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Three-dimensional Fluid Flow Simulations Using
GPU-based Particle Method

K. Kakuda1, T. Nagashima1, Y. Hayashi1, S. Obara1, J. Toyotani1, S. Miura2,
N. Katsurada3, S. Higuchi3 and S. Matsuda3

Abstract: The application of a GPU-based particle method to three-dimensional
incompressible viscous fluid flow problems is presented. The particle approach
is based on the MPS (Moving Particle Semi-implicit) scheme using logarithmic
weighting function to stabilize the spurious oscillatory solutions for solving the
Poisson equation with respect to the pressure fields by using GPU-based SCG
(Scaled Conjugate Gradient) method. Numerical results demonstrate the workabil-
ity and the validity of the present approach through the dam-breaking flow problem
and flow behavior in a liquid ring pump with rotating impeller blades.
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1 Introduction

The numerical simulations of three-dimensional (3D) viscous fluid flows including
multi-scale/physics and moving boundary/obstacle are indispensable in the fields
of engineering and science from a practical point of view. The numerical fluid
flow simulations have been successfully performed by many researchers with the
use of finite difference method and finite element method [Stein, Borst and Hughes
(2004)]. Numerical difficulties have been experienced in the solution of incom-
pressible Navier-Stokes equations at higher Reynolds numbers. Especially, it is
well known that the centered finite difference and standard Galerkin finite ele-
ment formulations lead to spurious oscillatory solutions for flow problem at high
Reynolds number regimes. To overcome such spurious oscillations, various up-
wind/ upstream-based schemes have been consistently presented in both frame-
works.
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There are also various gridless/ meshless-based particle methods, such as SPH
(Smoothed Particle Hydrodynamics) method [Lucy (1977); Gingold and Mon-
aghan (1977)], MPS (Moving Particle Semi-implicit) method [Koshizuka and Oka
(1996)], and MLPG (Meshless Local Petrov-Galerkin) one [Atluri and Zhu (1998);
Lin and Atluri (2001); Avila and Atluri (2009); Avila, Han and Atluri (2011)],
to simulate effectively such complicated problems. The SPH methods for solving
compressible fluid flows with gravity have been firstly developed in the field of as-
trophysics [Lucy (1977);Gingold and Monaghan (1977)], and applied successfully
to a wide variety of complicated physical problems. The MPS method [Koshizuka
and Oka (1996)] as an incompressible fluid flow solver has been widely applied to
the problem of breaking wave with large deformation, the fluid-structure interac-
tion problem, and so forth. However, the standard/original MPS approach leads to
the above-mentioned unphysical numerical oscillation of pressure fields which are
described by the discretized Poisson equation. To improve some shortcomings of
the standard MPS method, Khayyer and Gotoh have proposed the modified MPS
method for the prediction of wave impact pressure on a coastal structure to ensure
more exact momentum conservation [Khayyer and Gotoh (2009)]. The improve-
ment of stability in the standard MPS method has been more recently achieved by
adding some source terms into Poisson pressure equation [Kondo and Koshizuka
(2011)]. Atluri and Zhu [Atluri and Zhu (1998)] have developed the MLPG ap-
proach based on the local symmetric weak form and the moving least squares for
solving accurately potential problems, and the approach was extended to deal with
the problems for incompressible Navier-Stokes equations [Lin and Atluri (2001)]
in fluid dynamics. Avila and Atluri [Avila and Atluri (2009)] have presented ef-
ficiently various numerical solutions of the non-steady, two-dimensional Navier-
Stokes equations by using the MLPG method coupled with a fully implicit pressure-
correction approach. They have also proposed a novel MLPG-mixed finite volume
method for solving the steady-state Stokes flow involving complex phenomena be-
tween eccentric rotating cylinders [Avila, Han and Atluri (2011)].

Recently, the physics-based computer simulations on the GPU (Graphics Process-
ing Units) have increasingly become an important strategy for solving efficiently
various problems, such as fluid dynamics [Harris (2004); Crane, Llamas and Tariq
(2008); Harada, Masaie, Koshizuka and Kawaguchi (2008); Hori, Gotoh, Ikari and
Khayyer (2011)], rigid body dynamics [Harada (2008)], and so forth. In our pre-
vious work, we have presented a GPU-based particle scheme using logarithmic
weighting function for solving effectively two-dimensional problems of incom-
pressible fluid flow [Kakuda, Nagashima, Hayashi, Obara, Toyotani, Katsurada,
Higuchi and Matsuda (2012)]. The GPU-implementation consisted mainly of the
five steps, namely, the search for neighboring particles in the influence area, the cal-
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culation of the particle number density, solving the Poisson equation with respect
to the pressure fields, the calculation of the pressure gradient, and the modification
of velocities and positions of the particles. We obtained that the performance on
GPU with about 120,000 particles led to approximately 12 times speed-up.

The purpose of this paper is to present the application of the GPU-based particle
method using logarithmic weighting function to 3D incompressible viscous fluid
flow problems, namely the dam-breaking flow problem [Martin and Moyce (1952);
Hirt and Nichols (1981); Ramaswamy and Kawahara (1987)] and flow in a liquid
ring pump with rotating impeller [Kakuda, Ushiyama, Obara, Toyotani, Matsuda,
Tanaka and Katagiri (2010)]. The dam-breaking flow problem has been used widely
to verify the applicability and validity of the numerical methods. On the other hand,
the phenomena in the liquid ring pump require the multi-physics, namely fluid-
structure interaction problems [Du and Shen (2010)], including the moving inter-
face boundary between gas and liquid, and also the rotating impeller with blades.
The pump has an impeller with blades attached to a center hub, located by the de-
centering in a cylindrical body [Avila, Han and Atluri (2011)]. The workability and
validity of the present approach are demonstrated through the dam-breaking flow
problem and flow in the liquid ring pump, and compared with experimental data
and other numerical ones.

Throughout this paper, the summation convention on repeated indices is employed.
A comma following a variable is used to denote partial differentiation with respect
to the spatial variable.

2 Statement of the problem

Let Ω be a bounded domain in 3D Euclidean space with a piecewise smooth bound-
ary Γ. The unit outward normal vector to Γ is denoted by nnn. Also, ℑ denotes a
closed time interval.

The motion of an incompressible viscous fluid flow is governed by the following
Navier-Stokes equations :

Dui

Dt
=− 1

ρ
p,i +νui, j j + fi in ℑ×Ω (1)

Dρ

Dt
= 0 in ℑ×Ω (2)

where ui is the velocity vector component, ρ is the density, p is the pressure, fi is
the external force, ν is the kinematic viscosity, and D/Dt denotes the Lagrangian
differentiation.
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In addition to Eq. 1 and Eq. 2, we prescribe the initial condition ui(xxx,0) = u0
i , where

u0
i denotes the given initial velocity, and the Dirichlet and Neumann boundary con-

ditions.

3 MPS formulation using a logarithmic-type weighting function

The particle interaction models of the MPS as illustrated in Fig. 1(a) are prepared
with respect to differential operators, namely, gradient, divergence and Laplacian
[Koshizuka and Oka (1996)]. The incompressible viscous fluid flow is calculated
by a semi-implicit algorithm, such as SMAC (Simplified MAC) scheme [Ams-
den and Harlow (1970)]. For the standard MPS formulation, the selection of a
weighting function is a key factor in the particle-based framework. If the distance
r between the coordinates rrri and rrr j is close, then there is a possibility that the com-
putation fails suddenly with unphysical numerical oscillations. Therefore, in order
to stabilize such spurious oscillations generated by the standard MPS strategy, we
adopt the following logarithmic-type weighting function as shown in Fig. 1(b), and
also consider the reduction of ad hoc influence radius, re, for solving the pres-
sure fields [Kakuda, Nagashima, Hayashi, Obara, Toyotani, Katsurada, Higuchi
and Matsuda (2012)]. As a reason for the consideration, the finite element ap-
proach is successful only if the pressure field is interpolated with functions at least
one order lower than those of the velocity vector field.

w(r) =

{
log(

re

r
) (r < re)

0 (r ≥ re)
(3)

The logarithmic-type weighting function is generally similar to the profile of the
weighting function proposed by Kondo and Koshizuka to stabilize the pressure
calculations [Kondo and Koshizuka (2011)](see Fig. 1(b)).

The particle number density n at particle i with the neighboring particles j is defined
as

< n >i= ∑
j 6=i

w(|rrr j− rrri|) (4)

The Poisson equation for solving implicitly the pressure field at particle i is also
given as follows [Kondo and Koshizuka (2011)]:

1
ρ0

< ∇∇∇
2 p >i= − 1−β

∆t2
< n∗ >i −2 < nk >i +< nk−1 >i

n0

− β − γ

∆t2
< n∗ >i −< nk >i

n0 − γ

∆t2
< n∗ >i −n0

n0 (5)



Three-dimensional Fluid Flow Simulations 367

where ρ0 is the density in the initial state, < n∗ >i is an auxiliary particle number
at particle i, and β and γ denotes the adequate dimensionless parameters.

(a) Particle interaction models (2D) (b) Profiles of weighting functions
Figure 1: Particle interaction models and weighting functions

4 GPU implementation using CUDA

The specification of CPU and GPU using CUDA is summarized in Tab. 1. A physi-
cal value at particle position is calculated as a weighted sum of the values of neigh-
boring particles in the influence area. Therefore, we have to search for neighboring
particles. The difficulty in implementing MPS on the GPU is that the neighborhood
relationship among particles dynamically changes during the simulation.

The GPU implementation consists mainly of the following five steps [Kakuda, Na-
gashima, Hayashi, Obara, Toyotani, Katsurada, Higuchi and Matsuda (2012)]:
1) search for neighboring particles in the influence area;
2) calculation of the particle number density;
3) solving the Poisson equation with respect to the pressure fields by using GPU-
based SCG method;
4) calculation of the pressure gradient;
5) modification of velocities and positions of the particles.

5 Numerical examples

In this section we present numerical results obtained from applications of the above-
mentioned numerical method to incompressible viscous fluid flow problems, namely
dam-breaking flow problem involving free surface and flow in a liquid ring pump
with rotating impeller blades from a practical point of view. The initial velocities
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Table 1: A summary of the specification of CPU and GPU

CPU Intel Core i7, 3.50GHz
Memory DDR3 PC3-10600 16GB
OS Cent OS 6.0 64bit
Bus PCI Express 2.0x16
GPU NVIDIA GeForce GTX580
Global Memory 1.5GB
Processor Clock 1544MHz
Streaming Multiprocessor (SM) 16
CUDA core 512
Memory Transfer Rate 192.4GB/s
Memory Interface 384bit
CUDA Driver Version 4.10
Tool kit & SDK Version 4.0

are assumed to be zero everywhere in the interior domain. In three-dimensional
simulation, we set the CFL condition umax∆t/lmin ≤ C, where C is the Courant
number. The kernel sizes for the particle number density and the gradient/Laplacian
models are re = 4.0l0 and r̄e = 2.0l0 for velocity and pressure calculations, respec-
tively, in which l0 is the distance between two neighboring particles in the initial
state. In both cases, we set l0 = 0.008m and also (β ,γ) = (0.5,0.05).

5.1 Dam-breaking flow problem

Let us first consider the dam-breaking flow problem involving free surface and
gravity. Fig. 2 shows the geometry and the initial state of particles 199,540 for
flow in the dam-breaking problem.

The comparisons of CPU and GPU particle-based simulations at each time are
shown in Fig. 3, and the agreement between these results appears satisfactory.
Fig. 4 shows the accelerating performance of GPU to the CPU time, and also the
time evolutions of the leading-edge of the water using the present approach and
the standard MPS method through comparison with experimental data [Martin and
Moyce (1952)]. We can see from Fig. 4 that the performance with about 199,540
particles leads to approximately 17.33 times speed-up. The agreement between the
present results and the experimental data appears also satisfactory.



Three-dimensional Fluid Flow Simulations 369

(a) Geometrical configuration (b) Initial state of particles
Figure 2: Dam-breaking flow problem

5.2 Flow in a liquid ring pump

As the second example, Fig. 5 shows the geometrical configuration and the initial
state of particles for flow in a liquid ring pump with rotating impeller. The phenom-
ena in the pump require the multi-physics problem including the moving interface
boundary between gas and liquid, and the rotating impeller with blades. In Fig. 5(a)
the blades near the top of the pump are very closer to the outside wall than at the
side and bottom of the pump. The impeller with blades is attached to a center hub
and located in off-set from the center of the cylindrical body. The eccentricity ra-
tio is about 0.387. In this 3D simulation, we set 211,212 particles in the initial
configuration and 2,400rpm as the speed of the rotating impeller.

Fig. 6 shows the instantaneous particle behaviors for the rotational speed 2,400rpm
of the impeller blades. When the pump starts, the impeller slings the water sealant
by centrifugal force, to the outside walls of the body, forming a water ring in the
area of impeller blades with passage in the time. As you can see in these figures,
some of the blades are fully immersed in water, and some are almost out of the
water because of the decentering impeller in the body. The corresponding instanta-
neous velocity vector fields at different time are shown in Fig. 7. With passage in
the time, you can see the extension of high velocity vector fields near the bottom
wall of the body. The pump with an impeller of the high rotating speed expands
also the high velocity vector field to the neighborhood of the outside wall. Fig. 8
shows also the pressure fields, which is averaged over the time interval from 200ms
to 400ms. We can obtain the maximum value of the pressure field in the upper
right, namely, about 315°.

Fig. 9 shows the 2D-simulation (see Fig. 9(a)) and 3D-simulation (see Fig. 9(b)) by
using the present approach through comparison with experimental photograph (see
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(a.1) t ≈ 0.21s (a.2) t ≈ 0.30s

(a.3) t ≈ 0.48s (a.4) t ≈ 0.90s
(a) 3D behaviors at each time on CPU-simulation

(b.1) t ≈ 0.21s (b.2) t ≈ 0.30s

(b.3) t ≈ 0.48s (b.4) t ≈ 0.90s
(b) 3D behaviors at each time on GPU-simulation

Figure 3: Particle-based simulations on CPU and GPU
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(a) GPU-accelerating performance (b) Comparisons with other data
Figure 4: GPU-accelerating performance and comparisons with experimental data

Fig. 9(c)). Our results obtained herein are qualitatively similar to the experimental
photo, especially, in the left area of the impeller blades.

(a) Geometrical configuration (b) Initial state of particles
Figure 5: Flow in a liquid ring pump

6 Conclusions

We have presented the GPU-based MPS approach using logarithmic weighting
function for solving numerically 3D incompressible viscous fluid flow problems.
The standard MPS scheme has been widely utilized as a particle strategy for free
surface flow, the problem of moving boundary, and multi-physics/multi-scale ones.
To overcome spurious oscillations in the standard MPS method, we have proposed
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(a.1) t ≈ 15ms (a.2) t ≈ 200ms (a.3) t ≈ 400ms
(a) Particle and pressure behaviors

(b.1) t ≈ 15ms (b.2) t ≈ 200ms (b.3) t ≈ 400ms
(b) 3D visualizations of particle and pressure behaviors

Figure 6: Particle and pressure fields at each time on GPU-simulation

(a) t ≈ 15ms (b) t ≈ 200ms (c) t ≈ 400ms
Figure 7: Velocity vector fields at each time on GPU-simulation
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Figure 8: Time-averaged pressure fields for t = 200−400ms

(a) 2D-simulation (b) 3D GPU-simulation (c) Experiment
Figure 9: Particle behaviors and comparisons with the experimental data
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to utilize the logarithmic weighting function and also take into the influence radius
reduction for solving an auxiliary Poisson equation for the pressure field. The GPU
implementation consists of the five steps, namely, the search for neighboring par-
ticles, the calculation of the particle number density, solving the Poisson equation
with respect to the pressure fields by using GPU-based SCG method, and so forth.

As the numerical examples, the dam-breaking flow problem and the flow in a liquid
ring pump with rotating impeller are carried out and compared with CPU-based
particle simulation, experimental data and other numerical ones. The qualitative
agreement between CPU and GPU particle-based dam-breaking flow simulations
appears very satisfactory. We can see that the performance on GPU with about
200,000 particles leads to approximately 17.33 times speedup. It is clearly con-
firmed that the pump forms a water ring in the impeller blades area with passage in
the time.
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