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A Simple Proper Orthogonal Decomposition Method for
von Karman Plate undergoing Supersonic Flow

Dan Xie1, Min Xu2

Abstract: We apply a simple proper orthogonal decomposition (POD) method
to compute the nonlinear oscillations of a degenerate two-dimensional fluttering
plate undergoing supersonic flow. First, the von Karman’s large deflection theory
and quasi-steady aerodynamic theory are employed in constructing the governing
equations of the simply supported plate. Then, the governing equations are solved
by both the Galerkin method and the POD method. The Galerkin method is ac-
curate but sometimes computationally expensive, since the number of degrees of
freedom (dofs) required is relatively large provided that nonlinearity is strong. The
POD method can be used to capture the complex dynamics of a strongly nonlinear
system using very few degrees of freedom, much fewer than the Galerkin approach.
The presently proposed POD method has two advantages over the conventional one.
i) a simple numerical difference technique is first introduced to the POD method to
avoid the complicated mode-to-mode projection between POD modes and Galerkin
modes. ii) POD based reduced order models (POD/ROM) are constructed by us-
ing a set of general modes which is extracted from chaotic responses. That is to
say POD modes extracted from one set of parameters can be applied to various
parameter variations for the same dynamic system. Moveover, results for the buck-
led, LCO and chaotic responses of the plate are presented and compared with the
Galerkin solutions. Numerical examples demonstrate the accuracy and efficiency
of the present POD method.
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Nomenclature

am, bi = nondimensional modal amplitude (Galerkin, POD)
a, b = plate length, plate width, m
D = plate stiffness, Nm
E = Young’s modulus, N/m2

h = plate thickness, m
J = number of time intervals in a snapshot
L = number of modes retained (POD)
l = mode number (POD)
M = number of modes retained (Galerkin)
m = mode number (Galerkin)
Ma = Mach number
N = number of spatial points in a snapshot
Nx = in-plane force (x direction), N/m
N(a)

x = applied in-plane force (x direction), N/m
P ≡ ∆pa4/Dh
p− p∞ = aerodynamic pressure, N/m2

∆p = static pressure differential across the panel, N/m2

q = ρU2/2, dynamic pressure, N/m2

Q̄ = snapshots matrix
Rx ≡ N(a)

x a2/D
r, s = mode number (Galerkin)
t = time, s
U = velocity, m/s
V, vj = POD eigenvectors matrix, POD eigenvector
W ≡ w/h
w = plate deflection, m
x, y = streamwise, spanwise coordinate, m
β ≡

√
Ma2−1

λ ≡ 2qa3/βD
λ

p
j = POD eigenvalue

µ ≡ ρa/ρmh, fluid/structure mass ratio
ν = Poisson ratio
ξ ≡ x/a
ρ , ρm = air density, plate density, kg/m3

σx = stress
τ ≡ t

√
D/ρmha4

Φ, φ = correlation matrix, Airy stress
Ψ, ψi = POD modes matrix, POD mode
( )′, ˙( ) = d( )

dξ
, d( )

dτ

Subscripts
d = dynamic
p = peak
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1 Introduction

Panel flutter is a self-excitation oscillation with aerodynamic pressure, inertia force
and elastic loading functioning together. In linear plate theory, there is a definite
flow velocity or dynamic pressure, above which the plate motion becomes unsta-
ble, and the response grows rapidly with time, i.e. the plate is in a divergent os-
cillation. However, in reality, this growing amplitude is limited by the nonlinear
induced membrane force, thus we can observe a limit cycle oscillation in the non-
linear panel flutter, in addition, several more complex dynamic oscillations can be
observed. The previous work gave a conclusion that the nonlinear panel flutter
performs five kinds of oscillation: flat, buckled, LCO, periodic and chaos. Panel
nonlinear flutter is common in supersonic flow, although it’s not like wing flutter
leading to huge damage, yet it can result in fatigue failure, which is also worth of
our attention. Therefore, referring to nonlinear panel flutter, many investigations
have been carried out.

In early time, Fung (1958) studied the two-dimensional panel flutter and Fung
(1960) gave a summery of the theories and experiments on panel flutter. Lock
and Fung (1961) studied the nonlinear panel flutter by considering the nonlinear
membrane forces induced by the panel motion. Dugundji, Dowell, and Perkin
(1963) investigated the subsonic flutter of panels on a continuous elastic founda-
tion. Dugundji (1966) gave the theoretical considerations of panel flutter at high
supersonic Mach numbers. Dowell (1966, 1967) studied the nonlinear panel flutter
by the use of the Galerkin method. Zhou, Yang, and Gu (2012) applied the Galerkin
method to the aeroelastic stability analysis of heated panel with aerodynamic load-
ing on both surfaces. Dai, Paik, and Atluri (2011a,b) applied the global nonlinear
Galerkin method for the analysis of elastic large deflections of plates under com-
bined loads and for the solution of von Karman nonlinear plate equations. Dai,
Schnoor, and Atluri (2012) proposed a simple collocation scheme to solve nonlin-
ear oscillatory problems, which is promising in solving the von Karman fluttering
plate.

To sum up, the nonlinear panel flutter has been investigated for a long time, but
almost all of them used the traditional approaches such as Galerkin or Rayleigh-
Ritz in common, which as we know are global methods using several given modes
to describe the panel deflections. The drawback of them is that in order to ob-
tain relatively accurate solutions, more modes are necessary, especially for larger
length-to-width ratios [Dowell (1966); Ye and Dowell (1991)]. At the same time,
this kind of global methods can be only employed to analyze simple geometrical
plate. For more complex geometrical plate and higher level of accuracy, the finite
element method (FEM) is showing up.
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By using finite element method, Mei (1977) studied the limit cycle oscillation of
a plate in supersonic flow, also Dixon and Mei (1993) explored the nonlinear flut-
ter of rectangular composite panels. Gray and Mei (1993) applied FEM to study
the nonlinear flutter characteristics of three-dimensional thin laminated composite
panels. Shiau and Kuo (2007) used the FEM with a particular triangle element to
study the flutter of thermally buckled composite sandwich plate. However, limited
by the large computational cost of the FEM, which usually has tens of thousands
of dofs, nonlinear panel flutter analysis has a special challenge that if one wishes to
obtain solutions for many different combinations of structural and fluid parameters,
the models should be computationally efficient enough to get the resolutions when
various parameters are changed in the design process. Thus considerable atten-
tion is given to computational effort savings and also to increasing our insight into
the physical property of dynamic systems. To satisfy this necessariness, reduced
order model (ROM), as an attractive method in nonlinear dynamics gets into our
considerations.

For very high dimensional systems, a simpler modal approach for ROM as de-
veloped by Romanowski and Dowell (1996) is available. This approach adapts
a methodology from the fields of nonlinear dynamics and signal processing, that
is, the proper orthogonal decomposition (POD) method or Karhunen-Loève(KL)
modal representation. POD uses an ensemble of data, obtained from simulations
or from experiments to build the reduced subspace that contains most information
of the original dynamic systems. This method furnishes the best orthogonal ba-
sis, which decorrelates the signal components and maximizes variance. The POD
method provides a set of basis functions for representing a given data set from
which a lower-dimensional subspace can be identified.

The POD method have been applied in many fields. Berkooz, Holmes, and Lum-
ley (1993) along with Kunisch and Volkwein (2002) provide applications of the
POD/Galerkin reduced order models for fluid dynamics. Additionally, due to the
features of POMs extracted, ROMs based on them have been applied to model up-
dating for nonlinear structural dynamics [Lenaerts, Kerschen, and Golinval (2001);
Kerschen and Golinval (2004)]. Amabili, Sarkar, and Paidoussis (2003, 2006) gave
the comparisons between the POD method and the Galerkin method for a water-
filled circular cylindrical shell. Mortara, Slater, and Beran (2000, 2004) have ap-
plied the proper orthogonal decomposition method to panel aeroelastic response.
Also Epureanu, Tang, and Paidoussis (2004) explored the coherent structures and
their influence on the dynamics of aeroelastic panels with the POD technique.

In the present work, since the deflection in y-direction is very small compared to
that in x-direction, a degenerate simply supported plate undergoing supersonic flow
is investigated. The von Karman plate theory and the quasi-steady aerodynamic
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theory are employed to construct the governing equations. Because analytical POD
modes are not available, numerical difference technique is applied to approximate
the differential of POD modes. Then a simple POD technique is proposed to set
up the reduced order models with a set of general POD modes, which are extracted
from the chaotic response solutions with the Galerkin method. Some numerical ex-
amples are performed, which turn out that the POD modes are similar to panel de-
flection shape. Moreover, the POD method compared favorably with the Galerkin
approach in terms of its accuracy and efficiency. Finally some conclusions are
drawn in Section 4.

2 Theory analysis

2.1 Basic equations for two-dimensional nonlinear oscillation plate

x 

y 

a 

flow 

b 

Deflection   

shape 

Figure 1: Geometry of degenerate two-dimensional plate.

For a two-dimensional plate undergoing supersonic flow shown in Fig. 1, the orig-
inal form of von Karman’s large deflection equations is

D(
∂ 4w
∂x4 +2

∂ 4w
∂x2∂y2 +

∂ 4w
∂y4 ) = q+h(

∂ 2φ

∂y2
∂ 2w
∂x2 +

∂ 2φ

∂x2
∂ 2w
∂y2 −2

∂ 2φ

∂x∂y
∂ 2w
∂x∂y

), (1)
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∂ 4φ

∂x4 +2
∂ 4φ

∂x2∂y2 +
∂ 4φ

∂y4 = E[(
∂ 2w
∂x∂y

)2− ∂ 2w
∂x2

∂ 2w
∂y2 ]. (2)

Eq. (1) is the equilibrium equation of plate, and Eq. (2) is the compatibility equa-
tion. For the degenerate two-dimensional plate, there is no spanwise bending, so
the deflection in y-direction can be ignored. In that case, ∂w/∂y≡ 0, ∂ 2w/∂y2≡ 0,
and thus the von Karman’s equations can be abbreviated as

D
∂ 4w
∂x4 = q+h

∂ 2φ

∂y2
∂ 2w
∂x2 , (3)

∂ 4φ

∂x4 +2
∂ 4φ

∂x2∂y2 +
∂ 4φ

∂y4 = 0. (4)

Considering the applied in-plane load N(a)
x , nonlinear induced loading, inertial

loading, aerodynamic pressure loading, and static pressure differential across the
panel, the Eq. (3) can be rewritten as

D
∂ 4w
∂x4 − [Nx +N(a)

x ]
∂ 2w
∂x2 +ρmh

∂ 2w
∂ t2 +(p− p∞) = ∆p, (5)

where

Nx = Eh/2a
∫ a

0
(∂w/∂x)2dx. (6)

Using quasi-steady supersonic theory, the aerodynamic pressure loading will be

p− p∞ =
2q
β
[
∂w
∂x

+(
Ma2−2
Ma2−1

)
1
U

∂w
∂ t

]. (7)

Substituting Eq. (6) and Eq. (7) into Eq. (5) and using suitable non-dimensionalization
by Dowell (1966), we can yield

∂ 4W
∂ξ 4 −6(1−ν

2)[
∫ 1

0
(
∂W
∂ξ

)2dξ ]
∂ 2W
∂ξ 2 −Rx

∂ 2W
∂ξ 2 +

∂ 2W
∂τ2 +

λ [
∂W
∂ξ

+(
Ma2−2
Ma2−1

)(
µ

Maλ
)1/2 ∂W

∂τ
] = P. (8)

In addition to the panel deflection, the stress in the panel is given by

σx =
E

1−ν2 (−z
∂ 2w
∂x2 )+

Nx

h
+

N(a)
x

h
=E[

−z
1−ν2

∂ 2w
∂x2 +

1
2a

∫ a

0
(
∂w
∂x

)2dx+
N(a)

x

Eh
]. (9)

And in a nondimensional form,

σ̄x =
σx(1−ν2)

E(h/a)2 . (10)
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2.2 The Galerkin method

The Galerkin method, employing any set of basis functions ϕi, approximates the
nonlinear partial differential equations (PDEs) by transforming them into a finite
set of coupled ordinary differential equations (ODEs), with the solution being ex-
pressed as an expansion of the basis. For a two-dimensional simply supported plate,
we assume the trial functions as

W (ξ ,τ) =
M

∑
m=1

am(τ)sin(mπξ ), (11)

where M is the number of generalized coordinates, i.e. the number of basis func-
tions assumed. The sine function that has an orthogonal property plays the role of
basis in the expansion which makes the computation process easier.

By using the Galerkin method, a set of M second-order, ordinary, coupled nonlinear
differential equations is obtained for the unknown amplitudes am(τ) of the basis,
by successively weighting the original Eq. (8) with each basis sin(rπξ ) retained in
Eq. (11) (r = 1, 2, · · · , M) and integrating along the panel length. The resulting
ODEs read

ar
(rπ)4

2
+6(1−ν

2)[∑
m

a2
m
(mπ)2

2
]ar

(mπ)2

2
+Rxar

(mπ)2

2
+

1
2

d2ar

dτ2 +

λ{
m6=r

∑
m

rm
r2−m2 [1− (−1)r+m]am+

1
2
(

µ

Maλ
)1/2 dar

dτ
}=P

1− (−1)r

rπ
; r = 1, 2, · · · , M.

(12)

We can solve Eq. (12) by direct numerical integration method, such as 4-th Runge
Kutta (RK4). The nondimensional maximum and minimum stresses at z = ±h/2,
y = b/2 read

σ̄x =
σx(1−ν2)

E(h/a)2 = [±1
2 ∑am(mπ)2 sin(mπξ )+

1−ν2

4 ∑a2
m(mπ)2]+

Rx

12
. (13)

2.3 The proper orthogonal decomposition method

The POD method optimally extracts the necessary spatial information to character-
ize the spatio-temporal complexity and inherent dimension of a dynamic system,
from a set of temporal snapshots of the response gathered from, in this paper, the
classical Galerkin method. After obtaining POD modes, the solutions from the
POD method are compared with the Galerkin solutions.
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Rewrite the original ODEs of Eq. (8) in another form

W ′′′′−6(1−ν
2)[

∫ 1

0
(W ′)2dξ ]W ′′−RxW ′′+

∂ 2W
∂τ2 +

λ{W ′+(
Ma2−2
Ma2−1

)(
µ

Maλ
)1/2 ∂W

∂τ
} = P. (14)

First, we calculate W (ξ ,τ) at some discrete time points with the Galerkin method ,
i.e. "snapshots", via which we can construct snapshots matrix:

Q̄ =



W (ξ1,τ1) W (ξ1,τ2) · · · W (ξ1,τJ)

W (ξ2,τ1) W (ξ2,τ2) · · · W (ξ2,τJ)

...
...

. . .
...

W (ξN ,τ1) W (ξN ,τ2) · · · W (ξN ,τJ)


(15)

where W (ξi,τ j) denotes the non-dimensional deflection of i-th point in x-direction
at j-th time point (i = 1, 2, · · · , N; j = 1, 2, · · · , J). Note that the total number
of time points is J, and N is the number of degrees of freedom (J� N). Now form
the correlation matrix for the POD method:

Φ = Q̄TQ̄. (16)

Then the following eigenvalue problem is obtained:

Φvj = λ
p
j vj, (17)

where λ
p
j , vj ( j = 1, 2, · · · , J) are the eigenvalues and eigenvectors of Φ respec-

tively. Resort the eigenvalues in decreasing order and the corresponding eigenvec-
tors vj are resorted according to eigenvalues,

λ
p
1 = λ

p
2 = · · ·= λ

p
J .

A commonly used criterion for choosing L, the optimal number of basis retained
in POD subspace, is the so-called energy contribution criterion. For a predefined
"energy percentage" ε > 0, usually let ε = 0.999, then L is chosen by

F(k) =
∑

L
k=1 λ

p
k

∑
J
j=1 λ

p
j
= 0.999.
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Figure 2: Eigenvalues and the energy percentage versus the number of POD mode.

In that case, the final subspace of POD method is reduced into a lower dimen-
sion L, which indicates the number of dominant POMs retained in the POD/ROM.
Generally, L is significantly lower than M in Eq. (11) necessary for the Galerkin
method. By plotting eigenvalues and energy percentage F as a function of k, we
can find that the eigenvalues decrease in a rapid way as the number of eigenvalue
and the first several POMs absorb practically all the plate energy, see Fig. 2. So
only few dominant modes are employed in the POD/ROM for analysis. Therefore
the modal vectors of the correlation matrix are V = [v1, v2, · · · , vL], and then the
snapshots are then linearly combined to form a smaller number of basis vectors ψi

(i = 1, 2, · · · , L), and in matrix form

Ψ = Q̄V. (18)

Now the Ψ are so-called POD modes. It can describe the deflection shape of the
plate very well. See Fig. 3 for example.

With the POD modes, we can rewrite the non-dimensional deflection W (ξ ,τ) in a
POD expansion form

W (ξ ,τ) =
L

∑
i=1

bi(τ)ψi(ξ ). (19)

Substituting Eq. (19) into Eq. (14), a set of L coupled second order ODEs about
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Figure 3: POD modes versus panel deflection shape, take limit cycle oscillation as
an example.

coefficients bi(τ) can be yielded:

L

∑
i=1

biψ
′′′′
i −6(1−ν

2)
N−1

∑
j=1

[
L

∑
i=1

biψ
′
i (ξ j)]

2dξ

L

∑
i=1

biψ
′′
i −Rx

L

∑
i=1

biψ
′′
i +

L

∑
i=1

b̈iψi+

λ [
L

∑
i=1

biψ
′
i +(

Ma2−2
Ma2−1

)(
µ

Maλ
)1/2

L

∑
i=1

ḃiψi] = P. (20)

In the conventional POD method, expressions of ψ ′, ψ ′′, ψ ′′′′ are required to solve
Eq. (20) to determine coefficients bi. However, the POD modes here are numerical
data sets, analytical expressions of which are not available to get the differentials.
Usually, mode-to-mode projection between the numerical POD mode and the ana-
lytical Galerkin mode is implemented. Whereas, the projection procedure requires
complicated algebraic derivation and also this procedure costs a large amount of
computational effort. To eliminate the mode-to-mode projection, we employ the
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numerical difference technique to get the spatial derivative as follows:

ψ
′(ξ ) =

dψ

dξ
=

ψ(ξ +dξ )−ψ(ξ −dξ )

2dξ
,

ψ
′′(ξ ) =

d2ψ

dξ 2 =
ψ ′(ξ +dξ )−ψ ′(ξ −dξ )

2dξ
,

ψ
′′′(ξ ) =

d3ψ

dξ 3 =
ψ ′′(ξ +dξ )−ψ ′′(ξ −dξ )

2dξ
,

ψ
′′′′(ξ ) =

d4ψ

dξ 4 =
ψ ′′′(ξ +dξ )−ψ ′′′(ξ −dξ )

2dξ
.

Then because of the orthogonality condition ψT
i ψ j = λ

p
i δi j, a set of 2L first order

ODEs about bi(τ) are yielded:

ḃ1 = bL+1

ḃ2 = bL+2

...

ḃL = bL+L

...

ḃL+i = b̈i =
1

λ
p
i
{ψT

i [−
L

∑
i=1

biψ
′′′′
i +

6(1−ν
2)

N−1

∑
j=1

(
L

∑
i=1

biψ
′
i (ξ j))

2dξ

L

∑
i=1

biψ
′′
i +Rx

L

∑
i=1

biψ
′′
i ]−

λψ
T
i

L

∑
i=1

biψ
′
i −λ

p
i λ (

Ma2−2
Ma2−1

)(
µ

βλ
)1/2

L

∑
i=1

bL+iψi +ψ
T
i P}

...

i = 1, 2, · · · , L.

(21)

Later on, Eq. (21) can be readily solved by the RK4. Along with the coefficients of
POD mode, finally we can compute the deflection and stress. The nondimensional
maximum and minimum stresses are

σ̄x =±
1
2

L

∑
i=1

biψ
′′
i +

1−ν2

2

N−1

∑
j=1

[
L

∑
i=1

biψ
′
i (ξ j)]

2dξ +
Rx

12
, (22)
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3 Numerical results and discussions

The simply supported, two-dimensional nonlinear oscillation plate is considered
with the following geometrical dimensions and material properties: a = 2, b =
1, h = 0.01; E = 7.17×1010Pa, ν = 0.33.

3.1 The physical property of POD modes

We know that for a simply supported plate, the Galerkin method as a conventional
approach commonly used to solve the nonlinear oscillation plate gives the panel
deflection in an expression of sine basis. However, the problem is that when the
nonlinearity is strong, the Galerkin method has to include more basis functions.
Consequently, the resulting ODEs is hard to solve for the larger degrees of free-
dom (dofs). Considering this drawback, the POD method is applied to construct
reduced order models. In the POD method, we seek a general set of proper orthog-
onal modes, which intrinsically approximates the deflection of the plate. Therefore,
for different cases, the same set of POD modes can be employed to compute ap-
proximate solutions. Moreover, the number of modes is much less than the dofs of
the Galerkin method, which significantly reduces the computational efforts.

Here, taking three typical cases as examples: buckled, LCO and chaotic responses,
we compute the snapshots and find the POD eigenvalues. For the sake of brevity,
Tab. 1 shows the first 10 POD eigenvalues in the decreasing order; apparently, they
decrease in a rapid way, and the dominant eigenvalues are the first few ones, which
indicates that the POD method with fewer modes has extracted essential modal
information from the snapshots. In this sense, the size of original model can be
reduced.

Table 1: First 10 POD eigenvalues in decreasing order for three responses

λ p Buckled(×104) LCO(×103) Chaotic(×103)
λ

p
1 2.081201786256980 4.998005373311598 9.438495023031926

λ
p
2 0.000006296329819 0.005710978296343 0.487699359764489

λ
p
3 0.000000000015726 0.000258594757087 0.019660255489314

λ
p
4 0.000000000000300 0.000000046915919 0.000004885742612

λ
p
5 0.000000000000004 0.000000002113003 0.000000045487996

λ
p
6 0.000000000000004 0.000000000015824 0.000000000538761

λ
p
7 0.000000000000003 0.000000000000005 0.000000000000008

λ
p
8 0.000000000000003 0.000000000000005 0.000000000000008

λ
p
9 0.000000000000003 0.000000000000005 0.000000000000008

λ
p
10 0.000000000000003 0.000000000000004 0.000000000000007
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In addition, in order to have a better insight into the physical property of the POD
modes, considering the limit cycle oscillation, when λ = 500, Rx = 0, P = 0, we
compute the deflection at 75% of the chordwise length with the Galerkin method
and plot the POD modes and panel deflection shape together for comparison in
Fig. 3. Note that 17 times of the response resolution is almost identical with the
first POD mode, which indicates that the first POD mode is sufficient to represent
the panel deflection. Therefore, reduced order models based on the POD method-
ology employing better and fewer modes to solve the panel nonlinear oscillation
are feasible and encouraging.

3.2 Comparison of the POD and the Galerkin solutions

Herein, as the first consideration, the limit cycle oscillation is analyzed with the
POD method. Particularly, the panel deflection shape and stress distribution are
computed and the comparison with the Galerkin method is shown in Fig. 4, which
shows that for several dynamic pressures, resolutions are compared well between
the POD and the Galerkin methods. In addition, the deflection and stress versus
nondimensional dynamic pressure are calculated. The comparisons shown in Fig. 5
also obtain a good agreement between the two methods.

For more detailed comparisons between the POD/ROM and the Galerkin method,
three typical cases are considered here: buckled, LCO, and chaotic responses.
Firstly, the Galerkin solutions are taken as snapshots to construct corresponding
POD modes, which in Fig. 6, are labeled "POM", and these three cases have differ-
ent POMs. Buckled case has only one dominant POM, LCO has two and chaotic
has three dominant POMs. Representative comparisons are shown between the
Galerkin method and the POD method below. Note that the response in time his-
tory is obtained at ξ = 0.75.

Two dominant POMs are found and employed to solve LCO case. In Fig. 7(a)
the deflection in time history with POD and the Galerkin are plotted together, and
as expected, they are in reasonably good agreement with each other. And then
Fig. 7(b) shows the generalized coordinates of POMs, which indicate the contri-
bution of each POM to the panel deflection, and they both vary with time in the
similar way as deflection with time.

For buckled case, which has only one POM, in order to get the resolution at a better
level of accuracy, the three POMs from the chaotic response resolutions via the
Galerkin are applied to calculate the deflection response. The results of Fig. 8(a)
are in excellent agreement with the Galerkin solutions. In Fig. 8(b), it should be
noted that the third generalized coordinate of POM is on an order of 10−3, which is
much smaller than that of the first and second coordinates. Hence, we come to the
conclusion that, the third POM provides little contribution to the buckled response.
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Figure 4: Comparison between the POD and the Galerkin for several LCO re-
sponses: (a) panel deflection shape; (b) panel stress distribution.
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Figure 5: Comparison between the POD and the Galerkin for LCO amplitude vs λ :
(a) panel deflection amplitude vs λ ; (b) panel stress amplitude vs λ .
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The results of deflection time response and generalized coordinates versus time
for chaotic case in Figs. 9(a) and 9(b) indicate that the chaotic POMs have the
richest modal information, which also corroborates the conclusion that the best
snapshots to extract POD modes should be the chaotic response by Amabili, Sarkar,
and Paidoussis (2006). So in this paper, almost all the computations with the POD
method are completed with chaotic POMs.

Finally, from a different perspective and based on the responses above, frequency
analysis is performed. As shown in Tab. 2, the first several dominant frequencies
of limit cycle oscillation and chaotic responses are calculated. Obviously, a good
correlation is obtained between the Galerkin and the POD resolutions. Addition-
ally, the LCO response has two dominant frequencies, and the chaotic response has
three, which are totally coincident with the number of dominant POD modes.

Table 2: Dominant frequencies for LCO and chaotic responses

LCO Chaotic
f (Hz) f 1 f 2 f 1 f 2 f 3
Galerkin 6.661 19.15 1.665 4.996 7.494
POD 6.656 19.97 1.664 4.992 7.488
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Figure 7: Comparison between the POD and the Galerkin for LCO response: (a)
panel deflection time response; (b) generalized coordinates time response.
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panel deflection time response; (b) generalized coordinates time response.
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Figure 9: Comparison between the POD and the Galerkin for chaotic response: (a)
panel deflection time response; (b) generalized coordinates time response.

3.3 Effect of applied compressive in-plane load Rx

In nonlinear large deflection plate theory, there is an induced stretching in-plane
load Nx, which is usually coupled with out-of-plane bending, thus the plate ampli-
tudes will generally be limited to a few plate thicknesses. However one can also
investigate an applied compressive in-plane load represented by Rx in nondimen-
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sional form.

Let Rx = 0, −π2, −2π2, −3π2 respectively, and plot peak amplitude versus dy-
namic pressure λ . In Fig. 10(a), when Rx < −π2, there are two branches, one of
which is with smaller λ , and the deflection decreases with the dynamic pressure.
For another branch with higher λ , however, the amplitude increased with the dy-
namic pressure. And from Fig. 10(a), it is evident that the intersection of these two
branches is at about Rx =−3π2, λ = 110.

Now consider what happens when we plot the steady mean and dynamic LCO
amplitudes respectively, and thus a more in-depth interpretation of this behavior
is given by Figs. 10(b) and 10(c). Obviously, the steady mean amplitude actually
contributes to the first branch of deflection peak in Fig. 10(a), and the dynamic LCO
amplitude represents the second branch. The intersections for these three figures
are totally the same.

Based on these two branch figures, we know that the smaller λ branch is a nonlinear
buckling problem, and the compressive load with largest magnitude has the largest
amplitude buckling problem, which indicates that the buckling is mainly produced
by in-plane compressive load. However, it is limited by the increasing λ ; this can
be observed in Fig. 10(b), which indicates that the buckling problem is modified by
the aerodynamic flow. And then turn to the second branch, which is obtained with
increasing λ ; the ever steady mean amplitude has been reduced to zero, as shown
in Fig. 10(b); On the other hand, Fig. 10(c) indicates that the dynamic amplitude is
starting to increase from zero, which means that the plate has started to transform
from buckling to a limit cycle oscillation (nonlinear flutter). The transform often
starts differently depending on the distinct in-plane compressive loads calculated,
and the branch curve of Rx =−3π2 starts first at λ = 110. Therefore, it is that the
in-plane compressive load with largest magnitude has the strongest coupling with
the aerodynamic force.

As a concluding discussion, all the results in Figs. 10(a), 10(b) and 10(c) are com-
pared between the Galerkin and the POD methods and they are in excellent agree-
ment with each other.

Now some diverse Rx and λ sets are calculated. Six Rx loads are computed, and for
each Rx, three or more dynamic pressure λ are involved. And then the phase portrait
of the panel deflection response for these parameter sets are shown in Figs. 11(a)-
(f).

Particularly, in phase plane, a teeny circle indicates that the panel is oscillating
about zero position with zero frequency, another way said, the plate is flat without
oscillation. A standard circle with nonzero displacement and velocity corresponds
to limit cycle oscillation. Moreover, a multiple circle with positive displacement
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Figure 10: Comparison between the POD and the Galerkin for limit cycle ampli-
tude versus dynamic pressure: (a) peak amplitude of limit cycle oscillation; (b)
steady mean amplitude of limit cycle oscillation; (c) dynamic limit cycle amplitude
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Ẇ λ=20

λ=270

λ=300

λ=10

R
x
=−π2

(b)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−30

−20

−10

0

10

20

30

W

Ẇ
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Figure 11: Deflection in phase planes under different in-plane compressive load
Rx for several dynamic pressure λ : (a) deflection in phase plane for Rx = 0; (b)
deflection in phase plane Rx = −1; (c) deflection in phase plane for Rx = −2; (d)
deflection in phase plane for Rx = −3; (e) deflection in phase plane for Rx = −4;
(f) deflection in phase plane for Rx =−5.
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and nonzero velocity represents buckling response. In addition, a closed but non-
standard circle is periodic motion but not simple harmonic oscillation. Finally, a
relatively random and not closed curve corresponds to a chaotic response.

Based on the property above about the phase portrait of different motions for a
plate, stability regions boundaries can be found. See Fig. 12, which are in excellent
agreement with those given by Dowell (1966), there are four kinds of motion for
a nonlinear oscillating plate. It should be noted that the "Periodic" region includes
the chaotic and periodic but not simple harmonic responses. These four types of
motions have illustrated how the in-plane compressive load and aerodynamic force
interact with each other.

At low dynamic pressure and without in-plane load, the plate oscillates about a in-
finitesimal disturbance and finally becomes statically stable and returns to the ini-
tial equilibrium position, as a flat plate. The second motion is LCO, i.e. limit cycle
oscillation, with higher λ and still zero Rx; obviously, LCO is produced by the cou-
pling of aerodynamic force and induced in-plane stretching load. The third motion
is buckled, with low flow velocity but moderate applied compressive in-plane load;
the plate oscillates about a new equilibrium position other than zero as flat, and
finally reaches a dynamically stable position with zero frequency oscillation. The
last response is quasi-periodic or even chaotic, with moderate dynamic pressure but
applied compressive in-plane load with larger magnitude. Then there is a stronger
interaction between in-plane compressive load and out-of-plane bending. The plate
undergoes a quasi-periodic motion, nearly a kind of chaotic response, which in-
dicates that there is a strong nonlinearity. As an example, Rx = −4π2, λ = 150,
the plate goes into chaos as shown in Fig. 13, which is the deflection shape at 10
different time, and there is no apparent periodic property.

3.4 Effect of static and harmonic pressure differential P

Physically, when there is a positive pressure differential P, and the dynamic pres-
sure is small enough, the plate will tend to deform upward till it arrives at a static
equilibrium position. Then with the increasing dynamic pressure, this static equi-
librium position becomes unstable, and thus the plate vibrates about this position
till it reaches a new dynamically stable equilibrium motion, which is limit cycle os-
cillation. However, for a time-dependent pressure differential, e.g. harmonic form,
there is a corresponding harmonic response. Especially a critical dynamic pressure
can be observed, at which the plate abruptly changes from a low amplitude oscil-
lation to a larger one, i.e. a "jump", which seems like a kind of behavior worth
exploring. So considerable discussion about these phenomena are presented below.

First, considering the static pressure differential P, with the increase of P, compute
the steady mean and dynamic amplitudes of limit cycle oscillation for several differ-
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Figure 14: Comparison between the POD and the Galerkin for constant pressure
differential effect to panel response: (a) steady mean amplitude versus static pres-
sure differential; (b) dynamic limit cycle amplitude versus static pressure differen-
tial; (c) flutter dynamic pressure versus static pressure differential.
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ent dynamic pressures. Figs. 14(a) and 14(b) show the comparisons with the POD
and the Galerkin methods, and expectedly they compare very well. In addition,
with the increasing pressure differential, the steady mean amplitude is increasing,
whereas, the dynamic LCO amplitude is decreasing till to zero, which is the critical
point for static stability boundary. In Fig. 14(c), this boundary is plotted in terms
of λ versus P. The curve is symmetric due to the identical results for P and −P,
except for the opposite sign of the deflection.

Another interesting case, which is worth of attention, is a harmonic pressure differ-
ential, which takes the form as P = P̄sin(2π f t), where P̄ is magnitude of pressure
differential, and f is frequency of this external excitation. Here let f = 6.6Hz,
which is about the first natural frequency of the limit cycle oscillation response, as
shown in Tab. 2 in Section 3.2.

In order to discuss the different physical phenomena, Fig. 15(a) plots the static and
harmonic pressure differential resolutions together. Obviously, compared to the
static pressure differential, the dynamic limit cycle amplitude is increasing with
the pressure differential amplitude. There is no point at which the dynamic limit
cycle amplitude decreases to zero. Whereas, for the harmonic pressure differential,
it should be noted that there is a critical point, at which the dynamic limit cycle
amplitude has a sudden jump to reach a higher amplitude. The dynamic amplitude
after the jump has augmented up to about twice that before the jump.

Additionally, for the sake of a more in-depth interpretation of this jump phenomenon,
take λ = 500 for example, and five P̄ are calculated. Phase portrait is shown in
Fig. 15(b). For P̄ = 290, there is a small circle with dynamic amplitude about 1.25;
however, for the λ = 300, there is a larger circle with dynamic amplitude about
2.5, and obviously the circle doubles. Furthermore, with the increasing dynamic
pressure λ = 310, 320, 330, the circles are all the same as the λ = 300 except
the direction. Therefore, the dynamic amplitude after jump does not appear to be
much changed. All of these physical phenomena are in agreement with those in
Fig. 15(a).

This jump boundary shown in Fig. 15(c) is of interest. We find that the larger
dynamic pressure corresponds to the smaller pressure differential magnitude.

The frequency f is also an interesting parameter that affects this jump boundary, the
good thing is that, for other frequencies larger than the first natural frequency, there
is no jump point, but just a mild trend with increasing P̄. Based on the eigenvalues
analysis in Section 3.2, the first limit cycle oscillation POM occupies up to 99.88%
of the total energy. When the harmonic pressure differential with frequency close to
the natural frequency of the lowest POD dominant mode, there is a resonant motion
occurring between the harmonic pressure differential and the usual plate limit cycle
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oscillation.

3.5 POD/ROM based on the general POD modes
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Figure 16: Comparison between the Galerkin and the POD with general modes for
several buckled response: (a) panel deflection shape; (b) panel stress distribution.

It is of interest to investigate the robustness of POD/ROM to variations of the sys-
tem parameters. Of course it is expected and convenient to use the same set of
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POD modes for all cases. POD modes by definition vary with structure/flow con-
ditions, such as, dynamic pressure, in-plane load, pressure differential, and thus
the POD modes at one flight condition will not be the modes at another. How-
ever, if one can find a general set of POD modes (defined general POMs) that
contain most of the modal information of the structure, they will be able to de-
scribe accurately the system dynamics at any structure/flow condition. It should
be noted that the general POMs, which should contain the richest modal informa-
tion of the dynamic system, in this paper, are constructed by the Galerkin solution
at Rx = −4π2, P = 0, λ = 150, i.e. the chaotic response, and this choice has
been confirmed by the discussion in Section 3.2. The comparisons of the solutions
from the POD with a general set of POMs are provided below to contrast with the
Galerkin solutions.

First, a buckled response is calculated using the POD method with general modes.
The deflection shape and stress distribution comparisons with the Galerkin method
shown in Figs. 16(a) and 16(b) obtain a good agreement, which indicates the ability
and the accuracy of the POD method with the general modes. Another example,
a plate undergoing the harmonic pressure differential is considered here, where
P = P̄sin(2π f t), f = 6.6Hz. We compute the dynamic limit cycle amplitude by
the POD method with the general POMs and the Galerkin method. Fig. 17 gives the
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Figure 17: Comparison between the Galerkin and the POD with general POMs for
dynamic limit cycle amplitude versus P̄.
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comparisons, and the solutions from the POD with general POMs are in very good
agreement with those from the Galerkin. To sum up, the comparisons demonstrate
that the POD with the general POMs can yield exact results under the computa-
tional parameters of interest. Furthermore, it is very convenient and efficient for
different cases since the general POMs only need to be computed once and for all.
Therefore, there are substantially computational savings.

4 Conclusions

In this study, a simple proper orthogonal decomposition approach, using numerical
difference technique to get the spatial derivative of the POD modes, is applied to
set up the reduced order models with a set of general POD modes, which are ex-
tracted from the chaotic response solutions with the Galerkin method. Moreover,
the POD method is compared with the Galerkin approach to prove its accuracy
and efficiency. The POD method has been employed to analyze the degenerate
two-dimensional nonlinear oscillation plate in supersonic flow. Comparing with
the classical Galerkin method, the POD modes obtained are similar to the physical
deflection shape of the panel, which can better describe the plate physical behav-
ior, so only three or fewer POD modes are necessary to construct the POD/ROM,
in that case, fewer ODEs can be obtained compared to those with the Galerkin
method, which needs up to 6 modes in the modal representation function. In ad-
dition, the computation with the POD method is much faster than that with the
Galerkin method. Hence, in the light of better insight into the physical phenomena
of structure behavior and computational time savings, the POD method is superior
to the Galerkin method. From the discussion of the general POD modes, we know
that since the general POD modes extracted from the chaotic response have the
richest modal information of the original dynamic system, they are calculated once
and can be used for all the parameter sets. Therefore the POD technique has good
generality to the variations of the parameter sets. Moreover, the necessary input
for the POD method is only a set of data from simulations or experiments; there
is no limitation to the plate support conditions. Although a simply supported plate
is investigated in the present study, the POD method can be also applied to plates
subjected to other support conditions. This makes POD method more universal. Fi-
nally, the POD method can be also readily extended to analyze three-dimensional
plates.
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