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A Benchmark Problem for Comparison of
Vibration-Based Crack Identification Methods

Bing Li1,2 and Zhengjia He1

Abstract: The vibration-based crack identification problem insists of finding
a measured vibration parameter from a complete crack-detection-database con-
structed by numerical simulation. It is one of the classical optimization problems.
Many intelligence methods, such as neural network (NN), genetic algorithm (GA),
determinant transformation (DT), and frequency contour (FC) etc., have been ex-
tensively employed as optimization tools to achieve this task. The aim of this paper
is to propose a benchmark problem to compare these extensive-used optimization
methods in terms of crack identification precision and computational time. The
merit and demerits for each method are discussed. The results suggest that FC is
a visualized, stable and easily applied method for detecting crack in practice. The
conclusions of current studies are useful to investigators in deciding which method
should be chosen in their crack inspections.

Keywords: crack; identification; vibration-based method.

1 Introduction

Cracks present a serious threat to proper performance of structures. It is desirable
to detect cracks when they are still very small. Nondestructive testing methods,
such as ultrasonic testing, X-ray, acoustic emission, etc., are generally useful for
this purpose. However, most of these methods are inconvenient in many situations
due to the need for the investigator to have access to the component under analy-
sis for crack detection [Naniwadekar, Naik and Maiti (2008)]. This inconvenience
can be avoided through the use of vibration-based inspection because measurement
and collection of vibration parameters like natural frequencies is easy. Addition-
ally, vibration-based methods do not require the cleaning of local areas compared to
others. Vibration-based methods have so far been intended for exploitation of struc-
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tural fault diagnosis [Wang (2011); Hajnayeb, Ghasemloonia, Khadem and Moradi
(2011); Laurentys, Palhares and Caminhas (2011); Li, Chen and He (2005); Li
and Meng (2008); Li, Meng and Ye (2008)]. The comparisons of vibration-based
method with other nondestructive testing methods are showed in Table 1.

In the vibration-based approach, some signal features, such as change in natural
frequencies, change in mode shapes, and change in amplitude of vibration have
been taken into account. The natural frequency of structure is most easily measured
from accessible point on the static component and convenient to use. Also, such
measurement method is fast, easy and cheap. Hence frequency based method is
frequently used algorithm in crack inspection.

Figure 1: A cantilever beam with an open crack

For a uniform beam with an open crack located at β = e/L ( Fig.1 ), L, H, and B rep-
resent the length, highness and width of the beam respectively. e and a are the crack
location and crack size respectively. β and α stand for the normalized crack posi-
tion and normalized crack size respectively. The frequency based method includes
two procedures [Li and He (2011)]. The first procedure is a forward problem,
which comprises the construction of crack model exclusively for crack section and
the construction of a numerically structural model to gain crack-detection-database
for natural frequencies. That is the determination of function Gs relationship be-
tween the first three natural frequencies ωs, crack normalized location β and crack
normalized depth α , as follows

ωs = Gs(β ,α) (s = 1, 2, 3) (1)

The second procedure is an inverse problem, which consists of measuring structural
frequency and finding a best similar solution to this frequency from a complete
crack-detection-database built in the forward problem. That is the determination of
crack normalized location β and depth α , as follows

(β ,α) = G−1
s (ωs) (s = 1, 2, 3) (2)



A Benchmark Problem 295

Ta
bl

e
1:

C
om

pa
ri

so
ns

of
no

nd
es

tr
uc

tiv
e

te
st

in
g

m
et

ho
ds

N
on

de
st

ru
ct

iv
e

te
st

in
g

m
et

ho
ds

It
em

s
of

co
m

pa
ri

so
n

V
ib

ra
tio

n-
ba

se
d

m
et

ho
d

In
fil

tr
at

e
M

ag
ne

tic
pa

rt
ic

le
E

dd
y

flo
w

U
ltr

as
on

ic
R

ay

Te
st

th
eo

ry
V

ib
ra

tio
n

re
sp

on
se

C
ap

ill
ar

y
ph

e-
no

m
en

on
M

ag
ne

tis
m

E
le

ct
ro

m
ag

ne
tic

in
du

ct
io

n
U

ltr
as

on
ic

R
ay

im
ag

e

Te
st

ra
ng

e
M

et
al

,
no

n-
m

et
al

,e
tc

.
N

on
-p

or
os

ity
m

at
er

ia
l

Fe
rr

om
ag

ne
tic

m
at

er
ia

l
C

on
du

ct
io

n
m

at
er

ia
l

M
et

al
,

no
n-

m
et

al
,e

tc
.

M
et

al
,

no
n-

m
et

al
,e

tc
.

Ty
pe

of
cr

ac
k

Su
rf

ac
e

an
d

in
ne

rc
ra

ck
Su

rf
ac

e
cr

ac
k

Su
rf

ac
e

an
d

ne
ar

su
rf

ac
e

cr
ac

k

Su
rf

ac
e

an
d

ne
ar

su
rf

ac
e

cr
ac

k

Su
rf

ac
e

an
d

in
ne

rc
ra

ck
Su

rf
ac

e
an

d
in

ne
rc

ra
ck

A
ct

iv
e

st
at

e
of

sp
ec

im
en

St
at

ic
an

d
dy

-
na

m
ic

te
st

St
at

ic
te

st
us

u-
al

ly
St

at
ic

te
st

us
u-

al
ly

St
at

ic
te

st
us

u-
al

ly
St

at
ic

an
d

dy
-

na
m

ic
te

st
St

at
ic

an
d

dy
-

na
m

ic
te

st
Q

ua
nt

ita
tiv

e
te

st
O

k
H

ar
d

H
ar

d
H

ar
d

Y
es

Y
es

Te
st

sp
ee

d
Q

ui
ck

Sl
ow

Q
ui

ck
Q

ui
ck

Q
ui

ck
Q

ui
ck

G
eo

m
et

ry
of

sp
ec

im
en

C
om

pl
ex

st
ru

ct
ur

es
B

ar
,b

ea
m

an
d

pl
at

e,
et

c.
B

ar
,b

ea
m

an
d

pl
at

e,
et

c.
B

ar
,b

ea
m

an
d

pl
at

e,
et

c.
B

ar
,b

ea
m

an
d

pl
at

e,
et

c.
C

om
pl

ex
st

ru
ct

ur
es

Se
ns

iti
vi

ty
H

ig
h

H
ig

h
H

ig
h

L
ow

H
ig

h
M

id
dl

e
Po

llu
tio

n
L

ow
H

ig
h

H
ig

h
L

ow
L

ow
H

ig
h



296 Copyright © 2013 Tech Science Press CMES, vol.93, no.4, pp.293-316, 2013

The scheme of crack identification problem can be depicted by Fig.2.

Figure 2: Scheme for crack identification

In the forward problem studies, Dong and Atluri [Dong and Atluri (2012a); Dong
and Atluri (2013a); Dong and Atluri (2013b); Dong and Atluri (2013c)] developed
symmetric Galerkin boundary element method (SGBEM) for modeling cracked
2D and 3D solid structures. Their methods significantly save computational costs
and improve computational accuracy in fracture analyses of damaged structures.
Nandwana [Naniwadekar, Naik and Maiti (2008)] modeled the crack as a rotational
spring and gave an analytical solution for beams. Lele [Lele and Maiti (2005)] em-
ployed finite elements to make an efficient calculation for crack identification in
a short beam with rectangle section. Meanwhile, wavelet finite element method
(WFEM) was employed for the identification of a crack in structures due to the
fact that wavelet multiresolution theory provides a powerful mathematical tool for
function approximation of the displacement and stress field in crack tip [Li, Chen,
and He (2005); Lele and Maiti (2005)]. 3D T-Trefftz Voronoi Cell Finite Elements
were also constructed for micromechanical modeling and SHM of solids [Dong
and Atluri (2012b); Dong and Atluri (2012c); Dong and Atluri (2012d); Dong
and Atluri (2012e)]. According to linear fracture mechanics theory, the localized
additional flexibility in crack vicinity can be represented by a lumped parameter el-
ement. The cracked beam was modeled by wavelet finite elements to gain accurate
crack-detection-database.
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The inverse problem insists of finding a measured vibration parameter from a com-
plete crack-detection-database constructed by numerical simulation. It is one of the
classical optimization problems. With accurately measured frequencies, several al-
gorithms such as neural network (NN) [Dong, Chen and Li (2009); Lin, Zhao and
Chen (2010); Xiang, Chen and Yang (2009); Wang and He (2007)], genetic algo-
rithm (GA) [Li, Zhuo and He (2009); Xiang, Zhong, Chen and He (2008); Wang,
Chen and He (2011); Vakil, Peimani and Sadeghi (2008)], determinant transforma-
tion (DT) [Li and He (2011)], and frequency contour (FC) [Li, Chen and He (2005);
Rabinovich, Givoli and Vigdergauz (2007); Ye, He and Chen (2010); Yu and Chu
(2009); Wang, Zhang and Ma (2008); Nahvi and Jabbari (2005)] were employed
as optimization methods to minimize the errors between numerical simulation and
experimental measurement. Numerous other methods are available, new ones have
also been introduced at the 7th vibration engineering meeting (VETOMAC2011).
Hence it seems to be a reasonable to compare these methods in order to judge upon
their performance in applications. The comparisons should help the investigator to
decide whether he/she has to worry about the choice of the method at all and, if so,
which method should be chosen.

In this paper, a benchmark problem of cantilever beam is given and the frequently-
used vibration-based crack identification methods including of NN, GA, DT and
FC are studied and compared in terms of crack identification precision and compu-
tational time (CPU time). The merit and demerits for each method are discussed.
The conclusions of current studies are useful to the practitioners in deciding which
method should be chosen in their crack inspections.

2 Crack identification methods

2.1 NN-based crack identification method

The solution of inverse problem for crack identification can be essentially an opti-
mization problem. Neural network (NN) being recognized as a powerful optimiza-
tion tool, it has gain considerable attentions in the structural damage identification
studies [Dong, Chen and Li (2009); Lin, Zhao and Chen (2010); Xiang, Chen and
Yang (2009); Wang and He (2007)]. However, both the modal frequencies and the
structural response are needed for the training of NN to detect the structural dam-
age in these researches [Dong, Chen and Li (2009); Lin, Zhao and Chen (2010);
Xiang, Chen and Yang (2009)]. Li and Zhuo, et al., developed a simple method-
ology to detect crack location and size using WFEM and NN [Li, Zhuo and He
(2009)]. Firstly, the first three natural frequencies of the beam with various crack
locations and sizes are accurately found by means of WFEM. The only frequency
information which is obtained by WFEM is used as training data for developing the
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NN. Then for a particular crack location and size, the three frequencies of the beam
are obtained under the situation that measured natural frequencies of crack beams
are set as input of NN. The crack location and size can be identified through trained
NN and WFEM prediction. The scheme of inverse problem using NN is depicted
by Fig. 3 [Li, Zhuo and He (2009)].

Figure 3: Scheme of NN-based method

2.2 GA-based crack identification method

The solution of inverse problem is essentially an optimization problem. Genetic
algorithm (GA) can be employed as an optimization method to minimize the fre-
quencies errors between numerical simulation and experimental measurement. In
the genetic algorithm, this errors is used to evaluate the fitness of each individual
in the population, the good, if not the best, individual achieved through evolution
is just the solution to the inverse problem [Xiang, Zhong, Chen and He (2008)].

Genetic algorithm are stochastic search algorithm, which are based on the mechan-
ics of nature selection and natural genetics, which is designed to efficiently search
large, non-linear, discrete and poorly understood search space, where expert knowl-
edge is scarce or difficult to model and where traditional optimization techniques
fail. An individual corresponds to a solution for a problem, and consists of and
array of gene values, its ‘chromosome’, and as in nature, an individual that is op-
timized for its environment is created by successive modification over a number
of generation. Genetic algorithm have been frequently accepted as optimization
methods in various fields, and have also proved their excellence in solving com-
plicate, non-linear, discrete and poorly understood optimization problem [Xiang,
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Zhong, Chen, and He (2008)]. The generalized procedures of genetic algorithm are
shown in Xiang et al. [Xiang, Zhong, Chen and He (2008)] and the scheme of GA
is depicted by Fig. 4.

Figure 4: Scheme of GA-based method

In the crack detection in a shaft, the error function Fit is defined by the difference
between the measured and the simulation frequencies. The explicit form is

Fit =−(
3

∑
s=1

(Gs(β ,α) − ^
ωs)

2) (3)

where Gs(β ,α) is the frequency response function, and
^
ωs denotes the measured

frequency with the s order.

The candidate solution be searched is the normalized crack location β and depth α .
Therefore, we can directly use bit strings to decode the candidate solution and the
GAOT [Houck, Joines and Kay (1995)] toolbox of Matlab to solve inverse problem.
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2.3 DT-based crack identification method

In the studies of forward problem for crack identification, the cracked beam is
modeled by using of WFEM, where the crack is seen as a rotational spring with
computable stiffness Kt. The values of Kt for various cross sections were given by
Dimarogonas in [Dimarogonas (1996)]. Utilizing the determinant transformation
(DT) method it transforms the vibration frequency equation into the quadratic equa-
tion with one unknown parameter: the rotational spring stiffness Kt. Finding the
roots of quadratic equations at different crack locations, the three curves of spring
stiffness versus crack location are plotted. The point of intersection of the curves
identifies the location and size of the crack. The scheme of DT is depicted by Fig.
5.

Figure 5: Scheme of DT-based method

Firstly, supposed that the crack is located between two wavelet-based finite ele-
ments, and the numbers of two nodes are i and i + 1, respectively. The spring
stiffness Kt was an unknown parameter of the following vibration frequency equa-
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tion,

|ΘΘΘ|=
∣∣K−ω

2
s M

∣∣= 0 (4)

or∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k1,1−λmm1,1· · · · · · · · · · · ·k1,n−λmm1,n
...

...
...

...
...

...
...

... ki,i−λmmi,i +Kt ki,i+1−λmmi,i+1−Kt
...

...
...

... ki+1 ,i−λmmi+1 ,i−Ktki+1,i+1−λmmi+1,i+1 +Kt
...

...
...

...
...

...
...

...
kn,1−λmmn,1· · · · · · · · · · · · kn,n−λmmn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(5)

where, |•| denotes the determinant and λs = ω2
s , (s = 1, 2, 3) are known natural

frequency. K and M are the structural WFEM stiffness matrix and mass matrix
respectively [[Li, Chen, and He (2005)].

According to the determinant calculation properties, the left determinant of Eq.(5)
was expanded by ith column and i+1th column, and the quadratic equation with
one unknown number could be obtained,

a(1)Kt2 +a(2)Kt +a(3) = 0 (6)

where

a(1) =

∣∣∣∣∣∣ ΘΘΘ(1 : n,1 : i−1)
0
X
0

ΘΘΘ(1 : n, i+2 : n)

∣∣∣∣∣∣ (7)

a(2) =

∣∣∣∣∣∣ΘΘΘ(1 : n,1 : i−1)
0
H
0

ΘΘΘ(1 : n, i+1 : n)

∣∣∣∣∣∣+
∣∣∣∣∣∣ΘΘΘ(1 : n,1 : i)

0
N
0

ΘΘΘ(1 : n, i+2 : n)

∣∣∣∣∣∣
(8)

a(3) = |ΘΘΘ| (9)

ΘΘΘ(i : j,k : l) is the sub-matrix formed by the elements (from the ith row to jth

row, and the kth column to lth column of ΘΘΘ). X =

[
1 −1
−1 1

]
, H =

[
1
−1

]
,

N =

[
−1
1

]
.
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The natural frequencies were taken into the Eq.(6), the corresponding spring stiff-
ness Kt was obtained by finding the roots of Eq.(6). The same calculation was
repeated in a different crack location β , so we can get three curves of β −Kt. The
crossing points present the crack location β (horizontal ordinate) and spring stiff-
ness Kt (longitudinal coordinate).

Because the crack stiffness Kt could be expressed as [Nandwana, and Maiti (1997)]

Kt =
bh2E

72π(a
/

h)2 f (a
/

h)
(10)

where, E is Young’s modulus, and

f (a
/

h) =0.6384−1.035 (a
/

h)+3.7201 (a
/

h)2−5.1773 (a
/

h)3

+7.553 (a
/

h)4−7.332 (a
/

h)5 +2.4909 (a
/

h)6 , (11)

taking Kt into the Eq.(10), we can get the crack depth a.

2.4 FC-based crack identification method

Due to the facts that frequency contour (FC) method [Li, Chen and He (2005);
Rabinovich, Givoli and Vigdergauz (2007); Ye, He and Chen (2010); Yu and Chu
(2009); Wang, Zhang and Ma (2008); Nahvi and Jabbari (2005)] is visualized and
easy utilized in practice, it became mostly popular algorithm in crack identification
problems. The crack identification procedure is briefly described as following, and
the scheme of FC is depicted by Fig. 6.

Firstly, the WFEM are employed to model cracked structures. The crack is equiv-
alent as a weightless rotational spring and the equivalent stiffness is evaluated by
linear fracture mechanics approach. In accordance with the Saint-Venant principle,
it is assumed that the crack only affects the region adjacent to it. So the element
stiffness matrices, except for the cracked element, may be regarded as unchanged
under a certain limitation of element size.

Secondly, by solving local crack stiffness matrix and adding the local crack stiffness
matrix into the global stiffness matrix, the high performance wavelet-based model
for crack identification is built up.

Thirdly, solve the first three natural frequencies under different normalized crack
location and depth and then the influencing functions for diverse normalized crack
parameters are obtained by means of surface-fitting techniques.

Finally, the first three identified natural frequencies are employed as the inputs
of the inverse problem and the contour for the specified natural frequency can be
plotted. Because the identifying system is confirmed, the parameters of a crack
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are certain. So there must be a common characteristic point in the three contours.
While these curves are plotted in one coordinate, this common point must be the
intersection, through which the crack parameters can be identified.

Figure 6: Scheme of FC-based method
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3 Benchmark problem

3.1 Description of a benchmark problem and evaluation of forward problem

In order to compare four frequency-based methods of crack identification including
of NN, GA, DT and FC, a benchmark problem of cantilever beam with rectangle
cross-section is used.

The beam in Fig. 1 is steel beam with 0.02 m×0.012 m rectangular cross-section
and 0.5 m long. The corresponding material properties were: Young’s modulus E =
210 GPa, Poisson’s rate υ = 0.3, and material density ρ = 7860 kg/m3. Here, the
crack in the beam is simulated by a cut normal to the beams’ longitudinal axis, with
a depth (as listed in Table 2.). The first three natural frequencies were calculated
by WFEM, and are listed in Table 3. The analytical solutions are listed in Table 4
[Nandwada and Maiti (1997)].

Table 2: Four crack cases.
case No. crack location β crack depth α

I 0.1 0.1
II 0.1 0.2
III 0.4 0.1
IV 0.4 0.2

3.2 Calculations of inverse problem

The method for crack identification is verified for several combinations of crack
positions and crack sizes listed in Table 2. The first three natural frequencies cal-
culated using analytic method of vibration mechanics are used as input in this case,
and the values are listed in Table 4. Four methods including of NN, GA, DT, and FC
are employed to detect crack respectively, and the results of calculation precision
and cpu time are compared each other.

(1) NN-based crack identification method

In NN-based crack identification, the location βand the depth α of crack are called
the identification parameters P and the first natural frequencies ωs (s = 1, 2, 3)
are called the vibration parameters T . When the P are considered in first stage, the
resulting T can be obtained by WFEM and this process is forward analysis. A pair
of these P and T is called a training data. In the second stage, these training data are
used to develop the NN. When the P is given to the input layer, the NN is trained
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Table
3b:Second

ordernaturalfrequency
ω

2
(rad/s)

β
α

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

0.0
2630.3

2630.3
2630.3

2630.3
2630.3

2630.3
2630.3

2630.3
2630.3

2630.3
0.1

2630.3
2624.2

2630.2
2628.1

2622.6
2618.9

2619.9
2624.1

2628.3
2630.1

0.2
2630.3

2607.9
2629.9

2621.8
2600.9

2587.3
2590.6

2606.4
2622.4

2629.6
0.3

2630.3
2581.8

2629.4
2611.0

2564.3
2534.1

2540.5
2575.3

2611.9
2628.6

0.4
2630.3

2546.8
2628.6

2594.8
2509.9

2455.8
2465.0

2526.2
2594.8

2626.9
0.5

2630.3
2505.6

2627.7
2572.8

2437.7
2352.5

2362.2
2455.1

2568.5
2624.4

0.6
2630.3

2463.7
2626.5

2546.2
2352.8

2232.1
2237.9

2361.6
2531.3

2620.8
0.7

2630.3
2426.4

2625.4
2518.0

2265.3
2108.8

2105.4
2252.8

2483.3
2616.1

0.8
2630.3

2396.8
2624.4

2491.8
2186.2

1997.5
1981.3

2141.8
2428.1

2610.5
0.9

2630.3
2375.7

2623.6
2470.5

2123.3
1909.0

1879.5
2043.9

2373.3
2604.8



A Benchmark Problem 307

Ta
bl

e
3c

:T
hi

rd
or

de
rn

at
ur

al
fr

eq
ue

nc
y

ω
3

(r
ad

/s
)

β
α

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
0

73
64

.9
73

64
.9

73
64

.9
73

64
.9

73
64

.9
73

64
.9

73
64

.9
73

64
.9

73
64

.9
73

64
.9

0.
1

73
64

.9
73

62
.3

73
55

.7
73

38
.6

73
51

.5
73

65
.5

73
48

.3
73

29
.8

73
42

.5
73

62
.2

0.
2

73
64

.9
73

53
.6

73
28

.6
72

64
.7

73
13

.1
73

65
.4

73
01

.0
72

31
.9

72
77

.1
73

52
.7

0.
3

73
64

.9
73

40
.0

72
82

.7
71

43
.9

72
50

.0
73

65
.3

72
23

.7
70

71
.1

71
62

.2
73

35
.6

0.
4

73
64

.9
73

22
.0

72
15

.1
69

73
.7

71
60

.9
73

65
.1

71
14

.8
68

43
.9

69
82

.2
73

07
.1

0.
5

73
64

.9
73

01
.3

71
26

.2
67

63
.4

70
50

.0
73

64
.9

69
80

.4
65

62
.5

67
26

.4
72

62
.4

0.
6

73
64

.9
72

80
.7

70
23

.4
65

37
.3

69
30

.1
73

64
.7

68
36

.2
62

60
.9

64
05

.2
71

96
.4

0.
7

73
64

.9
72

62
.8

69
19

.9
63

25
.7

68
17

.2
73

64
.4

67
02

.0
59

81
.1

60
56

.8
71

06
.6

0.
8

73
64

.9
72

48
.8

68
28

.6
61

51
.0

67
23

.5
73

64
.2

65
91

.9
57

53
.2

57
32

.3
69

96
.9

0.
9

73
64

.9
72

39
.0

67
57

.8
60

22
.3

66
54

.2
73

64
.0

65
11

.3
55

88
.1

54
72

.2
68

81
.0



308 Copyright © 2013 Tech Science Press CMES, vol.93, no.4, pp.293-316, 2013

Table 4: Natural frequencies of cracked beam (rad/s)

case No.
analytical solutions ω∗s (rad/s)

ω1 ω2 ω3

I 417.06 2624.2 7364.8
II 409.72 2607.9 7353.8
III 418.95 2622.6 7351.6
IV 416.78 2600.9 7312.5

by using an error back propagation algorithm until the T are obtained at the output
layer. When other P is given to the input layer of this trained network, the network
can give the unknown T in the third stage. This means that the developed NN can
be used as a tool for the crack identification.

The crack is represented by a rotational spring. Thus, the natural frequencies ωs for
various given crack parameters (β ,α = 0, 0.1, 0.2, . . . , 0.9) are obtained through
WFEM in Table 3. That is, the 100 training data are obtained. The NN for crack
identification is composed of the input layer, the hidden layers and the output layer,
and each layer has several units as shown in Fig. 7. In the Fig. 7, the P are the
first three natural frequencies (ω1,ω2,ω3). The hidden layer has two layers with
33 units. The output layer has the 2 units (β ,α).

Figure 7: Data processing in neural network

The analytic natural frequencies ω∗s are used as the input parameters in order to
produce the predicted crack variables (β ,α). The estimations of crack variables
are given by Table 5.

(2) GA-based method

For the discrete samples in Table 2, analytic natural frequencies in Table 4 are used
to be input parameters of fitness function for GA. 80 initial populations are chosen
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Table 5: Predicted crack variables for the four crack cases using NN

case No. β (error %) α (error %) cpu time (s)
I 0.143 (4.3) 0.185 (8.5) 20.7
II 0.037 (6.3) 0.175 (2.5) 18.4
III 0.317 (8.3) 0.179 (7.9) 20.1
IV 0.434 (3.4) 0.195 (0.5) 20.5

Table 6: Predicted crack variables for the four crack cases using GA

case No. β (error %) α (error %) cpu time (s)
I 0.05 (5.0) 0.05 (5.0) 174.4
II 0.06 (6.0) 0.13 (7.0) 169.8
III 0.48 (8.0) 0.11 (9.0) 176.7
IV 0.43 (3.0) 0.15 (5.0) 174.5

Table 7: Predicted crack variables for the four crack cases using DT

case No. β (error %) α (error %) cpu time (s)
I 0.101 (0.1) 0.199 (0.1) 8.1
II 0.099 (0.1) 0.101 (0.1) 8.2
III 0.401 (0.1) 0.099 (0.1) 8.3
IV 0.397 (0.3) 0.204 (0.4) 8.7

stochastically, the crack location and depth are predicted through the calculations
of choose, cross, and variation procedures. The program of GA is GAOT toolbox
[Houck, Joines and Kay (1995)] in Matlab software, and the results of identification
are predicted in Table 6.

(3) DT-based method

The analytical natural frequencies ω∗s , (s = 1,2,3) are used as the input parameters
in order to produce the predicted crack variables (β ,α). The intersection of the
three curves in Figs. 8 indicates the possible crack position and crack size. When
the three curves do not meet exactly, the midpoint of the three pairs of intersections
is taken as the crack position and crack size. The estimations of crack variables are
given by Table 7.
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Figure 8: Predicted crack variables using DT for the four crack cases (1: The first
order; 2: The second order; 3: The third order)

(4) FC-based method

The first three natural frequencies using analytical method are used as input in this
case. Using FC method, the variation of cracks size α and crack position β are
plotted for the three modes in Fig. 9. The intersection of the three curves indicates
the possible crack position and crack size. When the three curves do not meet
exactly, the centroid of the three pairs of intersections is taken as the crack position
and crack size. The predicted crack positions and crack sizes are presented in Table
8.
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Figure 9: Predicted crack variables using FC for the four crack cases

Table 8: Predicted crack variables for the four crack cases using FC

case No. β (error %) α (error %) cpu time (s)
I 0.095 (0.5) 0.097 (0.3) 0.53
II 0.096 (0.4) 0.195 (0.5) 0.54
III 0.385 (1.5) 0.092 (0.8) 0.53
IV 0.396 (0.4) 0.201 (0.1) 0.53
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(c) Comparison of cpu time for different methods 

Figure 10: Comparisons of NN, GA, DT and FC
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3.3 Assessment of crack identification methods

The four vibration-based crack identification methods including of NN, GA, DT
and FC are compared in terms of crack identification precision and computational
time for a given benchmark problem. The comparisons given by means of graphi-
cally displaying results are shown in Fig. 10.

(1) NN and GA can output crack prediction results directly without a procedure of
looking for the crossing point in DT and FC, however, the CPU time and calculation
precision of crack location and depth are worse than DT and FC based methods.

(2) DT is a direct method compared with others. It doesn’t need build big crack
fault samples or train neural network firstly. So DT has high calculation efficiency.
The ability in the computing precision and cpu time both are better than NN and
GA. However, the demerit of DT is sensitive to disturb of input parameters in root
finding procedure. In addition, the determinant transform and root finding can
hardly be achieved for complicate structures crack identification, such as bridge,
steel frame building and so on.

(3) The three-dimensional surfaces of the natural frequencies are based on macro-
calculation in different crack locations and sizes, which influence the efficiency of
FC-based crack identification method. However, due to the facts that frequency
contour method is visualized, stable and easy utilized in practice, it became mostly
popular algorithm in crack identification problems. In addition, the crack fault
samples can only be calculated one time, and need not duplicate compute. So FC
is relative optimum method in the group of NN, GA, DT and FC.

4 Conclusions

The problem of crack identification can be essentially an optimization problem.
In this paper, a benchmark problem of cantilever beam was given and the four
frequently-used crack identification methods including of NN, GA, DT and FC
are studied and compared in terms of identification precision and computational
time. NN and GA can output crack prediction results directly without a procedure
of looking for the crossing point in DT and FC, however, the CPU time and cal-
culation precision of crack location and depth are worse than DT and FC based
methods. DT’s abilities in the computing precision and CPU time both are bet-
ter than NN and GA. However, DT is sensitive to disturb of input parameters in
root finding procedure. Due to the facts that frequency contour method is visual-
ized, stable and easy utilized in practice, FC became mostly popular algorithm in
crack identification problems. In addition, the crack-detection-database can only
be calculated one time, and need not duplicate compute. So FC is relative optimum
method in the group of NN, GA, DT and FC. The conclusions of current studies are
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useful to investigators in deciding which method should be chosen in their crack
inspections.
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