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Abstract: In this study, we proposed a novel numerical technique to simulate
the transient moisture diffusion process and to apply it to heterogeneous com-
posite resins. The method is based on a heterogeneous hybrid moisture element
(HHME), with properties determined through an equivalent hybrid moisture ca-
pacitance/conductance matrix that was calculated using the conventional finite el-
ement formulation in space discretization and the θ -method in time discretization,
with similar mass/stiffness properties and matrix condensing operations. A coupled
HHME with finite element scheme was developed and implemented in the com-
puter code by using the commercial software MATLAB to analyze the transient
moisture diffusion process of composite materials that contain multiple distributed
particles and possess permeable capability.
The HHMEM proposed in this study provides a straightforward and efficient means
of modeling because only one HHME moisture characteristic matrix needs to be
calculated for all HHMEs that share the same characteristics. Crucial sealing adhe-
sive particle parameters, such as the size, moisture diffusion coefficient, and volume
fraction of particles in the composite resin, can be easily investigated by control-
ling the size of the inclusion region within the HHME domain. Several numerical
examples demonstrate the effectiveness and accuracy of the present methodology.
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1 Introduction

Moisture ingress through the sealing zone of electronic products has a major effect
on the degradation and life the product. Preventing moisture permeation through
the sealing zone is a key design concern. One way to improve the moisture-delay
capabilities of the sealing materials is to add permeable particles to the sealing ad-
hesive. Polymer composites absorb moisture during their service life, principally
through the resin matrix and through the fibers, when they are permeable [Tsai
and Hahn (1980)]. The moisture affects the mechanical properties of composites,
binding capacities, and interfaces within the product. Because of these effects, de-
termining how quickly moisture diffuses into the composite is an interesting study.

The moisture-diffusion characteristics of composites have attracted considerable at-
tention [Shen and Springer (1977); Browning, Husman, and Whitney (1977)]. Typ-
ically, transient moisture diffusion in normal environmental conditions is similar to
a Fickian process. Thus, the analytical models designed to explore the moisture
diffusion characteristics are drawn from a homogenized model. In homogeneous
materials, the transport of moisture is governed by (1) the maximum moisture con-
tent, and (2) the effective diffusivity, which typically varies as a function of tem-
perature and the volume fraction of the particles. However, the effective or average
properties ignore the micro-structural heterogeneity. Thus, the homogenized rule-
of-mixtures approach may not effectively describe the time-dependent moisture
content field in transient conditions [Vaddadi, Nakamura, and Singh (2003a,b)].

Researchers have expended great efforts to develop various numerical techniques
for modeling and calculating heterogeneous materials that contain imbedded inclu-
sions and a surrounding inter-phase. A numerical model, called the representative
volume element (RVE), was proposed to represent particle-reinforced composites
[Yang, Yang, Ma and Liu (2010); Stoeven, Askes and Sluys (2004)]. Several stud-
ies have analyzed the RVE model to determine the effective moisture diffusivity
of composite material. The RVE was chosen as the basic cell of the composite
medium. However, some issues need to be carefully addressed when conducting
such analyses. First, the RVE that correctly corresponds to the assumed particle
distribution must be isolated. Second, the correct boundary conditions must be
applied to the chosen RVE to model the various load situations.

The conventional finite element method (FEM) is commonly employed in such situ-
ations because it provides a convenient way to understand the mechanical behavior
of particle-reinforced composites [e.g., Kawaguchi and Pearson (2003); Vaddadi,
Nakamura and Singh (2003b); Pahr and Böhm (2008); Takashima, Nakagaki and
Miyazaki (2007)]. However, a large number of fine finite elements are required
and mesh modeling is generally a tedious and complicated task, particularly when
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the aim is to clarify the relationship between the volume fraction of the fibers and
the specific property of the materials. The T-Trefftz Voronoi Cells finite elements
(VCFEM-TTs) are developed to solve composite and porous materials with orders
of less computational burden. [Dong, L. and Atluri, S. N. (2012a)] discussed de-
velopments in VCFEM-TTs with elastic/rigid inclusions or voids. [Dong, L.and
Atluri, S. N. (2012b,c)] extended the VCFEM-TTs to solve 3D problems with
spherical and ellipsoidal inclusions or voids.

In a series of related studies, [Liu and Chiou (2003a, b, 2005)] discussed devel-
opments in 2-D and 3-D infinite element methods (IEM). The conventional IEM
approach was implemented through computer code to manage the various types of
classic elasticity and singularity problems. [Liu, Chiou and Chen (2004, 2005)]
extended the IEM to address elastostatic problems in which the constituent mate-
rial properties were heterogeneous. [Liu, Zhuang and Chung (2009, 2011)] also
extended the IEM to address moisture diffusion problems, in which the constituent
material properties were heterogeneous. These earlier works are summarized in the
literature [Guo (1979); Ying (1995)]. However, until now, IEM moisture diffusion
analysis has been limited to the solution of 2-D problems. Developed in this study
is a novel, efficient, and convenient numerical technique, known as the 3-D hetero-
geneous hybrid moisture element method (3D-HHMEM), to characterize transient
moisture diffusion in composite materials that possess permeable particles. The
proposed numerical method is used to study the transient moisture diffusion pro-
cess. This includes the effects brought about by variations in the volume fraction on
the rate of moisture diffusion. Furthermore, a crucial material property, known as
the effective diffusion coefficient, can be found by an iterative calculation method.
This parameter can be applied to simulate moisture diffusion problems and reduce
the calculation time in numerical analysis.

2 The 3-D heterogeneous hybrid moisture element method

In this section, an HHME formulation is derived for modeling the 3-D transient
moisture diffusion problem. The basis of the proposed method is an HHME pos-
sessing an elastic inclusion or a void of arbitrary geometry (e.g., a circle), as shown
in Fig. 1(a). The element domain is decomposed into two separate sub-domains,
as shown in Fig. 1(b) and (c), each with dissimilar material characteristics. The
two domains represent, respectively, (1) the inter-phase sub-domain that possess
boundaries Γ0 and Γs, and (2) the inclusion sub-domain with a boundary Γs. Γ0
and Γs comprise, respectively, in which the element’s outer boundary is accompa-
nied by neighboring elements and the inner interface between the interphase and
the inclusion sub-domains.
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Figure 1: Element decomposition: (a) heterogeneous hybrid moisture element; (b)
inter-phase sub-domain; and (c) inclusion sub-domain

2.1 Governing equation of moisture diffusion

In the existing modeling method, the transient moisture diffusion equation is anal-
ogous to that of heat conduction. The analogous technique for a homogeneous
material system [Crank and Park (1956)] has recently been extended to include a
multi-material system [Wong, Teo and Lim (1998); Wong, Rajoo, Koh and Lim
(2002)], and hence it is suitable for the analysis of moisture diffusion in a hetero-
geneous composite material filled with permeable fibers.

To enforce continuity across a bi-material interface for modeling of moisture diffu-
sion in a multi-material system, a moisture wetness variable, W, is introduced. W
is defined as

W =
C

Csat
, 1≥W≥ 0. (1)

where C and Csat are, respectively, the moisture concentration and the maximum
moisture concentration that can be absorbed by the material. The lower limit of W,
i.e. W = 0, indicates that the material is completely dry, while the upper limit, i.e.
W = 1, indicates that the material is fully saturated with moisture. The “wetness”
thermal-moisture analogy scheme for the current finite element implementation is
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presented in Tab. 1.

Table 1: FEA thermal-moisture analogy for moisture diffusion modeling

Properties Thermal Moisture
Field variable Temperature, T Wetness, W
Density ρ (kg/m3) 1
Conductivity K (W/m ·◦C) D∗Csat (kg/s ·m)

Specific capacity c (J/kg ·◦C) Csat (kg/m3)

Consider a 3-D ball region with a boundary s. The differential equation for the 3-D
moisture diffusion problem is given by

∂W
∂x

(
Dx

∂W
∂x

)
+

∂W
∂y

(
Dy

∂W
∂y

)
+

∂W
∂ z

(
Dz

∂W
∂ z

)
=

∂W
∂ t

. (2)

and has boundary conditions of

W =W0 |s=sD and Dxnx
∂W
∂x

+Dyny
∂W
∂y

+Dznz
∂W
∂ z

= fB |s=sN . (3)

where Dx, Dy and Dz are the moisture diffusion coefficients for the x-, y- and z-
directions, respectively, nx, ny and nz are directional cosines, and fB is the boundary
flux, which has a positive value when directed into the body of interest. Let sD and
sN respectively denote the parts of s where the Dirichlet and Neumann boundary
conditions are specified, where s = sD∪ sN and sD∩ sN =6 0.

The unit element matrix equation can be obtained from the governing differential
equation, Eq. (2), by applying Galerkin’s weighted residual approach. The result-
ing element matrix equation has the form

[Me]{Ẇe}+[Ke]{We}= {Pe}, (4)

in which the element moisture capacitance matrix is given by

[Me] =
∫

[N]T [N] dxdydz, (5)

the element moisture conductance matrix has the form

[Ke] =
∫

[B]T [D][B] dxdydz, (6)
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and finally

{Pe}=
∫

[N]T fB dsN . (7)

Note that in the equations above, [B] and [N] denote the shape function derivative
matrix and the shape function matrix, respectively.

The diffusivity matrix is given by

[D] =

 Dx 0 0
0 Dy 0
0 0 Dz

 . (8)

For the time discretization of the system of ordinary differential equation, Eq.
(4), we apply the well-know θ -method [Lewis, Morgan, Thomas and Seetharamu
(1996)], which results in the equation

(Me +θ ·∆t ·Ke) ·W n+1
e = [Me− (1−θ) ·∆t ·Ke] ·W n

e +∆t ·Pe. (9)

Let φ = θ −1 and substitute it into Eq. (9), get

(Me +θ ·∆t ·Ke) ·W n+1
e = [Me +φ ·∆t ·Ke] ·W n

e +∆t ·Pe, (10)

where W n
e denotes the known moisture wetness at the current time tn, the time in-

crement ∆t is defined as ∆t = tn+1− tn and (Me +θ ·∆t ·Ke) denotes the combined
moisture capacitance/conductance matrix. Clearly, this is a system of linear alge-
braic equations with respect to the unknown vector W n+1

e as the approximation of
the moisture wetness at the new time-level tn+1. Here the parameter θ is related
to the applied numerical method and is an arbitrary parameter on the interval [0,
1]. It is worth emphasizing that in θ = 0.5, the method yields the Crank-Nicolson
implicit method which produces a higher accuracy for time discretization [Crank
and Nicolson (1947)]. Therefore, the parameter θ in the current numerical analysis
is set as 0.5.

Another practical consideration was a proper time increment. If the time incre-
ment is not selected properly, the results can exhibit spurious numerical oscillation
(if the time increment is too short). The guideline in Ref. [Hibbitt, Karlsson and
Sorensen (2004)] suggests that the time increment (∆t) should be slightly greater
than ∆l2/(6 ·θ ·D), where D is the diffusivity and ∆l is a typical element dimen-
sion.
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2.2 3-D hybrid moisture element formulation

In the formulation, the material properties are assumed to be linearly elastic and
isotropic, but are heterogeneous from each sub-domain. The separate formulations
for the two sub-domains are derived (index notation is used) as follows:

(I) Formulation in the inter-phase sub-domain:

The similar partition concept [Guo (1979)] is applied to the inter-phase sub-domain,
as shown in Fig. 2(a). The meshing steps are described as follows: First, the outer
boundary (element domain boundary), Γ0, is properly discretized with the total
number of 2m master nodes (represented by symbol “o”), ordered in a counter-
clockwise direction. Second, when the global origin O located in the inclusion
region is chosen as a similar partition center, and when a certain number of chosen
element-layers s and a certain compatible proportionality constant c ∈ (0,1) are
taken, similar polygons Γ1, Γ2, · · ·, Γs of Γ0 are constructed with center O accord-
ing to the proportionality constants c1, c2, · · ·, cs, respectively. The region bounded
between Γi−1 and Γi is called the i-th element-layer (i= 1, 2, · · ·, s). Third, straight
lines are drawn from the origin to the master nodes, and each individual Γi is reg-
ularly discretized, similar to Γ0. The nodal number and coordinates of the nodes
on each individual Γi can be determined from the master node coordinates under
geometrically similar conditions. Fourth, each element-layer is auto-meshed into
several four-node quadrilateral elements that are similar to one another from the
element-layers in a radial direction.

Both the element moisture capacitance matrix [Me] and the element moisture con-
ductance matrix [Ke] for each quadrilateral element in the element layer of the inter-
phase sub-domain (i.e. the region between boundaries Γ0 and Γ1) can be calculated
and assembled into global matrices, i.e. [M] and [K], using the conventional finite
element formulation. The assembled matrices of the outermost element-layer (1st
element-layer) are therefore expressed as

[M] =

[
Ma −BT

−B Mb

]
2m×2m

(11)

and

[K] =

[
Ka −AT

−A Kb

]
2m×2m

, (12)

where Ma, Mb, and B are sub-matrices of the assembled matrix [M] with identical
dimensions m×m, Ka, Kb, and A are sub-matrices of the assembled matrix [K]
with identical dimensions m×m, and BT and AT are the transposes of B and A,
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Figure 2: Heterogeneous hybrid moisture element mesh: (a) inter-phase sub-
domain; and (b) inclusion sub-domain

respectively. Since the element layer matrices [M] and [K] are globally symmetrical
and banded, matrices Ma, Mb, Ka, and Kb are also symmetrical and banded.

The nodal moisture wetness vector W n
i of the nodes on Γi at the time tn is defined

as

W n
i ≡

[
W i,n

1 W i,n
2 · · · W i,n

m

]T
. (13)

The nodal loading vector Pi of the nodes on Γi is defined as

Pi ≡
[

Pi
1 Pi

2 · · · Pi
m
]T

. (14)
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According to the similarity principle, it is obvious that the element moisture capac-
itance matrices of all of the element-layers are in dimensional dependence on the
ratio k3 and the element moisture conductance matrices of all of the element-layers
are identical. Hence, in accordance with Eq. (10), we can express the element ma-
trices of the s element-layers (from the 1st element-layer to the s-th element-layer)
as s sets of algebraic equations, namely,

for layer 1{[
Ma −BT

−B Mb

]
+θ ·∆t ·

[
Ka −AT

−A Kb

]}
·
[

W n+1
0

W n+1
1

]
={[

Ma −BT

−B Mb

]
+φ ·∆t ·

[
Ka −AT

−A Kb

]}
·
[

W n
0

W n
1

]
+∆t ·

[
P0
P1

] (15)

for layer 2{
k3 ·
[

Ma −BT

−B Mb

]
+θ ·∆t · k

[
Ka −AT

−A Kb

]}
·
[

W n+1
1

W n+1
2

]
={

k3 ·
[

Ma −BT

−B Mb

]
+φ ·∆t · k

[
Ka −AT

−A Kb

]}
·
[

W n
1

W n
2

]
+∆t ·

[
−P1
P2

] (16)

for layer 3{
k6 ·
[

Ma −BT

−B Mb

]
+θ ·∆t · k2

[
Ka −AT

−A Kb

]}
·
[

W n+1
2

W n+1
3

]
={

k6 ·
[

Ma −BT

−B Mb

]
+φ ·∆t · k2

[
Ka −AT

−A Kb

]}
·
[

W n
2

W n
3

]
+∆t ·

[
−P2
P3

]
...

(17)

for layer s{
k3(s−1) ·

[
Ma −BT

−B Mb

]
+θ ·∆t · k(s−1)

[
Ka −AT

−A Kb

]}
·
[

W n+1
s−1

W n+1
s

]
={

k3(s−1) ·
[

Ma −BT

−B Mb

]
+φ ·∆t · k(s−1)

[
Ka −AT

−A Kb

]}
·
[

W n
s−1

W n
s

]
+∆t ·

[
−Ps−1
Ps

] (18)

Extracting each algebraic equation, combining the second equation for the i-th
element-layer, and the first equation for the (i+1)-th element-layer, and letting
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X = Mb + k3 ·Ma and Y = Kb + k ·Ka, we have

(Ma +θ ·∆t ·Ka) ·W n+1
0 +

(
−BT −θ ·∆t ·AT ) ·W n+1

1

= (Ma +φ ·∆t ·Ka) ·W n
0 +

(
−BT −φ ·∆t ·AT ) ·W n

1 +∆t ·P0
(19)

(−B−θ ·∆t ·A) ·W n+1
0 +(X +θ ·∆t ·Y ) ·W n+1

1 +
(
−c2BT −θ ·∆t ·AT ) ·W n+1

2

= (−B−φ ·∆t ·A) ·W n
0 +(X +φ ·∆t ·Y ) ·W n

1 +
(
−c2BT −φ ·∆t ·AT ) ·W n

2

...
(20)

(
−k3(i−1)B−θ ·∆t · k(i−1) ·A

)
·W n+1

i−1 +
(

k3(i−1)X +θ ·∆t · k(i−1) ·Y
)
·W n+1

i

+
(
−k3iBT −θ ·∆t · ki ·AT ) ·W n+1

i+1

=
(
−k3(i−1)B−φ ·∆t · k(i−1) ·A

)
·W n

i−1 +
(

k3(i−1)X +φ ·∆t · k(i−1) ·Y
)
·W n

i

+
(
−k3iBT −φ ·∆t · ki ·AT ) ·W n

i+1

...
(21)

(
−k3(s−2)B−θ ·∆t · k(s−2) ·A

)
·W n+1

s−2 +
(

k3(s−2)X +θ ·∆t · k(s−2) ·Y
)
·W n+1

s−1

+
(
−k3(s−1)BT −θ ·∆t · k(s−1) ·AT

)
·W n+1

s

=
(
−k3(s−2)B−φ ·∆t · k(s−2) ·A

)
·W n

s−2 +
(

k3(s−2)X +φ ·∆t · k(s−2) ·Y
)
·W n

s−1

+
(
−k3(s−1)BT −φ ·∆t · k(s−1) ·AT

)
·W n

s

(22)

(
−k3(s−1)B−θ ·∆t · k(s−1) ·A

)
·W n+1

s−1 +
(

k3(s−1)Mb +θ ·∆t · k(s−1) ·Kb

)
·W n+1

s

=
(
−k3(s−1)B−φ ·∆t · k(s−1) ·A

)
·W n

s−1

+
(

k3(s−1)Mb +φ ·∆t · k(s−1) ·Kb

)
·W n

s +∆t ·Ps

(23)

(II) Formulation in the inclusion sub-domain:
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The partition processes for the inclusion sub-domain, as shown in Fig. 2(b), are
similar to the processes for the inter-phase sub-domain. The inner boundary Γs of
the inter-phase region is exactly the outer boundary of the inclusion region. Also,
when the global origin O is chosen as the similar partition center and when another
proportionality constant c and element-layers p are taken, similar polygons Γs+1,
Γs+2, · · ·, Γs+p of Γs are generated with center O, according to the relative pro-
portionality constants c1, c2, · · ·, cp. The region bounded between Γ j−1 and Γ j is
called the j-th element-layer ( j = s+1, s+2, · · ·, s+ p). The assembled matrices of
the p element-layers (from the s+1-th element-layer to the s+p-th element-layer)
can be expressed as p sets of algebraic equations, namely,

for layer s+1

{[
M∆a −BT

∆

−B∆ M∆b

]
+θ ·∆t ·

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n+1
s

W n+1
s+1

]
={[

M∆a −BT
∆

−B∆ M∆b

]
+φ ·∆t ·

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n
s

W n
s+1

]
+∆t ·

[
Ps

Ps+1

] (24)

for layer s+2

{
c3 ·
[

M∆a −BT
∆

−B∆ M∆b

]
+θ ·∆t · c

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n+1
s+1

W n+1
s+2

]
={

c3 ·
[

M∆a −BT
∆

−B∆ M∆b

]
+φ ·∆t · c

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n
s+1

W n
s+2

]
+∆t ·

[
−Ps+1
Ps+2

]
(25)

for layer s+3

{
c6 ·
[

M∆a −BT
∆

−B∆ M∆b

]
+θ ·∆t · c2

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n+1
s+2

W n+1
s+3

]
={

c6 ·
[

M∆a −BT
∆

−B∆ M∆b

]
+φ ·∆t · c2

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n
s+2

W n
s+3

]
+∆t ·

[
−Ps+2
Ps+3

]
...

(26)
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for layer s+p{
c3(p−1) ·

[
M∆a −BT

∆

−B∆ M∆b

]
+θ ·∆t · c(p−1)

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n+1
s+p−1

W n+1
s+p

]
={

c3(p−1) ·
[

M∆a −BT
∆

−B∆ M∆b

]
+φ ·∆t · c(p−1)

[
K∆a −AT

∆

−A∆ K∆b

]}
·
[

W n
s+p−1

W n
s+p

]
+∆t ·

[
−Ps+p−1
Ps+p

]
(27)

Extracting each algebraic equation, combining the second equation for the j-th
element-layer and the first equation for the (j+1)-th element-layer, and letting
R = M∆b + c3M∆a and Q = K∆b + c ·K∆a, we have

(M∆a +θ ·∆t ·K∆a) ·W n+1
s +

(
−BT

∆ −θ ·∆t ·AT
∆

)
·W n+1

s+1

= (M∆a +φ ·∆t ·K∆a) ·W n
s +

(
−BT

∆ −φ ·∆t ·AT
∆

)
·W n

s+1−∆t ·Ps
(28)

(−B∆−θ ·∆t ·A∆) ·W n+1
s +(R+θ ·∆t ·Q) ·W n+1

s+1 +
(
−c3 ·BT

∆ −θ ·∆t · c ·AT
∆

)
·W n+1

s+2

= (−B∆−φ ·∆t ·A∆) ·W n
s +(R+φ ·∆t ·Q) ·W n

s+1 +
(
−c3 ·BT

∆ −φ ·∆t · c ·AT
∆

)
·W n

s+2

...
(29)

(
−c3( j−(s+1))B∆−θ ·∆t · c( j−(s+1)) ·A∆

)
·W n+1

j−1

+
(

c3( j−(s+1))R+θ ·∆t · c( j−(s+1)) ·Q
)
·W n+1

j +
(
−c3( j−s)BT

∆ −θ ·∆t · c( j−s) ·AT
∆

)
·W n+1

j+1

=
(
−c3( j−(s+1))B∆−φ ·∆t · c( j−(s+1)) ·A∆

)
·W n

j−1

+
(

c3( j−(s+1))R+φ ·∆t · c( j−(s+1)) ·Q
)
·W n

j +
(
−c3( j−s)BT

∆ −φ ·∆t · c( j−s) ·AT
∆

)
·W n

j+1

...
(30)

(
−c3(p−2)B∆−θ ·∆t · c(p−2) ·A∆

)
·W n+1

s+p−2 +
(

c3(p−2)R+θ ·∆t · c(p−2) ·Q
)
·W n+1

s+p−1

+
(
−c3(p−1)BT

∆ −θ ·∆t · c(p−1) ·AT
∆

)
·W n+1

s+p

=
(
−c3(p−2)B∆−φ ·∆t · c(p−2) ·A∆

)
·W n

s+p−2 +
(

c3(p−2)R+φ ·∆t · c(p−2) ·Q
)
·W n

s+p−1

+
(
−c3(p−1)BT

∆ −φ ·∆t · c(p−1) ·AT
∆

)
·W n

s+p
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(31)

(
−c3(p−1)B∆−θ ·∆t · c(p−1) ·A∆

)
·W n+1

s+p−1 +
(

c3(p−1)M∆b +θ ·∆t · c(p−1) ·K∆b

)
·W n+1

s+p

=
(
−c3(p−1)B∆−φ ·∆t · c(p−1) ·A∆

)
·W n

s+p−1

+
(

c3(p−1)M∆b +φ ·∆t · c(p−1) ·K∆b

)
·W n

s+p +∆t ·Ps+p

(32)

Let Ns+p = c3(p−1)M∆b + φ ·∆t · c(p−1)K∆b, Vs+p = c3(p−1)M∆b + θ ·∆t · c(p−1)K∆b
and FFs+p = ∆t ·Ps+p. Substituting them into Eq. (32), we have

W n+1
s+p =V−1

s+p ·

 −
(
−c3(p−1)B∆−θ ·∆t · c(p−1) ·A∆

)
·W n+1

s+p−1
+
(
−c3(p−1)B∆−φ ·∆t · c(p−1) ·A∆

)
·W n

s+p−1
+Ns+p ·W n

s+p +FFs+p

 (33)

By substituting Eq. (33) into Eq. (31), we get

(−c3(p−2)B∆−θ ·∆t · c(p−2)A∆) ·W n+1
s+p−2 +[(c3(p−2)R+θ ·∆t · c(p−2)Q)

+(−c3(p−1)BT
∆ −θ ·∆t · c(p−1)AT

∆) ·V−1
s+p · (c3(p−1)B∆ +θ ·∆t · c(p−1)A∆)] ·W n+1

s+p−1

= (−c3(p−2)B∆−φ ·∆t · c(p−2)A∆) ·W n
s+p−2

+[(c3(p−2)R+φ ·∆t · c(p−2)Q)−
(−c3(p−1)BT

∆ −θ ·∆t · c(p−1)AT
∆) ·V−1

s+p · (−c3(p−1)B∆−φ ·∆t · c(p−1)A∆)] ·W n
s+p−1

+[(−c3(p−1)BT
∆ −φ ·∆t · c(p−1)AT

∆)

− (−c3(p−1)BT
∆ −θ ·∆t · c(p−1)AT

∆) ·V−1
s+p ·Ns+p] ·W n

s+p

− (−c3(p−1)BT
∆ −θ ·∆t · c(p−1)AT

∆) ·V−1
s+p ·FFs+p

(34)

When Eq. (34) is compared with Eq. (32), three iteration formulas can be inferred:

Ni =
(

c3(i−(s+1))R+φ ·∆t · c(i−(s+1)) ·Q
)
+(

−c3(i−s)BT
∆ −θ ·∆t · c(i−s)AT

∆

)
·V−1

i+1 ·
(

c3(i−s)B∆ +φ ·∆t · c(i−s)A∆

) (35)

Vi =
(

c3(i−(s+1))R+θ ·∆t · c(i−(s+1)) ·Q
)

+
(
−c3(i−s)BT

∆ −θ ·∆t · c(i−s) ·AT
∆

)
·V−1

i+1 ·
(

c3(i−s)B∆ +θ ·∆t · c(i−s)A∆

) (36)



454 Copyright © 2013 Tech Science Press CMES, vol.93, no.6, pp.441-468, 2013

FF = [(−c3(i−s)BT
∆ −φ ·∆t · c(i−s)AT

∆)

− (−c3(i−s)BT
∆ −θ ·∆t · c(i−s)AT

∆) ·V−1
i+1 ·Ni+1] ·W n

i+1

− (−c3(i−s)BT
∆ −θ ·∆t · c(i−s)AT

∆) ·V−1
i+1 ·FFi+1

(37)

where i = s+1, s+2, s+3,· · ·, s+ p-1.

By substituting the above three iteration formulas into Eq. (34), we get(
−c3(p−2)B∆−θ ·∆t · c(p−2)A∆

)
·W n+1

s+p−2 +Vs+p−1 ·Wn+1
s+p−1

=
(
−c3(p−2)B∆−φ ·∆t · c(p−2)A∆

)
·W n

s+p−2 +Ns+p−1 ·W n
s+p−1 +FFs+p−1

(38)

Rearranging Eq. (38) and another iteration formula can be inferred as

W n+1
j =−V−1

j ·
(
−c3( j−(s+1))B∆−θ ·∆t · c( j−(s+1))A∆

)
·W n+1

j−1

+V−1
j ·

[ (
−c3( j−(s+1))B∆−φ ·∆t · c( j−(s+1))A∆

)
·W n

j−1
+N j ·W n

j +FFj

] (39)

where j = s+1, s+2, s+3,· · ·, s+ p.

From Eq. (39), we have

W n+1
s+1 =−V−1

s+1 · (−B∆−θ ·∆t ·A∆) ·W n+1
s

+V−1
s+1 ·

[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

] (40)

By substituting Eq. (40) into Eq. (28), we get

(M∆a +θ ·∆t ·K∆a) ·W n+1
s

+
(
−BT

∆ −θ ·∆t ·AT
∆

)
·
{
−V−1

s+1 · (−B∆−θ ·∆t ·A∆) ·W n+1
s

+V−1
s+1 ·

[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

]}
= (M∆a +φ ·∆t ·K∆a) ·W n

s +
(
−BT

∆ −φ ·∆t ·AT
∆

)
·W n

s+1−∆t ·Ps

(41)

Rearranging Eq. (41), we have[
(M∆a +θ ·∆t ·K∆a)−

(
−BT

∆ −θ ·∆t ·AT
∆

)
·V−1

s+1 · (−B∆−θ ·∆t ·A∆)
]
·W n+1

s

= (M∆a +φ ·∆t ·K∆a) ·W n
s +

(
−BT

∆ −φ ·∆t ·AT
∆

)
·W n

s+1−∆t ·Ps

−
(
−BT

∆ −θ ·∆t ·AT
∆

)
·V−1

s+1 ·
[
(−B∆−φ ·∆t ·A∆) ·W n

s +Ns+1 ·W n
s+1 +FFs+1

]
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(42)

Equation (42) can be expressed in the concise form

H(inclusion) ·W n+1
s = F(inclusion) (43)

where H(inclusion) and F(inclusion) denote the equivalent hybrid moisture capaci-
tance/conductance matrix and associated loading vector for the inclusion sub-
domain, respectively. Along the inclusion/inter-phase interface Γs, however, the
moisture wetness compatibility and force equilibrium must be satisfied. Therefore,
equations (23) and (43) are combined and we have

(−k3(s−1)B−θ ·∆t · k(s−1) ·A) ·W n+1
s−1

+{H(inclusion)+(k3(s−1)Mb +θ ·∆t · k(s−1) ·Kb)} ·W n+1
s

= (−k3(s−1)B−φ ·∆t · k(s−1) ·A) ·W n
s−1

+[−(−BT
∆ −θ ·∆t ·AT

∆) ·V−1
s+1 · (B∆−φ ·∆t ·A∆)

+ k3(s−1)Mb +M∆a +φ ·∆t · (K∆a + k(s−1) ·Kb)] ·W n
s

+[−(−BT
∆ −θ ·∆t ·AT

∆) ·V−1
s+1 ·Ns+1 +(−BT

∆ −φ ·∆t ·AT
∆)] ·W n

s+1

− (−BT
∆ −θ ·∆t ·AT

∆) ·V−1
s+1 ·FFs+1

(44)

Again, let

Ns =−
(
−BT

∆ −θ ·∆t ·AT
∆

)
·V−1

s+1 · (−B∆−φ ·∆t ·A∆)

+ k3(s−1)Mb +M∆a +φ ·∆t ·
(

K∆a + k(s−1) ·Kb

)
,

Vs = H(inclusion)+
(

k3(s−1)Mb +θ ·∆t · k(s−1) ·Kb

)
and

FFs =
[(
−BT

∆ −φ ·∆t ·AT
∆

)
−
(
−BT

∆ −θ ·∆t ·AT
∆

)
·V−1

s+1 ·Ns+1
]
·W n

s+1

−
(
−BT

∆ −θ ·∆t ·AT
∆

)
·V−1

s+1 ·FFs+1.

Four parameters representing the inter-phase sub-domain can be inferred:

Ni =k3(i−1)X +φ ·∆t · k(i−1) ·Y

−
(
−k3(i)BT −θ ·∆t · k(i) ·AT

)
·V−1

i+1 ·
(
−k3(i)B−φ ·∆t · k(i) ·A

) (45)
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Vi =k3(i−1)X +θ ·∆t · k(i−1) ·Y

−
(
−k3(i)BT −θ ·∆t · k(i) ·AT

)
·V−1

i+1 ·
(
−k3(i)B−θ ·∆t · k(i) ·A

) (46)

FFi =
(
−k3(i)BT −φ ·∆t · k(i) ·AT −

(
−k3(i)BT −θ ·∆t · k(i) ·AT

)
·V−1

i+1 ·Ni+1

)
·W n

i+1

−
(
−k3(i)BT −θ ·∆t · k(i) ·AT

)
·V−1

i+1 ·FFi+1

(47)

W n+1
j =−V−1

j ·
(
−k3(i−1)B−θ ·∆t · k(i−1) ·A

)
·W n+1

j−1

+V−1
j ·

[(
−k3(i−1)B−φ ·∆t · k(i−1) ·A

)
·W n

j−1 +N j ·W n
j +FFj

] (48)

where i= 1, 2, 3,· · ·, s-1; and j= 1, 2, 3,· · ·, s.

Since Ns, Vs and FFs are known, then Ns−1, Ns−2, · · · , N1;Vs−1, Vs−2, · · · , V1;
FFs−1, FFs−2, · · · , FF1 can be iterated out using equations (45), (46) and (47),
respectively. From Eq. (48), we have the unknown moisture wetness W n+1

1 =
−V−1

1 · (−B−θ ·∆t ·A) ·W n+1
0 +V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1] at
the new time-level tn+1. By substituting W n+1

1 into Eq. (19), we obtain the most
important equation, that is,[
(Ma +θ ·∆t ·Ka)−

(
−BT −θ ·∆t ·AT ) ·V−1

1 · (−B−θ ·∆t ·A)
]
·W n+1

0

=
[
(Ma +φ ·∆t ·Ka) ·W n

0 +
(
−BT −φ ·∆t ·AT ) ·W n

1 +∆t ·P0
]

−
(
−BT −θ ·∆t ·AT ) ·V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1]

(49)

Equation (49) can be expressed in the concise form

HZ ·W n+1
0 = FZ (50)

where HZ and FZ denote the equivalent hybrid moisture capacitance/conductance
matrix and associated loading vector for the heterogeneous hybrid moisture ele-
ment, respectively. The HZ term preserves the symmetry characteristic of the global
hybrid moisture capacitance/conductance matrix in FE representation. The FZ term
contains both effects of the outer surface traction and the known moisture wetness
at the current time tn. Once FZ is determined, W n+1

0 can be obtained from Eq. (49).
Then W n+1

1 , W n+1
2 , · · · , W n+1

s , · · · , and W n+1
s+p can be obtained sequentially from

equations (48) and (39).

In the current analysis, it is assumed that the boundary flux is zero and that only the
Dirichlet boundary condition is applied, i.e. concentrations only are prescribed at
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the boundaries. Therefore, the element matrix equation can be rewritten as:[
(Ma +θ ·∆t ·Ka)−

(
−BT −θ ·∆t ·AT ) ·V−1

1 · (−B−θ ·∆t ·A)
]
·W n+1

0

=
[
(Ma +φ ·∆t ·Ka) ·W n

0 +
(
−BT −φ ·∆t ·AT ) ·W n

1
]

−
(
−BT −θ ·∆t ·AT ) ·V−1

1 · [(−B−φ ·∆t ·A) ·W n
0 +N1 ·W n

1 +FF1]

(51)

where Pi = 0 (i = 1, 2,· · ·, s, s+1,· · ·, s+ p).

2.3 Implementation of coupled HHME-FE scheme

The HHMEM is derived from the conventional FEM in space discretization as well
as the θ -method in time discretization. Then it uses the similarity characteristic
of element mass/stiffness and the matrix condensing procedures to solve transient
moisture diffusion problems in heterogeneous materials and structures. A series
of layer-wise elements with similar shapes are virtually generated within the prob-
lem domain. The numerous resultant degrees of freedom (DOFs) are condensed
and transformed to those on the boundary master nodes only by means of derived
recurrence formulas.

Figure 3: Schematic diagram of the coupled HHME-FE scheme

When the problem domain includes multiple sub-domains with repetitive geometry
(e.g., particle inclusions), it is not favorable to employ finite elements to model an
entire domain with a large number of elements. Therefore, we propose a coupled
HHME-FE scheme that uses only HHMEs to subdivide the entire domain into sev-
eral sub-domains without the use of finite elements. To illustrate the assembling
scheme shown in Fig. 3, the global model is partitioned into two separate domains
which are separated from the coupling interface Γ0, namely Ω and D, modeled



458 Copyright © 2013 Tech Science Press CMES, vol.93, no.6, pp.441-468, 2013

using the HHME and FE, respectively. The master nodes on the outer bound-
ary of the HHMEs are taken from interface common nodes between the HHME
and FE sub-domains. Because each HHME equivalent hybrid moisture capaci-
tance/conductance matrix, HZ , is pre-determined (see Section 2.2), the elements
can be treated as regular finite elements, and their HHME HZ matrices are assem-
bled into the global combined capacitance/conductance matrix.

The related HHMEM numerical procedures and the coupled HHME-FE scheme
were programmed and executed using self-written codes in MATLAB language
[Kwon and Bang (2000)]. In the proposed approach, the total number of DOFs is
remarkably reduced, and hence the modeling and computational effort are substan-
tially decreased.

3 Validation of 3D HHME-FE model

This section presents two examples to validate the performance of the proposed
HHME-FE modeling approach. Fig. 4 (right panel) shows the HHME-FE compu-
tational model exhibiting three inclusions, in which the length, width, and thickness
dimensions are 70µm, 40µm, and 30µm, respectively. In this figure, D represents
the HHME sub-domain and Ω represents the FE sub-domain. The HHME domain
is separated into two regions containing the inclusion region (i.e. the particles) and
the inter-phase region. The material properties of the inter-phase region are identi-
cal to those in the FE sub-domain (i.e. the resin matrix). Therefore, the inter-phase
is not explicitly modeled and it is assumed that a perfect bond exists between the
particles and the resin matrix. As shown, the inclusions are circular and possess
a radius 11.5 times smaller than the model length. A moisture condition of 35
◦C/85% RH is applied at the left edge and thus the moisture permeates from the
exposed surface on the left of the model and diffuses to the right. The moisture-
related material properties of the resin matrix and the permeable particles in the
applied moisture conditions of 35◦C/85% RH are presented in Tab. 2 [Laurenzi,
Albrizio and Marchetti (2008)].

Table 2: Material properties

Property particles Resin matrix
Moisture diffusivity
(35◦C/85% RH)

3.630×10−8 mm2/s 5.183×10−7 mm2/s

Saturated moisture
concentration
(35◦C/85% RH)

2.375×10−6 g/mm3 9.386×10−6 g/mm3
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The right panels of Fig. 4-6 show the coupled HHME-FE modeling results for the
moisture profiles at three different times. The HHMEM parameters of the inclusion
and inter-phase regions are c= 0.6 and k = 0.922, and p= 7 and s= 5, respectively.
In the HHME-FE model, 294 master nodes were used. In addition, 98 nodes were
used in each of the three HHME sub-domains and 19,669 four-node tetrahedron
elements were used in the FE sub-domain. The corresponding results obtained
from the conventional FEM scheme are presented in the left panels for comparison
purposes. In the conventional FE model, the number of elements totaled 22,949
and the total number of nodes was 4,625. Tab. 3 provides the comparisons of both
methods based on the number of degrees of freedom (DOFs). A comparison of the
two sets of transient moisture distributions reveals that the HHME-FE results are in
satisfactory agreement with the FEM results.

Figure 4: Moisture distribution at the 1200s for moisture conditions of
35◦C/85%RH

Figure 5: Moisture distribution at the 2400s for moisture conditions of
35◦C/85%RH

In the second validation example, Fig. 7 plots the variation for the level of wetness
in the resin matrix after various time steps in an HHME-FE computational model in
which the length, width, and thickness dimensions were 163µm, 43µm, and 23µm,
respectively, and the volume fraction of particles was 5%. The HHMEM parame-
ters of the inclusion and inter-phase regions are c = 0.6 and k = 0.907, and p = 9
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Figure 6: Moisture distribution at the 3600s for moisture conditions of
35◦C/85%RH

Table 3: DOFs of the HHME-FE and FEM approaches

Numerical method Total nodes Total DOFs Equivalent DOFs
HHME-FE 4138 4138 7666
FEM 4625 4625 4625

and s = 6, respectively. In the HHME-FE model, a total of 1,568 master nodes
were used. In addition, 98 nodes were used in each of the 16 HHME sub-domains
and 31,670 four-node tetrahedron elements were used in the FE sub-domain. In
the conventional FE model, the number of elements totaled 49,729 and the total
number of nodes was 9,810. Tab. 4 provides the comparisons between both meth-
ods based on the number of DOFs. It can be seen that the results obtained from
the HHME-FE method are in satisfactory agreement with those obtained from the
FEM approach and that the HHME-FE method contains far fewer DOFs than does
the full FEM.

As described, the proposed HHMEM provides a straightforward and efficient
means of modeling transient moisture diffusion in a resin matrix filled with multi-
ple particles. This is because only one HHME equivalent hybrid moisture capac-
itance/conductance matrix needs to be calculated for all HHMEs that possess the
same properties. Furthermore, all DOFs related to the HHME domain are con-
densed and transformed to form a combined element with only the master node
DOFs. Therefore, the coupled HHME-FE method considerably reduces the exe-
cution time in the mesh modeling stage, the total number of DOFs, and the PC
memory storage requirements.
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Table 4: DOFs of the HME-FE and FEM approaches

Numerical method Total nodes Total DOFs Equivalent DOFs
HHME-FE 7,177 7,177 30,697
FEM 9,810 9,810 9,810

Figure 7: Moisture diffusion from 200th to 5000th time step

4 Numerical example

Regarding the particle-reinforced composite analyzed in this study, the particles
were assumed to be distributed regularly in the resin matrix. An examination of
the moisture diffusion properties of a heterogeneous composite reveals multiple
permeable particles of various volume fractions, i.e. 5 to 30% processed in five
equal steps. The resin matrix was assumed to be heterogeneous and to possess a
length, width, and thickness of 163µm, 43µm, and 23µm, respectively. A mois-
ture condition of 35 ◦C/85% RH was applied at the left side of the structure. The
moisture-related material properties of the resin matrix and the permeable parti-
cles in the applied moisture conditions of 35◦C/85% RH are presented in Table 2
[Laurenzi, Albrizio and Marchetti (2008)].

4.1 Influence of volume fraction of particles on moisture diffusion

The coupled HHME-FE scheme was applied to investigate the moisture diffusion
characteristics of the resin matrix that contained regular distributed particles of var-
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ious volume fractions, i.e. 5 to 30% processed in five equal steps. In the HHME
sub-domain of the HHME-FE computational model, the material properties of the
inter-phase region were identical to those in the matrix region (i.e. the resin ma-
trix). Therefore, the inter-phase is not modeled explicitly. Furthermore, it was
assumed that a perfect bonding existed between the particles and the resin matrix.
Thus, various particle volume fractions could be modeled without modifying the
original model simply by controlling the size of the inter-phase region within the
HHME domain. The HHMEM parameters of the respective inclusion and inter-
phase regions for each volume fraction studied are listed in Table 5. In the particle
HHME-FE model, a total of 1,568 master nodes were used. In addition, 98 nodes
were used in each of the 16 HHME sub-domains, and 31,670 four-node tetrahedron
elements were used in the FE sub-domain.

Figure 8: Effects of varying volume fractions of particles in resin matrix of moisture
diffusion

Table 5: HHMEM parameters for each studied volume fraction

Volume fraction
Inclusion Inter-phase
λ p c s

5% 0.6 9 0.907 6
10% 0.6 9 0.931 5
15% 0.6 9 0.946 4
20% 0.6 9 0.957 3
25% 0.6 9 0.972 2
30% 0.6 9 0 0
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Fig. 8 shows the effect of varying the volume fractions of particles, i.e. 5 to 30%
processed in five steps, in the resin matrix that is adjacent to the lower boundary of
the moisture diffusion. The moisture that reaches the far end of the resin matrix re-
duces as the volume fraction of the particles increases. The physical explanation for
this is that the regularly distributed particles impede moisture transfer, particularly
at higher volume fractions. The result implies that a particle-reinforced composite
can be constructed that uses a resin matrix containing a high volume fraction of par-
ticles to provide long-term durability with maximum protection against the effects
of moisture penetration. Most importantly, various particle volume fractions can
be modeled without modifying the original model simply by controlling the size
of the inter-phase region within the HHME domain. This advantage of the HHME
approach becomes particularly apparent when the scheme is applied to investigate
the relationship between the particle volume fraction and the moisture diffusion
characteristics of a heterogeneous composite material filled with multiple particles.

4.2 A convenient method to inverse calculating the effective diffusion coeffi-
cient

The effective diffusion coefficient, De f f , is an important material property used to
calculate moisture diffusion problems. To inverse calculate the De f f ,

first, the 3D HHMEM was employed to simulate moisture diffusing process with
various particle volume fraction; the data of wetness v. s. time were recorded and
plotted in Fig. 9. A wetness that rose to 0.95 meant that the particle-reinforced
composite material reached a 95% saturated concentration. On the other hand, the
particle-reinforced composite almost can’t fully impede the moisture penetration.
The time to reach a wetness of 0.95 at the far end of the resin matrix was labeled
t0.95.

After t0.95 was obtained, a reference finite element model with the same size of
the previous particle-reinforced composite was built, but the material properties of
the permeable particles are replaced by the resin matrix and the same boundary
conditions and time steps are applied. This reference numerical model can be im-
plemented by changing the diffusion coefficient of the resin matrix and obtaining
the corresponding trial t0.95 from the simulation results. The numerical iteration
process continues until the trial t0.95 equal to the t0.95 based on the 3D-HHMEM
results. The calculated diffusion coefficient of the resin matrix was selected as the
De f f . The corresponding results are presented in Table 6.

As can be seen in Table 6, the t0.95 of the volume fraction of the particle-reinforced
composite were varied from 0 to 30% processed in six equal steps. The results
reveal that the moisture penetration time was retard by 13,620 seconds because
of a 30% volume fraction of the particle-reinforced composite, which represents a
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20.23% effect on the hindrance of moisture penetration. It is also easy to see that
the effective diffusion coefficient was enhanced by 0.871*10−7 square millimeter
per second; that means it can reduce the effective diffusion coefficient by 16.8%.

Figure 9: Moisture diffusion process with Effects of varying volume fractions of
particles in resin matrix

Table 6: The effective diffusion coefficient by inverse calculating for each studied
volume fraction

Volume
fraction

0% 5% 10% 15% 20% 25% 30%

t0.95(s) 67320 69600 71880 74160 76380 78660 80940
De f f

(mm2/s)∗

10−7

5.183 5.016 4.857 4.709 4.570 4.438 4.312

5 Conclusion

A 3D-HHMEM designed to solve moisture diffusion problems was developed in
this study. In this method, the heterogeneous region was subdivided into two
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sub-domains containing the inclusion and the inter-phase portions. The char-
acteristics of HHME were determined by an equivalent hybrid moisture capaci-
tance/conductance matrix. This matrix was calculated by using the conventional
FEM in space discretization and the θ -method in time discretization that exhibits
similar mass/stiffness properties and matrix condensing operations. A coupled
HHME-FE scheme was developed and implemented using the MATLAB language.

The performance of the proposed HHME-FE method was validated by comparing
the results obtained for the moisture distribution profiles in a heterogeneous resin
composite with those obtained from the conventional FEM scheme. Secondly, the
analysis examined the effect of the volume fraction of particles on the rate of mois-
ture diffusion. The results revealed that the amount of moisture penetrating the
resin composite reduced considerably as the volume fraction of the particles in-
creased. Therefore, it can be inferred that a particle-reinforced composite can be
constructed using a resin matrix with a high volume fraction of particles to protect
the inner components against moisture ingression. Finally, the effective diffusion
coefficient containing a varying volume fraction of particles was investigated based
on the analysis and revealed that a 30% volume fraction of the particle-reinforced
composite retarded the time of moisture penetration by 20.23% and reduced the
effective diffusion coefficient by 16.8%.

Several key advantages of the 3D-HHMEM can be listed as follows.

1. In the computational model, the regions of the resin occupied by the parti-
cles are all replaced by HHMEs such that only one HHME-equivalent hybrid
moisture capacitance/conductance matrix requires calculation for all HHMEs
that possess the same characteristics. Thus, the total number of DOFs in the
computational model and the PC memory storage and processing require-
ments are considerably reduced.

2. Various volume fractions of particles can be modeled without modifying the
original model simply by controlling the size of the inter-phase region within
the HHME domain.

3. The results obtained from the proposed method are in satisfactory agreement
with those of the conventional FEM scheme.

4. Through the use of a fast iteration numerical method, the effective diffu-
sion coefficient introduced in this study is extremely convenient and easy to
calculate. Its use in this large and complex numerical analysis (i.e. particle-
reinforced composite) is speedy and efficient.
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