
Copyright © 2013 Tech Science Press CMES, vol.93, no.6, pp.489-516, 2013

A Coupled BEM-MLPG Technique for the Thermal
Analysis of Non-Homogeneous Media
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Abstract: This paper presents a technique that couples the boundary element
method (BEM) with the meshless local Petrov-Galerkin (MLPG) method, formu-
lated in the frequency domain. It is then used to study the transient heat diffusion
through a two-dimensional unbounded medium containing confined subdomains
where the material properties vary from point to point.
To exploit the advantages of each method, the BEM is used for the homogeneous
unbounded domain and the MLPG method is used for the non-homogeneous con-
fined subdomains. The nodal points placed at the interface between the confined
subdomains and the unbounded homogenous medium are used to couple the BEM
and the MPLG method. The MLPG method is formulated using the moving least-
squares (MLS) approximation as the trial function and the Heaviside step function
as the test function in local integral equations defined over small local sub-domains.
The coupled BEM-MLPG approach is verified against the results provided by an
analytical solution developed for a circular confined subdomain, in which the ther-
mal diffusivity within the circular non-homogeneous region is assumed to vary in
the radial direction. The proposed model is finally used to solve the case of a pair
of non-homogeneous confined subdomains for which analytical solutions are not
known. The analysis of time domain temperature responses is presented, which
illustrates the applicability of the model.

Keywords: Meshless method, boundary element method, direct coupling, heat
diffusion, non-homogeneous domains.

1 Introduction

The study of heat transfer is increasingly important in many branches of engineer-
ing. Several tools are currently available for the analysis of transient heat diffusion,
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based on analytical formulations [Carslaw and Jaeger (1959)] or numerical meth-
ods, such as the finite difference method (FDM) [Ozisik (1994); Juncu (2008)],
the finite element method (FEM) [Bathe (1976)], the finite volume method (FVM)
[Cai, Mandel and McCormick (1991)] and the boundary element method (BEM)
[Brebbia, Telles and Wrobel (1984); Ochiai (2001); Abreu, Canelas and Mansur
(2013)]. The BEM is possibly one of the most suitable tools for the analysis of heat
diffusion in homogenous unbounded media since the far field boundary conditions
are automatically satisfied, and only the discontinuities or interfaces of the materi-
als require discretization. However, the BEM can only be applied to more general
geometries and media when the relevant fundamental solutions or Green’s func-
tions, required in the boundary integral equation, are known. But for those prob-
lems involving non-homogenous media, with variation of material thermal proper-
ties, the fundamental solution is generally unavailable in the closed form.

However, mesh-based methods such as FEM, FVM and FDM have become well
established over the last few years and have been successfully applied to the nu-
merical analysis of transient heat diffusion problems in large models with more
complex shapes but finite dimensions. However, if the model to be analyzed is
too complex, the mesh generation process that is characteristic for these methods
becomes very time-consuming and requires considerable computational effort.

Therefore, in recent years, a different type of numerical method has been developed
as an alternative to the well established mesh-based methods or BEM, known as
meshless methods or element free methods.

These methods require neither domain nor boundary discretization and consequently
no information on the connectivity between nodal points and elements is needed,
which eliminates some of the mathematical complexity of mesh-based methods and
provides accurate solutions at substantially lower computational cost. One of the
advantages of meshless methods is their ability to efficiently treat problems with
continuously non-homogeneous domains, since the unknown field quantities are
approximated only in terms of nodes instead of finite elements, thus the continuous
variation of material properties is maintained exactly. The same does not occur in
case of mesh-based methods such as FEM, where the material properties are con-
stant for each finite element leading to piecewise homogeneous material properties
in the considered domain.

Authors have successfully used a range of meshless methods to simulate transient
heat conduction problems, such as the method of fundamental solutions MFS [Fair-
weather and Karageorghis (1998); Fairweather, Karageorghis and Martin (2003);
Smyrlis (2006)], the element-free Galerkin (EFG) method [Singh and Tanaka (2006);
Zhang, Zhang and Zhang (2013)], the reproducing kernel particle (RKP) method
[Cheng and Liew (2009)] and the meshless local Petrov-Galerkin (MLPG) method
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[Atluri and Zhu (1998)].

Unlike some of the methods mentioned above, the MLPG method [Atluri and Zhu
(1998); Atluri (2004)] is a truly meshless method since it does not need a back-
ground mesh for the numerical integration. It is based on the local weak form of
governing equations over small subdomains specified for each nodal point. All
integrals can be easily evaluated over these regularly shaped, overlapping subdo-
mains of arbitrary shape (in general, circles for 2D problems and spheres for 3D
problems) and their respective boundaries. There is only one nodal point in each
subdomain, thus the local sense of the approach is kept. In the MLPG method
trial and test functions can be chosen from different functional spaces, allowing for
several various MLPG formulations [Atluri and Shen (2002)].

The MLPG has been successfully applied to different problems in engineering in-
cluding elastostatics [Atluri, Sladek, Sladek and Zhu (2000); Sellountos, Vavourakis
and Polyzos (2005); Vavourakis and Polyzos (2007); Sladek, Sladek and Zhang
(2008)], elastodynamics [Sladek, Sladek and Van Keer (2003); Soares, Sladek
and Sladek (2012)], plates and shells [Soric, Li, Jarak and Atluri (2004); Sladek,
Sladek, Wen and Aliabadi (2006); Sladek Sladek and Sator (2013)], fracture prob-
lems [Ching and Batra (2001); Sladek, Sladek, Krivacek and Zhang (2005); Han,
Liu, Rajendran and Atluri (2006)], fluid flow [Lin and Atluri (2001); Avila and
Atluri (2009)], coupled multiphysics problems [Sladek et al. (2006); Shirzadi,
Sladek and Sladek (2013)] and heat transfer [Sladek, Sladek and Atluri (2004);
Wu and Tao (2008); Sladek, Sladek, Tanaka and Zhang (2005)]. The application
of the MLPG method to a broad range of scientific problems is summarized in the
review article by Sladek et al. (2013).

The MLPG method has been employed more often in steady-state and transient
heat transfer problems in recent years. Solutions for transient heat conduction in
functionally graded materials (FGMs) were also developed [Sladek, Sladek and
Zhang (2003), Sladek, Sladek, Krivacek and Zhang. (2003); Sladek et al. (2005)]
for axisymmetric [Sladek, Sladek, Hellmich and Eberhardsteiner (2007)] and 3D
bodies [Sladek, Sladek, Tan and Atluri (2008)]. Wu and Tao (2008) used the MLPG
method to compute 2D steady-state heat conduction problems involving irregular
complex domains. MLPG and finite volume method (FVM) responses were com-
pared, showing the good accuracy of the proposed model. Mirzaei and Dehghan
(2011) proposed using the MLS approximation scheme in both the time and space
domains to analyze transient heat conduction problems by MLPG method. Dai et al
presented an improved MLPG method to calculate 2D unsteady-state heat conduc-
tion problems using the moving Kriging interpolation as the trial function and the
Heaviside step function as the test function [Dai, Zheng, Liang and Wang (2013)].
The accuracy of the proposed model was evaluated considering the transient heat
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conduction problem in a square and a rectangular domain and comparing the re-
sults with those obtained with analytical solutions and FEM. Li et al proposed a
combined approach of the MLPG method based on the natural neighbor interpola-
tion (NNI) and the modified precise time step integration method (MPTSIM) in the
time domain to perform transient heat conduction analysis on square domains [Li,
Chen and Kou (2011)]. Techapirom and Luadsong have used an MLPG method
to study the two-dimensional heat equation with Dirichlet, Neumann and non-local
boundary conditions in a square domain. Their study demonstrated the good accu-
racy of the proposed method and indicates that it can be easily extrapolated to other
problems [Techapirom and Luadsong (2013)]. Inverse problems of heat conduc-
tion also attracted some attention. Sladek et al applied the MLPG to inverse heat
conduction problems in 2D and 3D axisymmetric bodies [Sladek, Sladek and Hon
(2006)]. MLPG solutions to inverse heat conduction problems in 3D anisotropic
FGM solids [Sladek, Sladek, Wen and Hon (2012)] and inverse problems of deter-
mining the unknown heat conduction coefficients have also recently been presented
[Sladek, Sladek, Wen and Hon (2009)].

However, like mesh-based techniques, the meshless methods have their own dis-
advantages and limitations. The interpolations and the algorithm implementation
of meshless methods tend to be computationally expensive and for problems with
infinite and semi-infinite domains these methods may be inefficient [Gu and Liu
(2005)]. Furthermore, in meshless methods using moving least squares (MLS)
shape functions, the essential boundary conditions can be very difficult to im-
plement [Gu and Liu (2005)]. Therefore, many researchers have been proposing
the mutual coupling of properly selected methods, in order to alleviate specific
limitations of individual methods. The MLPG method coupled with FEM has
been applied to problems involving elasticity factors [Liu and Gu, 2000], poten-
tial problems [Chen and Raju (2003)], electromagnetic field computations [Zhao
and Nie (2008)], and to the fracture analysis of magneto-electro-elastic materi-
als [Li, Feng and Xu (2009)]. Other examples include combining BEM with
MFS [Tadeu, Simões and Simões (2010); Godinho, Tadeu and Simões (2006)],
BEM with meshless Kansa’s method [Godinho and Tadeu (2012)], FEM with EFG
method [Belytschko, Organ and Krongauz (1995); Hegen (1996); Karutz, Chudoba
and Kratzig (2002)], BEM with EFG method [Zan Zhang, Cheng (2008); Liu and
Gu (2000)], Trefftz method and Voronoi cells [Dong and Atluri (2012)], and sym-
metric Galerkin BEM (SGBEM) with Voronoi cells for micromechanical analysis
[Dong and Atluri (2013)], and so on. To improve the computational efficiency of
weak formulations based on meshless approximations, analytical integrations have
been proposed in elastostatics [Sladek and Sladek (2010)] and potential problems
[Sladek, Sladek and Zhang (2010)], and they have also been successfully utilized
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in elastodynamics [Soares, Sladek and Sladek (2012)].

In this work we propose a BEM and MLPG coupling, formulated in the frequency
domain for the analysis of transient heat diffusion through an unbounded homo-
geneous domain containing inclusions with non-homogeneous variation of thermal
properties. The thermal diffusivity inside the inclusion is assumed to vary in a
smooth fashion. The advantages of each method are exploited using the BEM for
the homogeneous unbounded domain and the MLPG for the non-homogeneous in-
clusion. Nodal points are introduced inside the non-homogeneous domain and on
the interface, where the same nodal points are used for the specification of boundary
elements. The continuity condition for the temperature and heat flux is specified at
these interface nodes. The moving-least squares (MLS) approximation is applied in
the MLPG formulation for the approximation of unknown nodal quantities inside
the non-homogeneous domain, and for the continuity conditions. This direct cou-
pling method does not require the iterative technique [Soares (2009)] or the concept
of overlapping ‘double nodes’ for mutual BEM-MLPG coupling.

The proposed method is verified against an analytical solution known for a simple
geometry [Tadeu, Prata and Simões (2012)]. Some conclusions are drawn and the
quality of the numerical results is discussed.

In the paragraphs that follow, the problem is defined, and then the MLPG and BEM
coupling formulations are established for heterogeneous domains embedded in an
unbounded medium. The coupling formulations are verified against the responses
obtained using analytical solutions. Finally, a numerical example is used to illus-
trate the applicability of the proposed method. The responses in the time domain
are obtained by means of a fast inverse Fourier transform.

2 Problem definition

Consider a domain composed of two subdomains, Ω = Ω1 ∪Ω2, with Ω 2 being
unbounded and filled with a homogeneous medium, while in subdomain Ω 1, the
density, ρ1, the specific heat c1 and the thermal conductivity λ1 are assumed to
vary from point to point (see Fig. 1). This system is excited by a heat point source
located at x0 = (x0,y0).

The transient heat transfer by conduction to calculate the temperature, T (x, t), at
a point (x,y) of the spatial 2D heterogeneous solid domain, Ω 1 is given by the
diffusion equation in Cartesian coordinates:

∂

∂x

(
λ1 (x)

∂T (x, t)
∂x

)
+

∂

∂y

(
λ1 (x)

∂T (x, t)
∂y

)
= ρ1(x)c1(x)

∂T(x, t)
∂ t

(1)

in which t is time and x≡ (x,y). The application of a Fourier transform in the time
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domain leads to the following equation,

∂

∂x

(
λ1(x)

∂T(x,ω)

∂x

)
+

∂

∂y

(
λ1(x)

∂T(x,ω)

∂y

)
− iω

λ1(x)
K1(x)

T (x,ω) = 0 (2)

where T (x,ω) =
∫

∞

0 T (x, t)e−iωtdt, ω is the frequency, and K1(x) = λ1(x)/(ρ1(x)
c1(x)) is the thermal diffusivity. Recall that Eq. 2 is the PDE with variable coeffi-
cients, so BEM cannot be used.

In the unbounded domain Ω 2, with constant thermal diffusivity K2 = λ2
/
(ρ2c2),

Eq. 1 can be transformed into the following equation:(
∂ 2

∂x2 +
∂ 2

∂y2 +(kc2)
2
)

T (x,ω) = 0, kc2 =

√
−iω
K2

(3)

which is the PDE with constant coefficients.

In the frequency domain, the incident temperature field, Tinc generated at a point
(x,y) by a source placed in Ω 2 at a point (x0,y0) is given by:

Tinc (x,y,ω) =
−iA
4λ2

H(2)
0

(
K2

√
(x− x0)

2 +(y− y0)
2
)

(4)

where H(2)
0 (...) is the Hankel function of the second kind and order 0.

Figure 1: Problem definition

The problem is solved using the MLPG method to model the heterogeneous medium,
and the BEM to model the unbounded homogeneous medium. This approach over-
comes the limitations of each method. The coupling between the two methods is
accomplished by imposing the continuity of temperatures and heat fluxes across
the boundary of the heterogeneous subdomain.
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2.1 Meshless Local Petrov-Galerkin (MLPG) formulation

In the MLPG method trial and test functions can be chosen from different func-
tional spaces, allowing for several various MLPG formulations. In the proposed
approach, the MLPG5 method is chosen assuming MLS approximation to repre-
sent the trial functions and Heaviside unit step function as a test function in each
local subdomain ΩS, as shown in Fig. 2. Instead of writing the global weak form,
the MLPG is based on the local weak form of governing equations. The local weak
form of Eq. 2 is then written over each subdomain ΩS as∫

ΩS

(
λ1(x)T,j(x,ω)

)
, j w∗ (x)dΩ− iω

∫
ΩS

λ1(x)
K1(x)

T (x,ω)w∗ (x)dΩ = 0 (5)

in which x≡ (x, y) .

Applying the Gauss divergence theorem for the first integral in (2) leads to∫
∂ΩS

λ1 (x)n(x) ·∇T (x,ω)w∗ (x)d∂Ω−
∫

ΩS

λ1 (x)∇T (x,ω) ·∇w∗ (x)dΩ−

− iω
∫

ΩS

λ1(x)
K1(x)

T (x,ω)w∗ (x)dΩ = 0
(6)

where nk (x) is the unit normal vector and ∂ΩS is the boundary of the subdomain
ΩS. Assuming the Heaviside unit step function for the test function

w∗(x) =
{

1 at x ∈ (Ωs∪∂Ωs)
0 at x /∈ (Ωs∪∂Ωs)

(7)

the following local integral equation∫
∂ΩS

λ1 (x)
∂T (x,ω)

∂n
d∂Ω − iω

∫
ΩS

λ1(x)
K1(x)

T (x,ω)dΩ = 0 (8)

is finally obtained.

2.1.1 Numerical implementation of the MLPG method

The MLPG method is formulated using the moving least-squares (MLS) to approx-
imate the temperature field over a number of nodal points randomly distributed over
domain 1 and the interface with domain 2, by using a set of nodes across the do-
main of influence. According to the MLS method [Atluri (2004)], the approxima-
tion of the temperature field T (x) over a number of randomly located nodes

{
xi
}

,
i = 1,2, ...N , is given by the following equation:

T (x) = π
T (x)a(x) (9)
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Figure 2: Local boundaries for weak formulation, the domain Ωx for MLS approx-
imation of the trial function, and support area of weight function around node

where πT (x) =
[
π1(x), π2(x), ...,πm(x)

]
is a complete monomial basis of order

m; and a(x,τ) is a vector containing the coefficients a j(x,τ) , j = 1,2, ...,m and
x ≡ (x, y) . For a 2D problem, monomial bases are expressed by the coordinates
(x, y) and can be chosen as

Linear basis: π
T (x) = [1, x, y] , m = 3 (10)

Quadratic basis: π
T (x) =

[
1, x, y, x2, xy, y2] , m = 6 (11)

The coefficient vector a(x) is determined by minimizing a weighted discreteL2 -
norm defined as

J(x) =
N

∑
i=1

wi(x)
[
π

T (xi)a(x)− T̂ i]2 (12)

where N is the number of nodes used for the approximation. It is determined by
the weight function wi(x) associated with the node i. Symbols T̂ i are the fictitious
nodal values, but not the nodal values of the unknown trial function in general. A
4th order spline-type weight function is then applied in the form

wi(x) =

{
1−6

(
di

ri

)2
+8
(

di

ri

)3
−3
(

di

ri

)4
0≤ di ≤ ri

0 di ≥ ri
(13)

where di =
∥∥x−xi

∥∥ and ri is the radius of the circular support domain. With
Eq. 13, the C1-continuity of the weight function is ensured over the entire domain.
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The regularity of the matrix A is ensured by having the size of the support ri cover
a sufficient number of nodes in the domain of definition. The number of nodes
lying in the support domain with radiusri determines the value of N. Thus at least
N = m+1 nodes are required to fall into the support domain.

The stationarity of J in Eq. 12 with respect to a(x) leads to the following linear
relation between a(x) and T̂

A(x)a(x)−B(x)T̂ = 0 (14)

where

A(x) =
N

∑
i=1

wi(x)π(xi)πT (xi)

B(x) =
[
w1(x)π(x1), w2(x)π(x2), ....,wN(x)π(xN)

] (15)

The solution of Eq. 14 for a(x) and a subsequent substitution into Eq. 9 gives
approximation formulas for the temperature field as

T (x) =
N

∑
i=1

ϕ
i(x)T̂ i (16)

Where

ϕ
i(x) =

m

∑
j=1

π
j(x)

(
A−1(x)B(x)

) ji
(17)

The expression for ϕ i(x) is usually referred to as the shape function of the MLS
approximation corresponding to the nodal point xi .

For the approximation of the normal derivative of temperature (heat flux) one can
use

∂T
∂n

(x) =
N

∑
i=1

∂

∂n
ϕ

i(x)T̂ i =
N

∑
i=1

nkϕ
i
,k(x)T̂

i (18)

in which the shape function derivative is obtained as

ϕ
i
,k =

m

∑
j=1

[
π

j
,k(A

−1B) ji +π
j(A−1B,k +A−1

,k B) ji
]

(19)

where A−1
,k =

(
A−1

)
,k represents the derivative of the inverse of A with respect to

xk , which is given by A−1
,k =−A−1A,kA−1 .
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Inserting Eqs. 16, 18 into Eq. 8 leads to a discretized local integral equation (LIE)
in the form
N

∑
i=1

T̂ i
∫

∂ΩS

λ1 (x)nk (x)ϕ
i
,k(x)d∂Ω− iω

N

∑
i=1

T̂ i
∫

ΩS

λ1 (x)
K1 (x)

ϕ
i(x)dΩ = 0 (20)

Eq. (20) is applied at all interior nodes xl , (l = 1, 2, ... , Nin) located inside the do-
main Ω 1 with Ωl

s ⊂Ω1. The BEM approach is used for the nodes on the boundary.
Boundary elements having one node in the centre of the element are used. These
nodes are also used for the MLS approximations (16), (18).

2.2 Boundary element method (BEM) formulation

The required integral equation over a boundary Γ for the analysis of Eq. 3 in the
unbounded domain Ω 2 can be constructed by applying the reciprocity theorem,
leading to:

aT (x0,ω) =
∫

Γ

G(x,x0)

(
∂T
∂n

)
2
(x,ω)dΓ−

∫
Γ

H (x,x0,n)T (x,ω)dΓ+Tinc (x0,x f )

(21)

where a is a constant that takes the value 0.5 for a point over a smooth boundary
and the value 1 for a point within the domain, G(x,x0) ,H (x,x0,n) are the Green’s
function for temperature and its normal derivative, respectively, q 2 =−λ2 (∂T/∂n)2
represents the heat flux in the domain Ω 2 and Tinc (x0,x f ) represents the incident
temperature field generated by a point load located within the domain at x f .

The required two-dimensional Green’s functions for temperature and heat flux for
the unbounded medium are respectively given by

G(x,x0) =−
i

4λ2
H(2)

0

(
K2

√
(x− x0)

2 +(y− y0)
2
)

(22)

H(x,x0) =
i

4λ2
K2H(2)

1

(
K2

√
(x− x0)

2 +(y− y0)
2
)

∂ r
∂ηn

(23)

where H(2)
0 (...) is the Hankel function of the second kind and order 0.

The numerical solution of Eq. 21 by BEM involves discretizing the boundary Γ

into a set of Nbe boundary elements, leading to

aT (x0,ω) =
Nbe

∑
j=1

∫
Γ j

G(x,x0)

(
∂T
∂n

)
2
(x,ω)dΓ j−

Nbe

∑
j=1

∫
Γ j

H (x,x0,n)T (x,ω)dΓ j

+Tinc (x0,x f )
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(24)

The integrations along the boundary element Γ j can be evaluated using a Gaussian
quadrature scheme when the element to be integrated is not the loaded element.
However, for the loaded element (the singular element) the integrands exhibit a
singularity and to ensure that the method is accurate the integration should be car-
ried out in closed form [Tadeu, Prata and Simões (2012)].

2.3 BEM-MLPG coupling

The present approach exploits a direct coupling between the BEM and MLPG.
This is applicable when the nodes used by the BEM match the nodes used by the
MLPG (as shown in Fig. 3). If the boundary nodes coincide then the continuity
of temperature and heat flux can be imposed. Then imposition of these continuity
conditions on Eq. 24 can be specified as

aT (x0,ω) =
Nbe

∑
j=1

∫
Γ j

G(x,x0)
λ1(x)

λ2

(
∂T
∂n

)
1
(x,ω)dΓ j

−
Nbe

∑
j=1

∫
Γ j

H (x,x0,n)T (x,ω)dΓ j +Tinc (x0,x f )

(25)

Note that the following relationship defining the continuity of heat flux q1 and q2
has been adopted,(

∂T
∂n

)
2
=

λ1

λ2

(
∂T
∂n

)
1

(26)

with n being the outward unit normal vector on boundary elements of the domain
Ω2.

Since both the boundary temperatures T (x) and (∂T/∂n)1 on each boundary ele-
ment Γ j can be expressed according to the approximations given by Eqs. 16 and 18
in terms of nodal unknowns T̂ i, a direct coupling of BEM and MLPG is possible.
Then, substituting the MLS approximations (16), (18) into the boundary integral
Eq. 24, one obtains:

aT (x0) =
Nbe

∑
j=1

∫
Γ j

G(x,x0)
N

∑
i=1

λ1(x)
λ2

nk(x)ϕ i
,k(x)T̂

i dΓ j

−

[
Nbe

∑
j=1

∫
Γ j

H (x,x0,n)
N

∑
i=1

ϕ
i(x)T̂ i dΓ j +a

N

∑
i=1

ϕ
i(x0)T̂ i

]
+Tinc (x0,x f )
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(27)

Taking Eq. 27 for the Nbe nodes on the interface between the domains and Eq.
20 for the Nbi (Nbi +Nbe = Ntotal) interior nodes is leading to a complete system of
equations for the unknown complex coefficients T̂ i.

After solving the system, the nodal values for temperatures and heat fluxes can be
retrieved by inserting T̂ i into Eqs. 16 and 18 and Eq.26, respectively.

3 Verification and accuracy of the proposed model

To verify and study the accuracy of the proposed model, consider a non-homogeneous
circular region, Ω1, of radius 1.0 m, centered at (x = 0.0 m, y = 0.0 m), embedded
in an unbounded medium, Ω2. This inclusion is subjected to an external heat point
source, Tinc, located at a given point (x0 =−2.5 m, y0 = 0.0 m) of the outer domain.

Figure 3: Geometry of the problem used for algorithm verification

The density, ρ , the specific heat c and the conductivity, λ of the outer medium are
known (ρ2 = 1860 kg.m−3, c2 = 780 J.kg−1.◦C−1 and λ2 = 0.72 W.m−1.◦C−1).
The thermal properties c and λ within the circular non-homogeneous region are
assumed to vary in the radial direction, according to the following relations:

λ1(x) = 0.72
[
1+1.5833

[
1.0+ sin

(
π

√
x2 + y2 +

π

2

)]]
c1(x) = 780

[
1.25−

√
x2 + y2

4

]
ρ1 = 1860 kg.m−3

(28)
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for which an analytical solution can be obtained assuming a multilayered system
defined by a sequence of concentric ring-shaped regions with different material
properties [Tadeu, Prata and Simões (2012)]. The parameter ρ1 has the same value
as the external medium.

3.1 Verification and accuracy of the proposed model

Numerous tests were performed to understand the global behavior within the do-
main. The temperature field recorded at a grid of 6561 receivers, equally spaced
0.05 m apart in the two orthogonal directions and placed between (x = −2.0 m;
y =−2.0 m) and (x = 2.0 m; y = 2.0 m), was computed.

The nodes’ distribution within the circular non-homogeneous region is illustrated
in Fig. 4. 100 boundary nodes and 701 internal nodes were considered.

Figure 4: Node distribution for 100 boundary nodes and 701 internal nodes

Fig. 5 a) and Fig. 5 b) illustrate the conductivity and the specific heat variations,
respectively.

Fig. 6 a) to 6 d) illustrate the responses obtained for frequency 5.0e−8 Hz. These
figures show the real and imaginary parts of the analytical response and the numer-
ical error obtained when the system is solved using the proposed model. It can be
observed that the magnitude of the error increases the nearer the receivers are to
the circular non-homogeneous region, and its value is higher at receivers nearest
the heat source. However, analysis of these results shows that the numerical errors
are small.
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a) b) 

Figure 5: Variation of thermal properties for the test problem: a) Thermal conduc-
tivity distribution; b) Specific heat distribution

  
a) b) 

  
c) d) 

Figure 6: Verification and accuracy for frequency 5e−8Hz: a) Real part of the an-
alytical response; b) Imaginary part of the analytical response; c) Numerical error
of the real part of the response using r=0.2m; d) Numerical error of the imaginary
part of the response using r=0.2m.
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3.2 Evaluation of average relative error

The average relative error was computed to better define the radius of the support
domain and the number of nodal points that should be used to achieve more accu-
rate results. The geometry of the problem described above was used to verify and
study the behavior of the proposed model. The same grid of 6561 receivers was
used. The difference between the analytical and the numerical response is com-
puted at each receiver. To assess the global quality of the solution, the following
average relative error is established

Ē =
1

Nrec

Nrec

∑
i=1

∣∣T (xi)− T̂(xi)
∣∣

|T (xi)|
(29)

where Nrec is the total number of receivers, T (xi) is the analytical solution and
T̂ (xi) is the numerical result.

The number of nodes on the boundary varies from 50 to 210 (Fig. 7). Internal
nodes are uniformly distributed within the circular heterogeneous region and their
number is defined such that the distance between them is similar as that between
boundary nodes.

Figure 7: Number of boundary and internal nodes

The radius of the circular support domain is assumed to change from r = 0.05 m and
r = 0.5 m, with an increment of 0.01 m. Four frequencies were analyzed, namely
0.0 Hz, 5.0e−8 Hz, 5.0e−7 Hz and 5.0e−6 Hz.
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Figure 8 illustrates the average relative error. A log scale was used to better show
the results. Note that responses are not computed when the radius of the circular
support domain is not large enough to cover a sufficient number of nodes in the
domain of definition to ensure the regularity of the matrix A.

As expected, it can be seen for the four frequencies analyzed that more nodal points
are required as the frequency of excitation increases. It can also be observed that the
average relative error reaches very low values at lower frequencies. The response
becomes less exact for higher frequencies, but it is accurate enough to be considered
a good result. A better result would require the use of more nodal points.

It can also be seen that the accuracy depends strongly on the radius of the circular
support domain. This dependence is more relevant for high frequencies since the
quality of the response changes markedly with the variation of radius of the circular
support domain. As the frequency increases the best results are obtained for smaller
radii of the circular support domain.

 

 
a) 

 
b) 

 
c) 

 
d) 

 Figure 8: Average relative error, presented on a log scale, for the analytical solution:
a) 0.0 Hz; b) 5e−8 Hz; c) 5e−7 Hz; d) 5e−6 Hz
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4 Numerical example

The proposed model was used to simulate an infinite medium, Ω3, with known
properties (ρ3 = 1860 kg.m−3, c3 = 780 J.kg−1.◦C−1 and λ3 = 0.72 W.m−1.◦C−1),
containing two localized regions, Ω1 and Ω2, with radii of 1 m, where a variation of
the thermal conductivity λ and the specific heat c occurs (see Fig. 9). The system
was subjected to an external point heat source, Tinc, placed at (−1.5 m,−2.5 m).

Figure 9: Geometry used in the numerical applications

Two cases were simulated, assuming different variations for conductivity and spe-
cific heat, as illustrated in Fig. 10. The value of density, ρ3 was considered to be
constant for the entire domain. For each case, the thermal conductivity and the
specific heat variations within the circular non-homogeneous regions are assumed
to occur in the radial direction and can be spatially represented by the following
equations:

Thermal property variations in Case 1:

λ1(x) = 0.72
[
1−0.4305

[
1.0+ sin

(
π

√
x2 + y2 +

π

2

)]]
c1(x) = 780

[
1.25−

√
x2 + y2

4

]
ρ1 = 1860 kg.m−3

(30)
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λ2(x) = 0.72
[
1+0.888

[
1.0+ sin

(
π

√
x2 + y2 +

π

2

)]]
c2(x) = 780

[
1.25−

√
x2 + y2

4

]
ρ2 = 1860 kg.m−3

(31)

Thermal property variations in Case 2:

λ1(x) = 0.72
[
1−0.49

[
1.0+ sin

(
π

√
x2 + y2 +

π

2

)]]
c1(x) = 780

[
1.5−

√
x2 + y2

2

]
ρ1 = 1860 kg.m−3

(32)

λ2(x) = 0.72
[
1+693.94

[
1.0+ sin

(
π

√
x2 + y2 +

π

2

)]]
c2(x) = 780

[
1.5−

√
x2 + y2

2

]
ρ2 = 1860 kg.m−3

(33)

The temperature field distribution was computed over a fine rectangular grid of
9211 receivers placed at −5m≤ x ≤ 2m and −2m≤ y≤ 2m. For each frequency,
the discretization of the boundary of each heterogeneity made use of 200 bound-
ary elements. The number of internal node points was defined such that the dis-
tance between neighboring internal points was similar to that between boundary
nodes. These internal nodal points were distributed evenly across each circular
non-homogeneous region.

Time responses are obtained by means of an inverse Fourier transform in the fre-
quency domain. In order to prevent the aliasing phenomena, complex frequencies,
with a small imaginary part of the form ωc = ω − iη (with η = 0.7∆ω , and ∆ω

being the frequency step), are used in the computation procedure. The constant η

cannot be made arbitrarily large, since this leads either to a severe loss of numer-
ical accuracy, or to underflows and overflows in the evauation of the exponential
windows.

The time evolution of the heat source amplitude can be diversified. The time Fourier
transform of the incident heat field defines the frequency domain where the BEM
solution needs to be computed T̂0 (x,y,ω) =

∫
∞

0 T0 (x,y, t)e−iωtdt. The response
needs to be computed from 0.0 Hz up to very high frequencies. An intrinsic char-
acteristic of this problem is that the heat responses decay very fast as the frequency
increases, which allows us to limit the upper frequency for the solution.
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a) b) 

 
c)  d) 

Figure 10: Numerical application: thermal property distribution: a) Thermal con-
ductivity distribution in case 1; b) Thermal conductivity distribution in case 2; c)
Specific heat distribution in case 1; d) Specific heat distribution in case 2

The final equation is given by

T (x,y, t) =
1

2π

∫
∞

0
T̂0 (x,y,ω)T̂ (x,y,ω)eiωtdω (34)

which is computed as a discrete inverse fast Fourier transform.

The calculations were performed in the frequency range
[
0.0, 1.975×10−3] Hz

with a frequency increment of ∆ f = 9.645061728× 10−7 Hz, which results in a
time window of 1/

(
9.645061728×10−7

)
s. The source starts emitting energy

at instant t = 4h and continues for 10h. The heat source time dependence is as-
sumed to be rectangular, defined so that a maximum temperature increase of 20◦C
is recorded by the receiver located at (−1.5 m,−2.0 m).

A set of snapshots of the time domain simulations is presented to illustrate the
resulting heat conduction across the geometrical model. Fig.11 shows the temper-
ature field distribution at different time instants (t = 30h, t = 45h, t = 60h and
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t = 72h). At each instant two plots are displayed for each of the 2 cases. A color
scale is used in the plots, with the red and blue shades corresponding respectively
to higher and lower temperature amplitudes.

 

  a) 

  b) 

  c) 

  d) 

Figure 11: Numerical application - Temperature distribution (in ◦C) in the geo-
metrical model: a) Time domain snapshots at t=30h; b) Time domain snapshots at
t=45h; c) Time domain snapshots at t=60h; d) Time domain snapshots at t=72h
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In the first plot, at t = 30 h (Fig. 11 a), for both cases, a small part of the incident
temperature field has already reached the non-homogeneous parts of the medium.
It can be observed that, in the circular region where the thermal conductivity has
increased most, in case 2 the heat begins to spread more rapidly than in the other
region, where the thermal conductivity falls to a very low value. This difference be-
comes more pronounced over time (Fig. 11 b to 11 d). But in case 1 this behavior is
not yet discernible, since the conductivity variation in the non-homogeneous circu-
lar regions is less pronounced. At instants t = 60h and t = 72h (Fig. 11c) and (Fig.
11d), respectively) it can be seen that the low values of thermal conductivity act as
a barrier to the heat flux and the process of heat dissipation is significantly slower
than in the other two cases, where thermal conductivity increases. As expected,
this behavior is more evident for the media with more pronounced conductivity
variations, illustrated in case 2 (right plot).

For the same problem, the temperature response was analyzed at four receivers,
over a time window of 288 h. The receivers’ locations are illustrated in Fig. 12.

Figure 12: Numerical application

Fig. 13 a) and Fig. 13 b) show the variation of the temperature response over time
at the receivers for cases 1 and 2, respectively. As expected, it can be observed
that the response is higher at receiver 4, since it is nearest to the heat source. On
the other hand, even though Rec 1 and Rec 2 are the same distance from the heat
source, the temperature response reaches higher values at Rec 1 where the thermal
conductivity values are significantly higher. This difference is clearer for the media
with more pronounced conductivity variations, represented in case 2.
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a) b) 
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Figure 13: Numerical application: Temperature responses in time domain at four
different receivers. a) Case 1; b) Case 2

5 Conclusions

A coupled numerical model using the meshless local Petrov-Galerkin (MLPG)
method and the Boundary Element Method (BEM) has been proposed for the sim-
ulation of transient heat diffusion, in the frequency domain, of homogenous un-
bounded media containing localized regions within which the medium properties
may vary. The BEM was used to simulate the heat propagation in the outer medium,
while the MLPG was used to model the localized regions for which the BEM is not
suitable.

The proposed model was verified against an analytical solution developed for a
circular confined subdomain, in which the thermal properties (conductivity and
specific heat) vary in the radial direction. The results showed the accuracy of the
proposed model.

The average relative error was computed to better define the radius of the support
domain and the number of the nodal points that should be used. The results showed
that the accuracy of the proposed model depends on the number of nodal points
and on the radius of the circular support domains. The higher the frequency of
excitation the greater the number of nodal points required, and the best results are
obtained for smaller radii of the circular support domains.

A numerical application was used to illustrate the applicability of the proposed
model. The analysis of time domain temperature responses was found to be con-
sistent with the physics of the problem.
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