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Thermocapillary Motion of a Spherical Drop in a
Spherical Cavity

Tai C. Lee1, Huan J. Keh2

Abstract: A theoretical study of the thermocapillary migration of a fluid sphere
located at an arbitrary position inside a spherical cavity is presented in the quasi-
steady limit of small Reynolds and Marangoni numbers. The applied temperature
gradient is perpendicular to the line through the drop and cavity centers. The gen-
eral solutions to the energy and momentum equations governing the system are
constructed from the superposition of their fundamental solutions in the spherical
coordinates originating from the two centers, and the boundary conditions are sat-
isfied by a multipole collocation method. Results for the thermocapillary migration
velocity of the drop are obtained for various cases. When the fluid sphere is at the
center of the cavity, the collocation result is in excellent agreement with the avail-
able exact solution. The normalized thermocapillary migration velocity decreases
with increases in the drop-to-cavity radius ratio and in the relative distance between
the drop and cavity centers, vanishing as the drop surface touches the cavity wall.
For a given configuration, this velocity augments with increases in the relative vis-
cosity of the drop and thermal conductivity of the cavity phase. The boundary
effects on the thermocapillary motion perpendicular to the line connecting the drop
and cavity centers is significant, but in general weaker than that parallel to this line.

Keywords: Thermocapillary motion, Creeping flow, Spherical drop and bubble,
Spherical cavity, Boundary effect.

1 Introduction

When a small drop of one fluid is suspended in a second, immiscible fluid possess-
ing a temperature gradient, it will move in the direction of the gradient. This move-
ment, known as thermocapillary migration and found in many practical applications
1 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Repub-

lic of China.
2 Corresponding Author. Department of Chemical Engineering, National Taiwan University, Taipei

10617, Taiwan, Republic of China.
E-mail: huan@ntu.edu.tw



318 Copyright © 2013 Tech Science Press CMES, vol.93, no.5, pp.317-333, 2013

[Subramanian and Balasubramaniam (2001)], is caused by the temperature-induced
interfacial tension gradient along the drop surface, which drags the fluids and pro-
pels the drop toward the side where its interfacial tension is low. The thermocap-
illary motion of drops was first demonstrated experimentally by Young, Goldstein,
and Block (1959). They also obtained an analytical formula for the migration ve-
locity U0 of a spherical drop of radius a placed in an unbounded fluid of viscosity η

with a uniformly prescribed temperature gradient ∇T∞ at vanishing Reynolds and
Peclet (Marangoni) numbers,

U0 =
2

(2+ k∗)(2+3η∗)
(− ∂γ

∂T
)

a
η

∇T∞, (1)

where k∗ and η∗ are the ratios of thermal conductivities and viscosities, respec-
tively, between the internal and surrounding fluids and ∂γ

/
∂T is the variation of

the interfacial tension γ at the drop surface with respect to the local temperature
T . The thermocapillary mobility of a spherical gas bubble (with negligible thermal
conductivity and viscosity relative to the ambient liquid) is given by Eq. (1) taking
k∗ = η∗ = 0.

In most practical applications of thermocapillary migration, fluid drops are not iso-
lated and the surrounding fluid is externally bounded [Keh and Chen (1993); Ka-
sumi et al. (2000); Selva, Cantat and Jullien (2011); Nguyen and Chen (2011); Yin
et al. (2011); Katz et al. (2012)]. Thus, it is important to determine if the presence
of neighboring boundaries significantly affects the movement of drops. Through
the use of spherical bipolar coordinates, a method of reflections, and a lubrication
theory, semi-analytical and asymptotic solutions for the thermocapillary migration
velocity of a spherical drop in the vicinity of a planar boundary have been obtained
in two principal cases: the migration perpendicular to a plane surface of constant
temperature [Meyyappan, Wilcox, Subramanian (1981); Barton and Subramanian
(1990); Chen and Keh (1990); Loewenberg and Davis (1993)] and the migration
parallel to a plane wall prescribed with a linear temperature distribution [Meyyap-
pan and Subramanian (1987)]. The boundary effects on thermocapillary migration
were also studied analytically or semi-analytically for a fluid sphere located at an
axial position in a circular tube [Chen, Dagan, Maldarelli (1991)] and at an arbitrary
position between two parallel plane walls [Keh, Chen, and Chen (2002); Chang and
Keh (2006)]. An important result of these investigations is that the boundary effects
on thermocapillary migration are weaker than on sedimentation or buoyant rising
of the drop.

The system of a spherical drop moving within a spherical cavity can be an idealized
model for the drop migration in media or microchannels composed of connecting
spherical pores. Recently, the thermocapillary migration of a fluid sphere in another
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fluid within a spherical cavity parallel to the line connecting their centers was inves-
tigated with the use of a combined analytical-numerical method with a boundary
collocation technique, and numerical results for the drop mobility were obtained
[Lee and Keh (2013)]. The object of this article is to obtain a solution for the com-
plementary thermocapillary migration of a fluid sphere inside a spherical cavity
perpendicular to the line of their centers. The thermal and hydrodynamic equations
governing the system are solved by using the boundary collocation method, and the
wall-corrected thermocapillary mobility of the drop is obtained with good conver-
gence. Because the governing equations for the general problem of thermocapillary
migration of a drop within a cavity in an arbitrary direction are linear, its solution
can be obtained as a vectorial addition of the solutions for its two subproblems:
motion along the line connecting the drop and cavity centers, which was dealt with
previously, and motion perpendicular to this line, which is managed in the current
work.

2 Analysis

 

Figure 1: Geometrical sketch for the thermocapillary motion of a spherical drop in
a spherical cavity perpendicular to the line connecting their centers.

We consider the quasi-steady thermocapillary migration of a spherical fluid drop of
radius a in another fluid inside a spherical cavity of radius b, as shown in Fig. 1, in
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which (x,y,z), (ρ,φ ,z), and (r2,θ2,φ) are the rectangular, circular cylindrical, and
spherical coordinate systems, respectively, with the origin at the center of the cavity,
and (r1,θ1,φ) represent the spherical coordinates originating from the center of the
drop located away from the cavity center in the z direction at a distance d. A linear
temperature distribution T∞(x) with a constant gradient E∞ex (equal to ∇T∞ and
perpendicular to the line through the drop and cavity centers) is prescribed in the
cavity surroundings far from the drop, where ex is the unit vector in the x direction.
To determine the thermocapillary migration velocity of the drop within the cavity,
the temperature and fluid velocity fields need to be found first.

2.1 Temperature distributions

For the heat transfer in a system of thermocapillary migration, the Marangoni num-
ber can be assumed to be small. Hence, the equations of energy governing the
temperature distributions are the Laplace equations

∇
2T̂ = 0 (2)

for the fluid drop (r1 ≤ a),

∇
2T = 0 (3)

for the external fluid (r1 ≥ a and r2 ≤ b), and

∇
2Tw = 0 (4)

for the cavity surroundings (r2 ≥ b).

The boundary conditions require that the temperature and the normal component of
heat flux be continuous at the drop surface and cavity wall as well as that the tem-
perature field in the cavity phase far away from the drop approach the undisturbed
values. Thus,

r1 = a : T = T̂ , (5)

k
∂T
∂ r1

= k̂
∂ T̂
∂ r1

, (6)

r2 = b : T = Tw, (7)

k
∂T
∂ r2

= kw
∂Tw

∂ r2
, (8)

r2→ ∞ : Tw→ T∞ = T0 +E∞x, (9)
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where k, k̂, and kw denote the constant thermal conductivities of the external fluid,
the drop phase, and the cavity surroundings, respectively, and T0 is the temperature
at the center of the cavity.

The general solution of the temperature distributions can be expressed as

T̂ = T0 +E∞

∞

∑
n=1

R1nrn
1P1

n (µ1)cosφ , (10)

T = T0 +E∞

∞

∑
n=1

[S1nr−n−1
1 P1

n (µ1)+R2nrn
2P1

n (µ2)]cosφ , (11)

Tw = T0 +E∞x+E∞

∞

∑
n=1

S2nr−n−1
2 P1

n (µ2)cosφ , (12)

where P1
n is the associated Legendre function of the first kind of order n and degree

one and µi is used to denote cosθi for brevity. Equations (10)-(12) satisfies Eq. (9)
and the constraint of finite temperature in the fluid phases immediately, and Rin and
Sin with i = 1 and 2 are unknown coefficients to be determined using the boundary
conditions at the drop and cavity surfaces. In the construction of the solution in
Eq. (11), the general solutions to the Laplace Eq. (3) in two different spherical
coordinates are superimposed. The solutions in Eqs. (10)-(12) contain only terms
of cosφ and sinφ (no higher-order harmonics) due to the axial symmetry of the
sphere-in-sphere geometry.

Substituting Eqs. (10)-(12) into Eqs. (5)-(8), we obtain

∞

∑
n=1
{(S1na−n−1−R1nan)P1

n (µ1)+R2n[rn
2P1

n (µ2)]r1=a}= 0, (13)

∞

∑
n=1
{[(n+1)S1na−n−2 +nk∗R1nan−1]P1

n (µ1)−R2n[δ
(1)
n (ρ,z)]r1=a}= 0, (14)

∞

∑
n=1
{S1n[r−n−1

1 P1
n (µ1)]r2=b +(R2nbn−S2nb−n−1)P1

n (µ2)}= b(1−µ
2
2 )

1/2, (15)

∞

∑
n=1
{k∗wS1n[δ

(2)
n (ρ,z)]r2=b+[nk∗wR2nbn−1 +(n+1)S2nb−n−2]P1

n (µ2)}= (1−µ
2
2 )

1/2,

(16)

where k∗ = k̂/k, k∗w = k/kw, and the functions δ
(1)
n and δ

(2)
n are defined by Eqs.

(A1) and (A2) in Appendix A.
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Examination of Eqs. (13)-(16) indicates that the solution of the coefficient matrix
is independent of the φ coordinate of the boundary points on the spherical surfaces
r1 = a and r2 = b. A multipole collocation method [Keh and Chang (2010); Wan
and Keh (2011)] to truncate the infinite series in Eqs. (10)-(12) after M terms and
to enforce the boundary conditions in Eqs. (13)-(16) at M discrete points on each
longitudinal arc of the drop and cavity surfaces (with values of θi between 0 and
π) leads to a system of 4M simultaneous linear algebraic equations. This matrix
equation can be numerically solved to yield the 4M unknown constants Rin and
Sin appearing in the truncated form of Eqs. (10)-(12). The temperature field is
completely obtained once these constants are solved for a sufficiently large value
of M.

2.2 Fluid velocity distributions

Having obtained the solution for the temperature distribution on the drop surface
which drives the thermocapillary migration, we can now proceed to find the ve-
locity field. Owing to the low Reynolds number encountered in thermocapillary
motions, the fluid motion is governed by the Stokes equations,

η̂∇
2v̂−∇p̂ = 0, (17)

∇ · v̂ = 0, (18)

η∇
2v−∇p = 0, (19)

∇ ·v = 0, (20)

where v̂ and v are the fluid velocities for the flow in the drop (r1 ≤ a) and for
the external flow (r1 ≥ a and r2 ≤ b), respectively, p̂ and p are the corresponding
pressure distributions, and η̂and η are the corresponding viscosities.

The boundary conditions for the fluid velocities at the drop surface [Young, Gold-
stein, and Block (1959); Anderson (1985)] and cavity wall are

r1 = a : (I− er1er1)er1 : (τττ− τ̂ττ) =− ∂γ

∂T
(I− er1er1) ·∇T, (21)

v = v̂, (22)

er1 · (v−Uex) = 0, (23)

r2 = b : v = 0. (24)

Here, τττ = η [∇v+(∇v)T ] and τ̂ττ = η̂ [∇v̂+(∇v̂)T ] are the viscous stress tensors,
eri are the radial unit vectors in the two spherical coordinate systems, I is the unit
dyadic, ∇T can be evaluated from the temperature distribution given by Eq. (11)
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with constants obtained from Eqs. (13)-(16), and U is the thermocapillary migra-
tion velocity of the drop to be determined.

The general solution of the fluid velocity distributions satisfying Eqs. (17)-(20) in
spherical coordinates of the two different origins was given by Eqs. (6)-(11) in Lee
and Keh (2012). Applying the boundary conditions at the drop and cavity surfaces
given by Eqs. (21)-(24) together with Eq. (11) to this general solution, we obtain

∞

∑
n=1

[B1nB∗1n +C1nC∗1n +A1nA∗1n +B2nB∗2n +C2nC∗2n +A2nA∗2n]r1=a

+η
∗

∞

∑
n=1
{2[Ĉn(n−1)an−2

+ Ân
n(n+2)

n+1
an]

dP1
n (µ1)

dµ1
(1−µ

2
1 )

1/2− B̂n(n−1)an−1P1
n (µ1)(1−µ

2
1 )
−1/2}

=−( ∂γ

∂T
)
E∞

η

∞

∑
n=1
{S1nδ

(3)
n (a,θ1)+R2n[δ

(4)
n (ρ,z)]r1=a},

(25)

∞

∑
n=1

[B1nB∗∗1n +C1nC∗∗1n +A1nA∗∗1n +B2nB∗∗2n +C2nC∗∗2n +A2nA∗∗2n]r1=a

+η
∗

∞

∑
n=1
{2[Ĉn(n−1)an−2

+ Ân
n(n+2)

n+1
an]P1

n (µ1)(1−µ
2
1 )
−1/2− B̂n(n−1)an−1 dP1

n (µ1)

dµ1
(1−µ

2
1 )

1/2]}

=−( ∂γ

∂T
)
E∞

η

∞

∑
n=1
{S1nδ

(5)
n (a,θ1)+R2n[δ

(6)
n (ρ,z)]r1=a},

(26)

as well as Eqs. (15a-d) and (16) in Lee and Keh (2012). In Eqs. (25) and (26),
η∗ = η̂/η , the functions δ

(3)
n , δ

(4)
n , δ

(5)
n , and δ

(6)
n are defined by Eqs. (A3)-(A6),

the starred Ain, Bin, and Cin with i = 1 and 2 are functions of position given by
Eqs. (A1)-(A12) in Lee and Keh (2012), the first M coefficients S1n and R2n can
be obtained through the procedure given in the previous subsection, and Ain, Bin,
Cin, Ân, B̂n, and Ĉn are the unknown constants in the general solution of the fluid
velocity distributions to be determined.

Equations (25) and (26) together with Eqs. (15a-d) and (16) in Lee and Keh (2012)
can also be satisfied by utilizing the collocation method, which is independent of
the φ coordinate of the boundary points on the drop and cavity surfaces. Along the
longitudinal arc at each spherical surface, these equations are applied at N discrete
points (from θi = 0 to θi = π) and their infinite series are truncated after N terms.
This generates a set of 9N linear algebraic equations for the 9N unknown constants
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Ain, Bin, Cin, Ân, B̂n, and Ĉn. Once these constants are solved for a sufficiently large
number of N, the fluid velocity distributions are obtained completely.

2.3 Drop velocity

The drag force acting on the drop by the ambient fluid can be determined from

F = 8πηA11, (27)

where only the lowest constant A11 makes a contribution. Since the drop is freely
suspended in the surrounding fluid, the net force on it must vanish and Eq. (27)
leads to

A11 = 0. (28)

To determine the thermocapillary migration velocity U of the drop, Eq. (28) and
the 9N algebraic equations need to be solved simultaneously.

3 Results and discussion

The solution for the thermocapillary migration of a fluid sphere inside a spherical
cavity perpendicular to the line of the drop and cavity centers, obtained by using
the boundary collocation technique described in the previous section, is presented
in this section. The details of this collocation scheme are given by Lee and Keh
(2012) for the creeping motion of a drop in a cavity with the same geometry but
driven by a body force, in which very good accuracy and convergence behavior
were achieved.

Numerical solutions for the thermocapillary migration velocity of the confined
spherical drop are presented in Table 1 and Figs. 2-4 for the case of k∗w = k/kw = 1
and various values of the drop-to-cavity radius ratio a/b, relative distance between
the centers of the drop and cavity d/(b−a), and relative drop viscosity η∗. The cor-
responding velocity of a fluid sphere in an unbounded fluid, U0 given by Eq. (1),
is used to normalize the boundary-corrected values. All results in the table con-
verge to at least the figures as shown. The temperature distributions in a bounded
system with k∗w = 1 are identical to those in the corresponding unbounded system,
and thus the normalized thermocapillary migration velocity U/U0 of the drop is
independent of its relative thermal conductivity k∗. For any values of k∗ and η∗, the
drop migrates with the velocity that would exist in the absence of the cavity wall
(U/U0 = 1) as k∗w = 1 and a/(b−d) = 0 (the wall is infinitely far from the drop).

For the particular case of a spherical drop situated at the center of a spherical cavity,
the exact solution of its thermocapillary migration velocity was obtained explicitly
as [Lee and Keh (2013)]
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Table 1: The normalized thermocapillary mobility U/U0 of a spherical drop in a
spherical cavity with k∗w = 1 at various values of a/b, d/(b−a), and η∗.

d/(b−a) a/b U/U0
η∗ = 0 η∗ = 1 η∗ = 10 η∗→ ∞

0.25 0.1 0.99724 0.99726 0.99727 0.99740
0.2 0.97832 0.97888 0.97920 0.97935
0.3 0.92832 0.93221 0.93439 0.93491
0.4 0.83459 0.84883 0.85698 0.85867
0.5 0.69088 0.72588 0.74702 0.75122
0.6 0.50524 0.56758 0.60970 0.61825
0.7 0.30646 0.38676 0.45339 0.46833
0.8 0.13733 0.20646 0.28782 0.31048
0.9 0.03243 0.06147 0.12381 0.15236
0.95 0.00766 0.01672 0.04864 0.07513
0.975 0.00187 0.00436 0.01711 0.03735
0.99 0.00029 0.00071 0.00363 0.01483

0.5 0.1 0.99601 0.99606 0.99609 0.99646
0.2 0.97122 0.97227 0.97283 0.97324
0.3 0.91105 0.91712 0.92040 0.92124
0.4 0.80564 0.82500 0.83587 0.83813
0.5 0.65341 0.69601 0.72177 0.72638
0.6 0.46749 0.53669 0.58440 0.59413
0.7 0.27810 0.36062 0.43182 0.44773
0.8 0.12305 0.18989 0.27268 0.29625
0.9 0.02894 0.05580 0.11643 0.14541
0.95 0.00690 0.01508 0.04531 0.07179
0.975 0.00167 0.00390 0.01576 0.03560
0.99 0.00026 0.00064 0.00331 0.01417
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Figure 2: Plots of the normalized thermocapillary mobility U/U0 of a drop in a
cavity with k∗w = 1 versus the radius ratio a/b with d/(b− a) as a parameter. The
solid and dashed curves denote the cases of η∗→ ∞ and η∗ = 0, respectively.
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Figure 3: Plots of the normalized thermocapillary mobility U/U0 of a drop in a
cavity with k∗w = 1 versus the normalized center-to-center distance d/(b−a) with
a/b as a parameter. The solid and dashed curves denote the cases of η∗→ ∞ and
η∗ = 0, respectively.



Thermocapillary Motion of a Spherical Drop in a Spherical Cavity 327

1E-3 0.01 0.1 1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

0.8

0.6

0.4

a/b=0.2

 *η

  

 

U/U0

Figure 4: Plots of the normalized thermocapillary mobility U/U0 of a drop in a
cavity with k∗w = 1 versus the viscosity ratio η∗ with a/b as a parameter. The
solid and dashed curves denote the cases of d/(b− a) = 0 and d/(b− a) = 0.8,
respectively.

U
U0

=
3
2
(2+ k∗)(2+3η

∗)(1−λ )2(2+4λ +6λ
2 +3λ

3)

× [2+3η
∗+3(1−η

∗)λ 5]−1[(2+ k∗)(2+ k∗w)+2(1− k∗)(1− k∗w)λ
3]−1,

(29)

where λ = a/b. Our numerical results of U/U0 for the concentric case of d/(b−
a) = 0 shown in Figs. 2-4 are in excellent agreement with this exact solution.

The numerical results in Table 1 and Figs. 2-4 for the case of k∗w = 1 indicate that the
boundary effect on the thermocapillary migration is significant and U/U0 decreases
monotonically with an increase in the radius ratio a/b from unity at a/b = 0 to zero
at a/b = 1, keeping the values of η∗ and d/(b−a) unchanged. For constant values
of η∗ and a/b, U/U0 also decreases monotonically with an increase in d/(b− a)
and vanishes in the touching limit of the two surfaces [d/(b− a) = 1]. For fixed
values of a/b and d/(b− a), U/U0 increases monotonically with an increase in
η∗, opposite to that for the motion of a drop in a cavity driven by a body-force
field, where the wall retardation effect on the drop mobility in general becomes
stronger when the value of η∗ is larger for a given configuration. Figure 4 shows
that, beyond the range of 0.1 < η∗ < 10, U/U0 is not a sensitive function of η∗.

The numerical solutions for the normalized thermocapillary migration velocity U/
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U0 of a spherical gas bubble (with k∗ = η∗ = 0) inside a spherical cavity perpen-
dicular to the line connecting their centers are presented in Table 2 and Fig. 5 for
various values of the parameters k∗w, a/b, and d/(b− a). Again, U/U0 decreases
monotonically with increases in a/b and d/(b− a), keeping the other factors un-
changed, and vanishes in the limit of touching surfaces [d/(b− a) = 1]. For the
case of k∗w 6= 1, U/U0 no longer equals unity as a/(b−d) = 0 (which also implies
that a/b = 0). For given values of a/b and d/(b− a), U/U0 decreases monoton-
ically with an increase in k∗w from a saturation state at k∗w = 0 to zero as k∗w → ∞.
This trend also occurs for the thermocapillary migration of a liquid drop.
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Figure 5: Plots of the normalized thermocapillary mobility U/U0 of a gas bubble
(with k∗ = η∗ = 0) in a cavity versus the thermal conductivity ratio k∗w with a/b as
a parameter. The solid and dashed curves denote the cases of d/(b− a) = 0 and
d/(b−a) = 0.8, respectively.

The results for the normalized thermocapillary mobility U/U0 of a confined fluid
sphere with η∗ = 1 and a/b = 0.5 are plotted versus the thermal conductivity ratio
k∗ in Fig. 6 for various values of the parameters k∗w and d/(b−a). Again, U/U0 de-
creases monotonically with increases in k∗w and d/(b−a), keeping the other factors
unchanged. On the other hand, U/U0 increases with an increase in k∗ for the case of
k∗w < 1, decreases with an increase in k∗ for the case of k∗w > 1, and is independent
of k∗ for the case of k∗w = 1.

The governing equations for the general problem of thermocapillary migration of a
fluid sphere within a spherical cavity in an arbitrary direction are linear. Therefore,
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Table 2: The normalized thermocapillary mobility U/U0 of a gas bubble (with
k∗ = η∗ = 0) in a spherical cavity at various values of a/b, d/(b−a), and k∗w.

d/(b−a) a/b U/U0
k∗w = 0 k∗w = 0.5 k∗w = 2 k∗w = 10

0.25 0.1 1.49498 1.19641 0.74814 0.24952
0.2 1.46086 1.17187 0.73537 0.24621
0.3 1.37207 1.10743 0.70138 0.23727
0.4 1.21018 0.98795 0.63681 0.21984
0.5 0.97213 0.80778 0.53572 0.19148
0.6 0.68136 0.58028 0.40137 0.15169
0.7 0.39092 0.34360 0.25196 0.10395
0.8 0.16352 0.14929 0.11836 0.05621
0.9 0.03559 0.03394 0.02979 0.01802

0.95 0.00809 0.00790 0.00737 0.00543
0.975 0.00192 0.00190 0.00183 0.00154
0.99 0.00030 0.00030 0.00029 0.00027

0.5 0.1 1.49254 1.19475 0.74735 0.24933
0.2 1.44698 1.16240 0.73073 0.24505
0.3 1.33932 1.08464 0.68994 0.23435
0.4 1.15787 0.95044 0.61718 0.21464
0.5 0.90871 0.76046 0.50952 0.18416
0.6 0.62229 0.53407 0.37395 0.14347
0.7 0.35039 0.31015 0.23034 0.09684
0.8 0.14509 0.13318 0.10677 0.05180
0.9 0.03159 0.03021 0.02670 0.01649

0.95 0.00721 0.00705 0.00661 0.00494
0.975 0.00171 0.00169 0.00163 0.00139
0.99 0.00027 0.00026 0.00026 0.00024
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Figure 6: Plots of the normalized thermocapillary mobility U/U0 of a drop in a
cavity with a/b = 0.5 and η∗ = 1 versus the thermal conductivity ratio k∗ with k∗w
as a parameter. The solid and dashed curves denote the cases of d/(b−a) = 0 and
d/(b−a) = 0.6, respectively.

its net solution can be obtained as a simple superposition of the solutions for its
two subproblems: migration normal to the line connecting the drop and cavity
centers, which is investigated herein, and migration parallel to this line, whose
numerical solutions for the drop velocity were obtained by Lee and Keh (2013).
A comparison between the results of both subproblems shows that the cavity wall
in general affects the most (results in the smallest U/U0) for the drop when its
migration is parallel to the line of centers, and the least when the migration is
perpendicular to it, but their difference is not significant and there exist exceptions
for the case of η∗→ 0 and a/b is moderately small. Consequently, the direction of
thermocapillary migration of a spherical drop inside a spherical cavity is different
from that of the imposed temperature gradient, unless it is parallel or perpendicular
to the line of centers.

4 Concluding remarks

In this paper, the quasi-steady thermocapillary migration of a spherical fluid drop at
an arbitrary position within a spherical cavity perpendicular to the line connecting
their centers in the limit of vanishing Marangoni and Reynolds numbers has been
investigated by using the boundary collocation method. Numerical solutions for
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the drop velocity are obtained for various values of the drop-to-cavity radius ra-
tio, relative distance between the drop and cavity centers, and relative thermal and
hydrodynamic properties of the fluid and cavity phases. These results agree excel-
lently with the available analytical solution given by Eq. (29) for the special case
of a drop located at the center of a cavity. The boundary effect on the thermocapil-
lary migration of a drop in a cavity can be significant in appropriate situations. For
the migration of a spherical drop within a spherical cavity perpendicular to the line
through their centers driven by a body-force, the numerical solutions of the drop
mobility were obtained by Lee and Keh (2012). A comparison of these solutions
with the present results shows that the wall effect on the thermocapillary migration
of a drop is weaker than that on a settling or buoyantly rising drop.

The mobility of a spherical drop undergoing thermocapillary migration in a sec-
ond fluid within a spherical cavity along the line of their centers was determined
by Lee and Keh (2013) for various values of the parameters k∗, k∗w, η∗, a/b, and
d/(b−a). Analogous to the results of the current work, this mobility also decreases
with an increase in k∗w, a/b, and d/(b−a), in general increases with increasing η∗,
increases (decreases) with an increase in k∗ for the case of k∗w < 1 (k∗w > 1), and is
independent of k∗ for the case of k∗w = 1. However, the boundary effect on the ther-
mocapillary motion of a fluid sphere in general is slightly stronger for this axially
symmetric migration. For the general problem of a drop undergoing thermocapil-
lary migration in an arbitrary direction within a cavity, the solution can be obtained
by the superposition of both the axisymmetric and transverse results.

Acknowledgment

This research was partly supported by the National Science Council of the Republic
of China.

References

Anderson, J. L. (1985): Droplet interactions in thermocapillary motion. Int. J.
Multiphase Flow, vol. 11, pp. 813-824.

Barton, K. D.; Subramanian, R. S. (1990): Thermocapillary migration of a liquid
drop normal to a plane surface. J. Colloid Interface Sci., vol. 137, pp. 170-182.

Chang, Y. C.; Keh, H. J. (2006): Thermocapillary motion of a fluid droplet per-
pendicular to two plane walls. Chem. Eng. Sci., vol. 61, pp. 5221-5235.

Chen, J.; Dagan, Z.; Maldarelli, C. (1991): The axisymmetric thermocapillary
motion of a fluid particle in a tube. J. Fluid Mech., vol. 233, pp. 405-437.

Chen, S. H.; Keh, H. J. (1990): Thermocapillary motion of a fluid droplet normal



332 Copyright © 2013 Tech Science Press CMES, vol.93, no.5, pp.317-333, 2013

to a plane surface. J. Colloid Interface Sci., vol. 137, pp. 550-562.

Kasumi, H.; Solomentsev, Y. E.; Guelcher, S. A.; Anderson, J. L.; Sides, P.
J. (2000): Thermocapillary flow and aggregation of bubbles on a solid wall. J.
Colloid Interface Sci., vol. 232, pp. 111-120.

Katz, E.; Haj, M.; Leshansky, A. M.; Nepomnyashchy, A. (2012): Thermocap-
illary motion of a slender viscous droplet in a channel. Phys. Fluids, vol. 24, pp.
022102-1-11.

Keh, H. J.; Chang, Y. C. (2010): Slow motion of a general axisymmetric slip
particle along its axis of revolution and normal to one or two plane walls. CMES:
Computer Modeling in Engineering & Sciences, vol. 62, no. 3, pp. 225-253.

Keh, H. J.; Chen, L. S. (1993): Droplet interactions in thermocapillary migration.
Chem. Eng. Sci., vol. 48, pp. 3565-3582.

Keh, H. J.; Chen, P. Y.; Chen, L. S. (2002): Thermocapillary motion of a fluid
droplet parallel to two plane walls. Int. J. Multiphase Flow, vol. 28, pp. 1149-1175.

Lee, T. C.; Keh, H. J. (2012): Creeping motion of a fluid drop inside a spherical
cavity. Eur. J. Mech. B/Fluids, vol. 34, pp. 97-104.

Lee, T. C.; Keh, H. J. (2013): Axisymmetric thermocapillary migration of a fluid
sphere in a spherical cavity. Int. J. Heat Mass Transfer, vol. 62, pp. 772-781.

Loewenberg, M.; Davis, R. H. (1993): Near-contact, thermocapillary migration
of a nonconducting, viscous drop normal to a planar interface. J. Colloid Interface
Sci., vol. 160, pp. 265-274.

Meyyappan, M.; Subramanian, R. S. (1987): Thermocapillary migration of a gas
bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface
Sci., vol. 115, pp. 206-219.

Meyyappan, M.; Wilcox, W. R.; Subramanian, R. S. (1981): Thermocapillary
migration of a bubble normal to a plane surface. J. Colloid Interface Sci., vol. 83,
pp. 199-208.

Nguyen, H.-B.; Chen, J.-C. (2011): Effect of slippage on the thermocapillary
migration of a small droplet. Biomicrofluidics, vol. 6, pp. 012809-1-13.

Selva, B.; Cantat, I.; Jullien, M.-C. (2011): Temperature-induced migration of a
bubble in a soft microcavity. Phys. Fluids, vol. 23, pp. 052002-1-12.

Subramanian, R. S.; Balasubramaniam, R. (2001): The motion of bubbles and
drops in reduced gravity Cambridge University Press, Cambridge, UK.

Wan, Y. W.; Keh, H. J. (2011): Slow rotation of an axially symmetric particle
about its axis of revolution normal to one or two plane walls. CMES: Computer
Modeling in Engineering & Sciences, vol. 74, no. 2, pp. 109-137.



Thermocapillary Motion of a Spherical Drop in a Spherical Cavity 333

Yin Z.; Chang L.; Hu W.; Gao, P. (2011): Thermocapillary migration and inter-
action of two nondeformable drops. Appl. Math. Mech., vol. 32, pp. 811–824.

Young, N. O.; Goldstein, J. S.; Block, M. J. (1959): The motion of bubbles in a
vertical temperature gradient. J. Fluid Mech., vol. 6, pp. 350-356.

Appendix A: Definitions of some functions in Section 2

δ
(1)
n (ρ,z) = nrn−1

2
∂ r2

∂ r1
P1

n (cosθ2)− rn
2

dP1
n (cosθ2)

dcosθ2
sinθ2

∂θ2

∂ r1
, (A1)

δ
(2)
n (ρ,z) =−(n+1)r−n−2

1
∂ r1

∂ r2
P1

n (cosθ1)− r−n−1
1

dP1
n (cosθ1)

dcosθ1
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∂θ1

∂ r2
, (A2)

δ
(3)
n (r,θ) =−r−n−2 dP1
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dcosθ
sinθ , (A3)

δ
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], (A4)

δ
(5)
n (r,θ) =−r−n−2P1

n (cosθ)cscθ , (A5)

δ
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1 rn
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where

r1 = [ρ2 +(z−d)2]1/2, cosθ1 =
z−d

r1
, sinθ1 =

ρ

r1
, (A7)

r2 = (ρ2 + z2)1/2, cosθ2 =
z
r2
, sinθ2 =

ρ
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