries of the real do-
main, which ensures that the tree structure in the FMBFM can be constructed in the
real domain only. The Burton-Miller equation is used in this paper to circumvent
the problem of non-unique solution. The results of the numerical examples demon-
strate the efficiency and validity of the half space adaptive FMBFM for acoustic
radiation and scattering problems. The memory usage and CPU time in the half
space adaptive FMBFM are less than that in the full-space FMBFM.

The most exciting feature of our method, perhaps, is that it unifies the CAD model
and CAE into a unique framework and thus has potential to offer very promising
applications in practical engineering. However, the FMM used in this paper is
the original FMM (Epton et al, 1995), incorporating with the new FMM (Rokhlin,
1993) is ongoing. Moreover, a solution for problems on multi-domains is also
ongoing.
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