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A Novel Meshless Analysis Procedure for
Three-dimensional Structural Problems with Complicated

Geometry1

Wen-Hwa Chen2,3, Ming-Hsiao Lee4

Abstract: A novel meshless analysis procedure is established for practical im-
plementation in dealing with three-dimensional structures with complicated geom-
etry. By this procedure, to describe the surface of structure, the Stereo-lithography
(STL) geometry technique is first adopted. Nodes are then generated and paved
uniformly in the space over the entire structure analyzed. To decide the node dis-
tribution inside the structure, a geometry-related treatment scheme with relevant
checking mechanisms is developed. Besides, a simple and direct spatial integration
scheme is also proposed. By this integration scheme, integration points are evenly
distributed in the structure and can be adjusted easily to meet the required solution
accuracy.
Two three-dimensional structural problems with irregular-shaped geometry are solv-
ed to demonstrate the advantages and high efficiency of the present novel meshless
analysis procedure.

Keywords: Meshless method, complicated geometry, STL (Stereo-lithography)
geometry, Integration scheme

1 Introduction

For practical implementation, one of the main disadvantages of the Finite Element
Method (FEM) is that it requires an element mesh, which is constructed by nodes
and elements. To create the element mesh for analysis, it is usually tedious and
time-consuming. Although the three-dimensional automatic mesh generators grad-
ually become mature in many software programs, it is still not popularly adopted by
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the academia and industry since it can only generate tetrahedral elements instead
of preferable hexahedral elements and cannot have the flexibility to use different
types of elements at a time, such as shell element, beam element, etc., for certain
problems if necessary

Figure 1: Meshless method

As seen in Fig. 1, the meshless method has an inherent advantage that it doesn’t
require any elements or element meshes such that it can avoid the shortcomings of
the FEM mentioned above. Because of this potential feature, the meshless method
has become one of the most promising numerical methods. Based on the simi-
lar “meshless” idea, there have been emerging various meshless methods, such as,
the element-free Galerkin method (EFGM) (Belytschko et al., 1994), the repro-
ducing kernel particle method (RKPM) (Liu et al., 1995), the h-p clouds method
(Duarte and Oden, 1996), and the meshless local Petrov-Galerkin method (MLPG)
(Atluri and Zhu, 1998; Cho et al., 1999; Sladek et al. 2013) etc. Although there
were pioneering successes by those above methods, most of the cases analyzed
were two-dimensional problems in the early works. Till recent years, the three-
dimensional problems have then been successfully tackled (Chen and Guo, 2001;
Han and Atluri, 2003; Li et al. 2003; Han and Atluri 2004; Chen and Chen, 2005;
Lee and Chen 2009; Chen et al., 2009; Chi et al., 2011; etc.) Although the mesh-
less method does not need an element mesh however, it cannot provide sufficient
geometric information of the structure as does by the element mesh for the FEM,
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especially required for the three-dimensional structure with complicated geome-
try. To solve the difficulties, the STL geometry technique is proposed here. After
obtaining the STL-based geometry data, the vertices of the triangular facets (not
triangle element) can be taken as the boundary nodes to describe the complicated
surfaces of the three-dimensional structure analyzed. To deal with the interior do-
mains or imperfections, a geometry-related treatment scheme with some simple but
efficient checking mechanisms are presented.

Figure 2: Meshless local Petrov-Galerkin method (MLPG)

As for integrating the integrals of the weak form in the meshless methods, various
ways had been devoted. For example, in the MLPG method, an integration sphere
which is split into certain amount of sections over which the Gaussian quadrature
integration is implemented is used to calculate the local weak form integrals, as
shown in Fig. 2. Or, in the EFGM and some other similar meshless methods, the
Gaussian quadrature integration is also adopted to obtain the global weak form in-
tegrals with a cell structure, as shown in Fig. 3. Although the Gaussian quadrature
integration is good for the polynomial interpolation functions as encountered in the
FEM, it may induce some deviation of accuracy in the meshless method since its in-
terpolation functions are usually derived by a moving least-squares approximation
(Belytschko et al., 1994) and are no longer polynomials. Hence, a uniform integra-
tion instead of the Gaussian quadrature integration is proposed herein. Therefore,
the integration spheres adopted in the MLPG or the cell structure used by the EFGM
are not necessary.
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Figure 3: Element free Galerkin method (EFGM)

Consequently, with the mentioned schemes, a novel meshless analysis procedure
is thus established to deal with three-dimensional structural problems with com-
plicated geometry. By this procedure, the STL triangulated facets discretized for
the analyzed structure, the nodes generated inside the structure and the integration
points distributed over the entire structure uniformly can all be performed automat-
ically.

A L3 bone of lumbar vertebrae and an artificial knee joint are then solved as exam-
ples by the proposed novel analysis procedure.

2 Formulation for meshless method

The main difference between the FEM and the meshless method is the derivation
of the interpolation functions. In the FEM, the element is used to form the inter-
polation functions which can be used to obtain the field values at certain position
inside the element. In the meshless methods, such as MLPG, EFGM and most other
meshless methods, no elements can be used to derive the finite- element-like inter-
polation functions and a moving least-squares approximation is usually adopted to
derive the interpolation functions. With those interpolation functions, the formula-
tion for the meshless method can then be proceeded.
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2.1 Interpolation functions

As mentioned above, since there isn’t any element involved in the meshless method,
a moving least-squares approximation is adopted to derive the interpolation func-
tions. As shown in Fig. 1, assume an arbitrary node has an influence domain over
certain radius that any point inside the influence domain would be affected by that
central node. For a point x, e.g. the integration point, there would be several sur-
rounding nodes within the influence radius and affecting the point x. A combination
of the corresponding influence domains of those surrounding nodes determines a
sub-domain Ωx. The interpolation functions can then be constructed by implement-
ing the moving least-squares approximation inside the sub-domain (Belytschkoet
al., 1994). After this, the field values at any point inside the sub-domain can be
calculated through the derived interpolation functions and the field values of the
surrounding nodes, as similar to the FEM.

2.2 Basic formulation

To implement the weak form numerically, there are several popular methods em-
ployed in meshless methods, such as the collocation method, the Galerkin Method
and the Petrov-Galerkin Method ( Robert et al, 1974; Huebner and Thornton, 1982)

The collocation method was employed in the smooth particle hydrodynamics (SPH)
method for the discretization. The discrete equations of approximation were ob-
tained by enforcing the approximation equation on a set of interior nodes. The
equations obtained are just a set of algebraic equations of the unknown variables.
This is obviously a simple and fast method, but it has been reported to suffer from
instability (Beissel and Belytschko, 1996). The deficiency has been improved by
Atluri et al. (2006), with the MLPG method, and much better computing efficiency
is achieved.

The Galerkin method as proposed by Belytschko et al. (1994) is a global weak form
and has been used to obtain the discrete approximation equations. A quadrature
integration based on the cell structure was used to evaluate the integrals. Since the
formulation procedure is very similar to that of the FEM, only a basic briefing is
described below.

As shown in Fig. 1, consider a general three-dimensional linear elastic isotropic
structure Ω, enclosed by its boundary Γ. Based on the principal of minimum total
potential energy, the functional Π can be formed as

Π =
1
2

∫
Ω

ε
TEεdΩ−

∫
Ω

uT ·bdΩ−
∫
Γt

uT · t̄dΓ = min

where ε is the strain, u is the displacement, b is the body force, t̄ is the prescribed
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traction applied at the boundary Γt , and E is the material matrix. The displace-
ment u at any position of the structure can be interpolated from the global nodal
displacement D3Nx1 by the global interpolation function Ψ3x3N

u = ΨΨΨ3x3ND3Nx1 (1)

N is the total number of nodes. From the relation between the strain εεε and displace-
ment u, the strain εεε can be derived as

εεε = B6x3ND3Nx1 (2)

B is the gradient matrix for strain εεε .

Following a similar derivation procedure for the FEM, the final system of linear
algebraic equation can be formed as

K3Nx3ND3Nx1 = F3Nx1 (3)

where

K3Nx3N =
∫
Ω

BTEBdΩ

and

F3Nx1 =
∫
Ω

ΨΨΨ
TbdΩ+

∫
Γt

ΨΨΨ
Tt̄dΓ

In the above, K3Nx3N is the global stiffness matrix and F3Nx1 is the global load
vector.

After solving the final system of linear algebraic equation (3), the global nodal
displacement D3Nx1 and the field values at any positions of the structure, such as
displacement and strain can therefore be computed from eq. (1) and (2) accord-
ingly.

It is noted that each nodal interpolation function is derived from the nodes included
in its sub-domain. Hence, how to accurately determine the nodes in the sub-domain
is very important.

2.3 Numerical calculation of integrals

The global stiffness matrix K3Nx3N and global load vector F3Nx1 should be accu-
rately and efficiently calculated over the entire structure analyzed. In general, each
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entry of the global stiffness matrix K3Nx3N or global load vector F3Nx1 can be com-
puted as the following integrals

∫
Ω

f dΩ =
np

∑
i

nq

∑
j

nl

∑
k

αiβ jγk fi jk

∫
Γt

gdΓt =
nr

∑
i

ns

∑
j

αiβ jgi j

(4)

where (f, g) are the functions, ( α i , β i, γ i) are the weighting for the ith integration
point in the i-th direction and (np, nq, nl , nr, ns) are the total numbers of integration
points taken for integration. Various schemes have been proposed for choosing
appropriate integration points and weighting functions.

As mentioned earlier, to obtain the integrals of the weak form in the meshless
methods, various ways had been proposed. In the MLPG, only local weak form
is adopted (Atluri and Zhu, 1998). As seen in Fig. 2, the local weak form is formed
within a sphere surrounding certain nodes and the spatial integration is performed
on each independent sphere. The sphere is regularly divided into small segments
for numerical integration by Gaussian quadrature integration. In the EFGM, the
domain integration for global weak form is needed. The Gaussian quadrature in-
tegration over a cell structure is also normally adopted (Fig. 3). In the Gaussian
quadrature integration, the integration points selected are not uniformly distributed
and weighted, which is good for polynomial type of interpolation functions as en-
countered in the FEM. It may induce inaccuracy for meshless methods because
their interpolation functions derived by the moving least-squares approximation
are no longer polynomials. The Gaussian quadrature points are no longer the best
ones to sample the interpolation functions and then weighting values. In particu-
lar, when the integration volume of certain integration point crosses the surface of
the three-dimensional structure, the improper estimations may induce significant
inaccuracy. Hence, a uniform integration scheme instead of Gaussian quadrature
integration is proposed herein. The uniform integration scheme is also based on
the global weak form subject to the principal of minimum total potential energy.
By this scheme, every uniformly distributed integration point has same weight in
the structure and spatial integration can be performed. In addition, better stability
and accuracy are achieved. Furthermore, the density of the integration points can
be easily adjusted to meet the required accuracy. Although Beissel and Belytschko
(1996) also proposed a direct nodal integration by taking the nodes as integration
points, the numerical instability of under-integration due to insufficient number of
integration points needs to be overcome.
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3 Conventional meshless analysis procedure

Although there are many meshless methods being proposed, their general analysis
procedure can be summarized as the follows:

1. Generate the node data for the structure analyzed

2. Select a regular sphere for each node for the MLPG (see Fig. 2) or create the
cell structure of which the cells are regularly distributed to cover the entire
structure and its boundaries for numerical integration for the EFGM (see Fig.
3)

3. Form the global stiffness matrix K3Nx3N , which includes

• Integrate the integrals over spheres or cells by Gaussian quadrature.
• Ignore the quadrature points in spheres or cells outside the structure.
• Select the sub-domain for each quadrature point inside the structure.
• Calculate the interpolation function for each quadrature point by the

moving least-squares approximation.
• Assemble the stiffness matrix K3Nx3N from all the quadrature points.

4. Form the global load vector F3Nx1

5. Solve the equation K3Nx3ND3Nx1=F3Nx1 to obtain the solution.

However, there are some difficulties encountered in conventional meshless anal-
ysis procedure for practical implementation. As for node generation, for two-
dimensional or three-dimensional problem with simple geometry, nodes can be
generated manually and directly. Even so, unless a very detailed node distribution
adopted, the uncertainty for the node distribution sometimes cannot be avoided.
For example, as shown in Fig. 4, many different problems are represented by the
same one node distribution which is not detailed enough. Besides, in addition to the
requirement of the spheres for the MLPG or the cell structure for the EFGM, it is
also difficult to determine whether the quadrature points in spheres or cells outside
the structure or to exclude the nodes from the sub-domain for the quadrature point
accurately since it lacks geometric information. Those above difficulties get more
serious especially in dealing with three-dimensional structure with complicated ge-
ometry and should be solved.

Some techniques were devoted to the literature. For example, an indirect finite
element-like approach is presented (Liu, 2010), where the three-dimensional struc-
ture is first discretized in finite elements and then solved by the meshless method.
By this method, unfortunately, the merits of the meshless method are sometimes
sacrificed
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node 

Figure 4: The ambiguity of node distribution in meshless method

4 Present novel meshless analysis procedure

As compared with the conventional meshless analysis procedure, the present novel
procedure for the analysis of three-dimensional structure with complicated geome-
try can be viewed as those following steps:

1. Establish the STL-based geometry data of the structure analyzed and
determine its boundary nodes. For clarity, as shown in Fig. 5, a L3 bone
of the lumbar vertebrae is taken as first example for explanation. Now, the
surfaces of the L3 bone can be represented by triangular facets and stored
in the STL format as seen in Fig. 6. This can be easily generated by most
computer-aided or scanning tools depending on the material characteristics
of the object studied. After obtaining the STL-based geometry data, the ver-
tices of the triangular facets can be taken as the boundary nodes for the mesh-
less analysis.
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Figure 5: The L3 bone of the lumbar vertebrae

Figure 6: The STL geometry and boundary nodes of the L3 bone

2. Pave sufficient nodes over entire structure uniformly, as shown in Fig 7.

3. Determine the interior nodes of the structure by a geometry-related treat-
ment scheme with relevant checking mechanisms. How to determine the
nodes inside the structure represented by the STL-based geometry is a signif-
icant step for the present procedure. As seen in Fig. 8, it explains a geometry
checking mechanism for determining if certain nodes are located inside the
structure. First of all, one can arbitrarily take a reference point outside the
structure. Then, connect the discussed node to the external reference point
and check how many times the connecting line crosses the surface of the
structure analyzed. When the connecting line crosses the surface an odd
number of times, it means that the discussed node lies inside the structure.
Otherwise, the discussed node is outside the structure. Other related ge-
ometry checking mechanisms can be referred to the work (Lee and Chen,
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Figure 7: Pave sufficient nodes over the entire L3 bone uniformly

Figure 8: Determine the interior nodes of the L3 bone

2010). Those mechanisms can effectively choose the correct nodes for deriv-
ing the interpolation functions even there are internal defects or complicated
concave boundaries within the three-dimensional irregular shaped structure.
Therefore, by steps(1)-(3), the difficulties encountered for node generation
in conventional meshless analysis procedure due to the lack of sufficient ge-
ometric information can thus be solved. The final interior nodes for the L3
bone of the lumbar vertebrae are displayed in Fig. 9.

4. Form the global stiffness matrix K3Nx3N , which includes

• Pave integration points over entire structure uniformly, as shown in
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Figure 9: The determined interior nodes of the L3 bone

Fig. 10.

Figure 10: Pave integration points over the entire L3 bone uniformly

• Exclude the integration points outside the structure or the nodes
outside the sub-domain by similar checking mechanisms. Fig. 11
denotes the screened integration points for the analysis of the L3 bone
of the lumbar vertebrae. Fig. 12 displays the choice of nodes in the sub-
domain for deriving the interpolation function of an integration point.
Once the connecting line between the discussed node and the integra-
tion point crosses the surface, the discussed node should be excluded.
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Figure 11: The screened integration points inside the L3 bone

Figure 12: The choice of nodes in the sub-domain of an integration point

• Integrate the integrals by uniform integration points
• Calculate the interpolation functions for the integration points by

the moving least-squares approximation.
• Assemble the global stiffness matrix K3Nx3N from all the integration

points

5. Form the global load vector F3Nx1

6. Solve the equation K3Nx3ND3Nx1=F3Nx1 to obtain the solution

Since all the operations stated above can be easily programmed and proceeded
automatically, by our experiences, the present proposed meshless analysis is very
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efficient in dealing with three-dimensional structure with complicated geometry.

5 Results and Discussion

To demonstrate the advantages and efficiency of the novel meshless analysis proce-
dure, two biomechanics problems are analyzed. In general, the medical parts, either
natural or man-made, are used to fit the human’s body and their shapes are usually
irregular and complicated. These types of structure always are difficult to solve by
conventional meshless analysis procedure. On the contrary, by the present proposed
meshless analysis procedure, the works are much more simple and straightforward.

The first example is the analysis of the forementioned L3 bone of the lumbar verte-
brae. The spine has five regions: cervical, thoracic, lumbar, sacrum and tail-bone.
The lumbar region consists of five vertebrae. Each of them is connected with oth-
ers by ligaments. The lumbar region provides most support for the upper body
and each vertebra is subjected to a vertical normal pressure while standing still.
Assume the L3 bone is subjected to a vertical load of 1200 N, approximately two
times the weight of a 60 kg person. The Young’s modulus of the bone is 100 Mpa,
and the Poisson’s ratio is 0.2 (Goel et al., 1995). The present computed von-Mises
stress distribution of the L3 bone with 2,729 nodes is shown in Fig. 13. The com-
puted displacements and the von-Mises stresses at those representative positions
are displayed in Fig. 14 (a) and (b), respectively. Also shown for comparison are
the finite element solutions computed by ANSYS software with 19,288 nodes and
11,433 10-node tetrahedral elements. Reasonable agreement between the solutions
obtained by the present meshless analysis procedure and ANSYS’ can be viewed.
As mentioned earlier, it is noted that the present meshless solution can be easily
improved by adjusting the density of nodes or integration points if necessary.

Knee replacement surgery replacing the knee joints with artificial parts due to dis-
eased or damaged joint surfaces of knee can well reduce the patient’s pain in knees
and improve the patient’s motion so that it has become a popular treatment for os-
teoarthritis currently. The quality of the knee replacement requires not only the
medical surgery but also the design of the artificial parts which need to fit the pa-
tient’s unique and complicated bones well in order to maintain good performance.
Therefore the structural analysis for the parts is imperative to improve the design to
meet the structural requirement. An artificial knee system consists of several parts.
The main one is the femur head, normally made of Co-Cr-Mo alloy, as shown in
Fig. 15. The femur head is subjected to various loading in different postures. The
stiffness of the part is a basic requirement for the part design. Here, a typical load-
ing type is shown in Fig. 15 that one side is fixed and the other side is subjected
to a load of 720 N, about the weight of a 70 kg person. The STL-based geome-
try model obtained by three-dimensional scanning is also shown in Fig. 15. The
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Figure 13: The von-Mises stress distribution of the L3 bone

Figure 14: The comparison of the displacements and von-Mises stresses at repre-
sentative positions

Young’s modulus and Poisson’s ratio of Co-Cr-Mo alloy are 220,000 Mpa and 0.3
respectively.

The computed displacement distribution in the femur head of the artificial knee sys-
tem by the present novel meshless analysis procedure with 3,419 nodes is shown
in Fig. 16. The comparison of maximum displacement (at point 1) and von-Mises
stress (at point 2) with ANSYS program, with 4,383 nodes and 17,940 4-node tetra-
hedral elements is listed in Table 1. Good agreement between the present meshless
analysis and ANSYS’ is again found.
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Figure 15: The femur head of the artificial knee system and its STL geometry
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Figure 16: The displacement distribution in the femur head of the artificial knee
system

6 Concluding remarks

By the development of STL geometry, geometry-related treatment with relevant
checking mechanisms and uniformly paved nodes, sufficient geometric informa-
tion needed in meshless analysis can be thus provided in the present novel meshless
analysis procedure. The difficulties encountered in conventional meshless analysis
procedure are therefore avoided even in dealing with three-dimensional structure
with complicated geometry. In addition, since the uniform integration scheme
instead of Gaussian quadrature integration is adopted, the integration spheres for
MLPG or the cell structure for EFGM are no longer required. Besides, the density
of the uniformly paved nodes and integration points can be easily adjusted to meet
the required solution accuracy if necessary. It is worthwhile to note that all the
operations in the present novel meshless analysis procedure can be implemented or



A Novel Meshless Analysis Procedure for Three-dimensional Structural Problems 165

Table 1: The comparison between the computed results by the present meshless
analysis and ANSYS program

Present meshless analysis ANSYS program
Max. displacement 0.0447 mm 0.0417 mm
Max. von-Mises stress 39.7 Mpa 43.1 Mpa

programmed almost automatically.

The proposed novel meshless analysis procedure can also be easily extended and
applied to deal with three-dimensional multi-material or multi-body problems and
will be presented in subsequent reports.
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