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Application of the MLPG Mixed Collocation Method for
Solving Inverse Problems of Linear Isotropic/Anisotropic

Elasticity with Simply/Multiply-Connected Domains

Tao Zhang1,2, Leiting Dong2,3, Abdullah Alotaibi4 and Satya N. Atluri2,5

Abstract: In this paper, a novel Meshless Local Petrov-Galerkin (MLPG) Mixed
Collocation Method is developed for solving the inverse Cauchy problem of lin-
ear elasticity, wherein both the tractions as well as displacements are prescribed/
measured at a small portion of the boundary of an elastic body. The elastic body
may be isotropic/anisotropic and simply connected or multiply-connected. In the
MLPG mixed collocation method, the same meshless basis function is used to in-
terpolate both the displacement as well as the stress fields. The nodal stresses
are expressed in terms of nodal displacements by enforcing the constitutive rela-
tion between stress and the displacement gradient tensor at each nodal point. The
equations of linear momentum balance are satisfied at each node using colloca-
tion method. The displacement as well as traction boundary conditions are also
enforced at each measurement location along the boundary where the conditions
are over specified on displacement as well as tractions. The current method is very
simple because the inverse problem is directly solved in a fashion similar to a direct
problem, without resorting to any iterative optimization. The current method is also
very general because it can be applied to arbitrary simply/multiply connected bod-
ies composed of arbitrary isotropic/anisotropic material, and it can also be adapted
to solve inverse problems of other physics such as heat transfer, electro-magnetics,
etc. Several numerical examples demonstrate the effectiveness and robustness of
the current method, even when the prescribed displacement/tractions are corrupted
with measurement noises. The extension of the current method to solve nonlin-
ear inverse problems will be straightforward within the framework of incremental
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loading, which will be explored in future studies.

Keywords: MLPG, Mixed method, Collocation, inverse problem, linear elastic-
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1 Introduction

Computational modeling of solid/fluid mechanics, heat transfer, electromagnetics,
and other physical, chemical & biological sciences have experienced an intense de-
velopment in the past several decades. Tremendous efforts have been devoted to
solving the so-called direct problems, where the boundary conditions are generally
of the Dirichlet, Neumann, or Robin type. Existence, uniqueness, and stability of
the solutions have been established for many of these direct problems. Numeri-
cal methods such as finite elements, boundary elements, finite volume, meshless
methods etc., have been successfully developed and available in many off-the shelf
commercial softwares, see [Atluri (2005)]. On the other hand, inverse problems,
although being more difficult to tackle and being less studied, have equal, if not
greater importance in the applications of engineering and sciences, such as in struc-
tural health monitoring, electrocardiography, etc.

One of the many types of inverse problems is to identify the unknown boundary
fields when conditions are over-specified on only a part of the boundary, i.e. the
Cauchy problem. Take elasto-static solid mechanics as an example. For the domain
Ω which describes the solid under deformation, the governing differential equations
can be expressed in terms of the primitive variable-displacements:(
Ci jkluk,l

)
,i + f j = 0 in Ω (1)

For direct problems, displacements ui = ūi are prescribed on a part of the boundary
Su , and tractions ti = t̄i are prescribed on the other part of the boundary St . Su and
St should be a complete division of ∂Ω , which means Su ∪ St = ∂Ω,Su ∩ St = /0.
On the other hand, if both the tractions as well as displacements are specified or
known only on a small portion of the boundary SC, the inverse Cauchy problem is
to determine the stresses, strains and displacements in the domain as well as on the
other part of the boundary. More generalizations can further be made, to include
measurements of the strains, measurements in the domain, or the measurement at
several time steps for a vibrating solid.

In spite of the popularity of FEM for direct problems, it is essentially very unsuit-
able for solving inverse problems. This is because the traditional primal FEM are
based on the global Symmetric Galerkin Weak Form of equation(1):∫

Ω

(
Ci jklui, jvk,l− fivi

)
dΩ−

∫
∂Ω

Ci jklui, jnkvldS = 0 (2)
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where vk are test functions, and both the trial functions ui and the test functions vk
are required to be continuous and differentiable. It is immediately apparent from
equation (2) that the symmetric weak form [on which the primal finite element
methods are based] does not allow for the simultaneous prescription of both the
tractions tl [≡ Ci jklui, jnk] as well as displacements ul [in which case vl are set to
zero, for convenience] at the same segment of the boundary, ∂Ω. Therefore, in
order to solve the inverse problem using FEM, one has to first ignore the over-
specified boundary conditions, guess the missing boundary conditions, so that one
can iteratively solve a direct problem, and minimize the difference between the so-
lution and over-prescribed boundary conditions by adjusting the guessed boundary
fields, see [Kozlov, Maz’ya and Fomin (1991); Cimetiere, Delvare, Jaoua and Pons
(2001)] for example. This procedure is cumbersome and expensive, and in many
cases highly-dependent on the initial guess of the boundary fields.

Recently, simple non-iterative methods have been under development for solv-
ing inverse problems without using the primal symmetric weak-form: with global
RBF as the trial function, collocation of the differential equation and boundary
conditions leads to the global primal RBF collocation method [Cheng and Cabral
(2005)]; with Kelvin’s solutions as trial function, collocation of the boundary con-
ditions leads to the method of fundamental solutions [Marin and Lesnic (2004)];
with non-singular general solutions as trial function, collocation of the boundary
conditions leads to the boundary particle method [Chen and Fu (2009)]; with Tr-
efftz trial functions, collocation of the boundary conditions leads to Trefftz collo-
cation method [Yeih, Liu, Kuo and Atluri (2010); Dong and Atluri (2012)]. The
common idea they share is that the collocation method is used to satisfy either the
differential equations and/or the boundary conditions at discrete points. Moreover,
collocation method is also more suitable for inverse problems because measure-
ments are most often made at discrete locations.

However, the above-mentioned direct collocation methods are mostly limited to
simple geometries, simple constitutive relations, and text-book problems, because:
(1) these method are based on global trial functions, and lead to a fully-populated
coefficient matrix of the system of equations; (2) the general solutions and partic-
ular solutions cannot be easily found for general anisotropic problems, nonlinear
problems, and problems with arbitrary body force; (3) it is difficult to derive gen-
eral solutions that are complete for arbitrarily shaped domains, within a reasonable
computational burden. With this understanding, more suitable ways of constructing
the trial functions should be explored.

One of the most simple and flexible way is to construct the trial functions through
meshless interpolations. Meshless interpolations have been combined with the
global Symmetric Galerkin Weak Form to develop the so-called Element-Free Gal-
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erkin (EFG) method, see [Belytschko, Lu, and Gu (1994)]. However, as shown
in the Weak Form (2), because displacements and tractions cannot be prescribed
at the same location, cumbersome iterative guessing and optimization will also be
necessary if EFG is used to solve inverse problems. Thus EFG is not suitable for
solving inverse problems, for the same reason why FEM is not suitable for solving
inverse problems.

Instead of using the global Symmetric Galerkin Weak-Form, the Meshless Local
Petrov-Galerkin (MLPG) method by [Atluri and Zhu (1998)] proposed to construct
both the trial and test functions in a local subdomain, and write local weak-forms
instead of global ones. Various versions of MLPG method have been developed in
[Atluri and Shen (2002a, b)], with different trial functions (Moving Least Squares,
Local Radial Basis Function, Shepard Function, Partition of Unity methods, etc.),
and different test functions (Weight Function, Shape Function, Heaviside Function,
Delta Function, Fundamental Solution, etc.). These methods are primal methods,
in the sense that all the local weak forms are developed from the Navier’s equa-
tion (1) with displacement as primary variables. For this reason, the primal MLPG
collocation method, which involves direct second-order differentiation of the dis-
placement fields, as shown in equation (1), requires higher-order continuous basis
functions, and is reported to be very sensitive to collocation points.

Instead of the primal methods, MLPG mixed finite volume and collocation method
were developed in [Atluri, Han and Rajendran (2004); Atluri, Liu and Han (2006)].
The mixed MLPG approaches independently interpolate the primary and secondary
fields, such as displacements and stresses, using the same meshless basis function.
The compatibility between primary and secondary fields is enforced through a col-
location method at each node. Through these efforts, the continuity requirement on
the trial functions is reduced by one order, and the complicated second derivatives
of the shape function are avoided. Successful applications of the MLPG mixed fi-
nite volume and collocation methods are applied in nonlinear and large deformation
problems [Han, Rajendran and Atluri (2005)]; impact and penetration problems
[Han, Liu, Rajendran and Atluri (2006); Liu, Han, Rajendran and Atluri (2006)],
topology optimization problems [Li and Atluri (2008a,b)]. A thorough review of
the applications of MLPG method is given in [Sladek, Stanak, Han, Sladek, Atluri
(2013)].

In this study, we apply the MLPG mixed collocation method to solve inverse prob-
lem of linear elasticity for simply or multiply connected domains, with isotropic
as well as anisotropic material properties. Similar to [Atluri, Liu and Han (2006)],
the same meshless basis functions are used to interpolate both the displacement as
well as the stress fields. The nodal stresses are expressed in terms of nodal dis-
placements by enforcing the relation between stress and displacement-gradient at
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each nodal point. The equations of linear momentum balance are satisfied at each
node using collocation method. The displacement and traction boundary conditions
are also enforced at each measurement location along the boundary. The currently
developed method seems to be more promising than any other existing method of
solving inverse problems, because:

1. it is very simple since the inverse problem is directly solved in a similar
fashion to a direct problem, without resorting to any iterative optimization;

2. it can be applied to arbitrary simply/multiply connected bodies;

3. it can be applied to arbitrary isotropic and anisotropic materials;

4. it can be extended to solve nonlinear problems, by using incremental lin-
earization;

5. it can also be adapted to solve inverse problems of other physiccal problems
such as heat transfer, electro-magnetics, etc.

6. it can be easily combined with any existing regularization techniques, to re-
duce the effects of measurement noises.

The rest of this study is organized as follows. In section 2, the meshless interpo-
lation method is briefly introduced with emphasis on the Moving Least Squares
interpolation. In section 3, the detailed algorithm of the MLPG mixed collocation
method for inverse problem is given. In section 4, we demonstrate the effectiveness
of the current method with several numerical examples involving simply/multiply
connected domains ,and isotropic as well as anisotropic materials. In section 5,
we complete this paper with some concluding remarks.

2 Meshless Interpolation

Among the available meshless approximation schemes, the Moving Least Squares
(MLS) is generally considered to be one of the best methods to interpolate random
data with a reasonable accuracy, because of its completeness, robustness and conti-
nuity. The MLS is adopted in the current MLPG collocation formulation, while the
implementation of other meshless interpolation schemes is straightforward within
the present framework. For completeness, the MLS formulation is briefly reviewed
here, while more detailed discussions on the MLS can be found in [Atluri (2004)].

The MLS method starts by expressing the variable u(x)as polynomials:

u(x) = pT (x)a(x) (3)
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where pT (x) is the monomial basis. In this study, we use first-order interpolation,
so that pT (x) = [1,x1,x2] for two-dimensional problems. a(x) is a vector containing
the coefficients of each monomial basis, which can be determined by minimizing
the following weighted least square objective function, defined as:

J(a(x)) =
m

∑
I=1

wI(x)[pT (xI)a(x)− ûI]2

= [Pa(x)− û]TW[Pa(x)− û]
(4)

where, xI, I = 1,2, · · · ,m is a group of discrete nodes within the influence range of
node x, ûI is the fictitious nodal value, wI(x) is the weight function. A fourth order
spline weight function is used here:

wI(x) =
{

1−6r2 +8r3−3r4

0
r ≤ 1
r > 1

r = ‖x−xI‖
rI

(5)

where, rI stands for the radius of the support domain Ωx.

Substituting a(x) into equation (3), we can obtain the approximate expression as:

u(x) = pTA−1 (x)B(x) û = ΦΦΦ
T (x) û =

m

∑
I=1

Φ
I (x) ûI (6)

where, matrices A(x) and B(x) are defined by:

A(x) = PTWP B(x) = PTW (7)

ΦI (x) is named as the MLS basis function for node I, and it is used to interpolated
both displacements and stresses, as discussed in section 3.2.

3 MLPG Mixed Collocation Method for Inverse Problem of Elasticity

3.1 Inverse Problem of Linear Elasticity

Considering a linear elastic solid undergoing infinitesimal elasto-static deforma-
tion, equations of linear momentum balance, constitutive equations, and kinematic
equations can be written as:

σi j,i + fi = 0

σi j=Ci jklεkl [isotropic or anisotropic material]

εi j =
1
2
(ui, j +u j,i)≡ u(i, j)

(8)
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For inverse problems, we consider that both the displacements as well as tractions
are prescribed at a portion of the boundary, denoted as SC:

ui = ui at SC

ti = σi jn j = t i at SC
(9)

where, ui and ti are the prescribed displacements and tractions.

The inverse problem is thus defined as, with the measured displacements and strains
[and thus tractions] at SC, which is a small portion of the boundary of the whole
domain, can we determine the displacements, strains, and stress in the whole do-
main? A MLPG mixed collocation method is developed to solve this problem, and
is discussed in detail in the following two subsections.

3.2 MLPG Mixed Collocation Method

We start by interpolating the displacements as well as the stresses, using the same
MLS shape function, as discussed in section 2:

ui(x) =
m

∑
J=1

Φ
J(x)ûJ

i (10)

σi j(x) =
m

∑
J=1

Φ
J(x)σ̂ J

i j (11)

where, ûJ
i and σ̂ J

i j are the fictitious displacements and stresses at node J.

With the constitutive and kinematic equation as shown in (8), the stress components
at node I can also be expressed as:

σi j(xI) =
1
2

Ci jkl

m

∑
J=1

[
Φ

J
,l(x

I)ûJ
k +Φ

J
,k(x

I)ûJ
l
]
; I = 1,2, · · · ,N (12)

where N is the total number of nodes in the domain.

This allows us to relate nodal stresses to nodal displacements, which is written here
in matrix-vector form:

S = Tu (13)

And the equations of linear momentum balance are independently enforced at each
node, as:

m

∑
J=1

Φ
J
, j(x

I)σ̂ J
i j + fi(xI) = 0; I = 1,2, · · · ,N (14)
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or in an equivalent Matrix-Vector from:

KSS = f (15)

By substituting equation (13) into equation(15), we can obtain a discretized system
of equations in term of nodal displacements:

Kequ = feq (16)

From equation (12) and (14), we see that both the equation of linear momentum
balance, and the stress displacement-gradient relation are enforced by a collocation
method, at each node of the MLS interpolation. In the following subsection, the
same collocation method will be carried out to enforce the boundary conditions of
the inverse problem.

3.3 Over-Specified Boundary conditions in a Cauchy Inverse Problem of Isotro-
pic/Anisotropic Linear Elasticity in Simply/Multiply Connected Domains

In most applications of inverse problems, the measurements are only available at
discrete locations at a small portion of the boundary. In this study, we consider
that both displacements ūi as well as tractions t̄i are prescribed at discrete points
xI, I = 1,2,3...,M, on the same segment of the boundary. We use collocation
method to enforce such boundary conditions:

m

∑
J=1

Φ
J(xI)ûJ

i = ui (xI)

n j
1
2

Ci jkl

m

∑
J=1

[
Φ

J
,l(x

I)ûJ
k +Φ

J
,k(x

I)ûJ
l
]
= t i(xI)

(17)

or, in matrix-vector form:

Kuu = fu

Ktu = ft
(18)

3.4 Regularization for Noisy Measurements

Equation (16) and (18) can rewritten as:

Ku = f, K =

 Keq
Ku
Kt

 , f =

 feq
fu
ft

 (19)

This gives a complete discretized system of equations of the governing differential
equations as well as the over-specified boundary conditions. It can be directly
solved using least square method without iterative optimization.
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However, it is well-known that the inverse problems are ill-posed. A very small
perturbation of the measured data can lead to a significant change of the solution. In
order to mitigate the ill-posedness of the inverse problem, regularization techniques
can be used. For example, following the work of Tikhonov and Arsenin (1977),
many regularization techniques were developed. Hansen and O’Leary (1993) has
given an explanation that the Tikhonov regularization of ill-posed linear algebra
equations is a trade-off between the size of the regularized solution, and the quality
to fit the given data. With a positive regularization parameter, the solution is found
by:

min
(
‖Ku− f‖2 + γ ‖f‖2

)
(20)

This leads to the regularized solution:

u =
(
KTK+ γI

)−1 KTf (21)

4 Numerical Examples

In this section, several 2D numerical examples are given to demonstrate the effec-
tiveness of the MLPG mixed collocation method for solving inverse problems in
isotropic/anisotropic linear elastic, simply connected/multiply-connected domains.

4.1 Case 1: Cantilever beam

Figure 1: A cantilever beam under a shear load at the free end, with displacements
as well as tractions prescribed at discrete locations over only a part of the boundary
(denoted by red points)
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In the first case, a beam-shaped simply-connected domain is considered, as shown
in figure 1. The geometrical parameters are: L = 24,c = 2,P = 1. Arbitrarily
we consider the Young’s modulus E = 1, and the Poisson’s ratio ν = 0.25. The
analytical solution of a cantilever beam subjected to shear load at the free end is
given in [Timoshenko and Goodier (1970)]:

u1 =−
Px2

6EI

(
3x1 (2L− x1)+(2+ν)

(
x2

2− c2))
u2 =

Py
6EI

(
3νx2

2 (L− x1)+(4+5ν)c2x1 + x2
1 (3L− x1)

)
σ11 =−

Px2

I
(L− x1) ,σ22 = 0,σ12 =

P
2I

(
c2− x2

2
) (22)

where the moment of inertia is I = c3/3.

So we consider a problem like this: if the beam is subject to such a deformation,
can we identify the displacements, strains, and stresses in the whole domain, if the
data of displacements and tractions are only available at the discrete locations over
a small portion of the boundary shown in figure 1.

The inverse problem is posed as follows: if the displacements as well as tractions
corresponding to the analytical solution(21) are prescribed at all the “red” points
in figure 1, can we use the MLPG Mixed Collocation Method to determine the
displacements and tractions elsewhere on the boundary and inside the domain?

We first solve this problem with125 uniformly distributed nodes as shown in fig-
ure 2. As discussed in section 3, collocations are made for equilibrium equations,
stress displacement-gradient relations, displacement and traction boundary condi-
tions. The stress component σ11 and vertical displacement v at the upper side of
the beam is normalized to their maximum values, and are shown in figure 3. The
computed displacements and stresses agree with the analytical solution very well.

Figure 2: The nodal configuration of the cantilever beam

Moreover, in order to study the convergence of the current method, three differ-
ent nodal configurations with 21, 52 and 297 nodes, respectively, are used to solve
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the inverse problem as shown in figure 1. The nodal configurations are uniform,
as shown in figure 4. The computed normalized stress σ11 and normalized verti-
cal displacement valong the top edge (x2 = c) with the 3 nodal configurations are
shown in figure 5 and 6. Compared with the analytical solution, each of the 3 nodal
configurations can give acceptable results. And finer nodal configurations will give
more accurate computations.

Figure 3: Computed normalized stress σ11 and normalized vertical displacement v
at the upper side of the beam, using nodal configuration in figure 2.
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Figure 4: Three nodal configurations of a cantilever beam

Figure 5: Computed normalized stress σ11 using 3 different nodal configurations
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Figure 6: Computed normalized displacement v using 3 different nodal configura-
tion

4.2 Case 2: An isotropic plate with a circular hole

Figure 7: a plate with a circular hole under uniform tension

We also consider a doubly connected domain as shown in figure 7. A 20 by 20
square plate is considered and R=5 denotes the radius of the circular hole. Arbitrar-
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ily we consider the Young’s modulus E = 1, and the Poisson’s ratio ν = 0.25. The
analytical solution for this problem is given in [Timoshenko and Goodier (1970)]:

ur =
p

4G

{
r
[

κ−1
2

+ cos(2θ)

]
+

a2

r
[1+(1+κ)cos(2θ)]− a4

r3 cos(2θ)

}
uθ =

p
4G

{
(1−κ)

a2

r
− r− a4

r3

}
sin(2θ)

σx = p
{

1− a2

r2

[
2
3

cos(2θ)+ cos(4θ)

]
+

3a4

2r4 cos(4θ)

}
σy =−p

{
a2

r2

[
1
2

cos(2θ)− cos(4θ)

]
+

3a4

2r4 cos(4θ)

}
σxy =−p

{
a2

r2

[
1
2

sin(2θ)+ sin(4θ)

]
− 3a4

2r4 sin(4θ)

}
(23)

wherein, G is the shear modulus and κ = (3−ν)/(1+ν).

We prescribe both the displacements as well as tractions corresponding to the ana-
lytical solution (23) at only a part of boundary as shown in red points in figure 7,
and use two different nodal configurations to solve this problem. The two nodal
configurations have 620 nodes and 2416 nodes respectively, as shown in figure 8.
Computed displacements and stresses are given in figure 8-12, showing the conver-
gence of the solution.

(a) (b)

Figure 8: Two nodal configurations of the plate with a circular hole, with 2416 and
628 nodes respectively
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It expected that, the smaller SC is, i.e. when boundary conditions are over-
specified at a smaller portion of the boundary, the inverse problem itself becomes
more ill-posed, and more difficult to tackle. How to improve the accuracy and
stability of the computed displacements, strains, and stresses with MLPG Mixed
Collocation Method, when boundary conditions are over-specified at a smaller
SC, will be explored in future studies.

Figure 9: Computed horizontal displacement ualong the positive x1-axis for an
isotropic plate with a circular hole with two nodal configurations

Figure 10: Computed vertical displacement v along the positive x2-axis for an
isotropic plate with a circular hole with two nodal configurations
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Figure 11: Comparison of the identified stress σ22 along the positive x1-axis for an
isotropic plate with a circular hole with two nodal configurations

Figure 12: Computed stress σ11 along the positive x2-axis for an isotropic plate
with a circular hole with two nodal configurations

4.3 Case 3: An anisotropic plate with a circular hole

In this example, we consider the problem of an anisotropic plate with a circular
hole. The same geometry, load, measurement locations as shown in figure 7 are
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Figure 13: Computed horizontal displacement ualong the positive x1-axis for an
anisotropic plate with a circular hole with 2416 nodes

Figure 14: Computed vertical displacement v along the positive x2-axis for an
anisotropic plate with a circular hole with 2416 nodes

used. The orthotropic material properties are arbitrarily taken to be:

C =

 C11 C12 C16
C21 C22 C26
C61 C62 C66

=

 1.0667 0.2667 0
0.2667 1.667 0
0 0 0.5

 (24)

The analytical solution of an infinite plate with a circular hole under uniform ten-
sion, given by [Lekhnitskii (1963)], is used at here. And we use the MLPG mixed
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collocation method to solve this inverse problem, with the finer nodal configuration
(2416 node) as shown in figure 8. The computed stress σ22 and horizontal displace-
ment u at the positive x1-axis, the computed stressσ11 and vertical displacement v
at the positive x2-axis are given in figure 13-16 respectively. Compared with the
analytical solutions, good agreements are obtained for both the displacements and
stress.

Figure 15: Comparison of the identified stress σ22 along the positive x1-axis for an
anisotropic plate with a circular hole with 2416 nodes

Figure 16: Computed stress σ11 along the positive x2-axis for an anisotropic plate
with a circular hole with 2416 nodes
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4.4 Case 4: An isotropic plate with a circular hole with noise in the over-
specified boundary data

In this example, we consider the same problem of case 2, but with measurement
noises in both the displacements and tractions at a boundary where the conditions
are over specified. The same material, geometry, load as shown in figure 7 is
used. Measurement noises with SNR 40dBW and 30dBW are added to the ana-
lytical solution(22), and are measured at locations shown in figure 7. We use the
MLPG mixed collocation method to solve this inverse problem, with 2416 node
as shown in figure 8. The Tikhonov Regularization as discussed in section 3.4 is
used here to mitigate the influence of noise corruption, with a small regularization
parameterγ = 10−7. The computed stress σ22 and horizontal displacement u at the
positive x1-axis, the computed stressσ11 and vertical displacement v at the positive
x2-axis are given in figure 17-20 respectively. From the numerical results, we see
that the current method is robust enough to solve the inverse problems with mea-
surement noises. This is important because there is always measurement noise in
real applications.

Figure 17: Computed horizontal displacement ualong the positive x1-axis for an
isotropic plate with a circular hole using 2416 nodes, subjected to measurement
noises
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Figure 18: Computed vertical displacement v along the positive x2-axis for an
isotropic plate with a circular hole using 2416 nodes, subjected to measurement
noises

Figure 19: Comparison of the identified stress σ22 along the positive x1-axis for
an isotropic plate with a circular hole using 2416 nodes, subjected to measurement
noises
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Figure 20: Computed stress σ11 along the positive x2-axis for an isotropic plate
with a circular hole using 2416 nodes, subjected to measurement noises

4.5 Case 5: An anisotropic plate with an elliptical hole

In the last example, we consider a 20 by 20 square plate with an elliptical hole, see
figure 21. The semi-axes of the elliptical hole is a= 6,b= 4. Uniform tension P= 1
is applied horizontally to the plate. And arbitrarily we consider the orthotropic
material properties:

C =

 C11 C12 C16
C21 C22 C26
C61 C62 C66

=

 1.0667 0.2667 0
0.2667 1.667 0
0 0 0.5

 (25)

where aand b are the major and minor semi- axis of the ellipse. The analytical
solution of this problem is given in [Lekhnitskii (1963)].

Randomly generated 2416 nodes are used to solve the problem, with MLPG mixed
collocation method. The nodal configuration is shown in figure 22. Both displace-
ments as well as tractions corresponding to the analytical solution [Lekhnitskii
(1963)] are prescribed at all the boundary points marked as red in figure 21. In
figure 22-25, we plot the computed stress σ22 and horizontal displacement u along
the positive x1-axis, and the stressσ11 and vertical displacement v along the positive
x2-axis. Good agreement is found between the computed and analytical solutions.
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Figure 21: A plate with an elliptical hole under uniform tension

Figure 22: The nodal configuration of the plate with an elliptical hole
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Figure 23: Computed horizontal displacement ualong the positive x1-axis for an
anisotropic plate with an elliptical hole using 2416 nodes

Figure 24: Computed vertical displacement v along the positive x2-axis for an
anisotropic plate with an elliptical hole using 2416 nodes
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Figure 25: Comparison of the identified stress σ22 along the positive x1-axis for an
anisotropic plate with an elliptical hole using 2416 nodes

Figure 26: Computed stress σ11 along the positive x2-axis for an anisotropic plate
with an elliptical hole using 2416 nodes
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5 Conclusions:

The MLPG mixed collocation method is developed to solve the inverse problems of
linear elasticity with isotropic or anisotropic material properties, and simply/multiply-
connected domains. The MLS is used to construct the MLPG basis functions, and
the displacements and stresses are independently interpolated. Equations of equi-
librium, stress displacement-gradient relations, and over-specified displacement as
well as traction boundary conditions over a small portion of the boundary are all
enforced at discrete points using the method of collocation.

The current method is considered to be very promising, and better than the current
existing solvers of inverse problems such as FEM, EFG, MFS, etc. Some obvious
advantages of using MLPG mixed collocation method to solve inverse problems
are:

1. it is very simple since the inverse problem is directly solved in a fashion
similar to a direct problem, without resorting to any iterative optimization;

2. it can be applied to arbitrary simply/multiply connected bodies;

3. it can be applied to arbitrary isotropic and anisotropic materials;

4. it can be even extended to solve nonlinear problems, by using incremental
linearization;

5. it can also be adapted to solve inverse problems of other physical problems
such as heat transfer, electro-magnetics, etc.

6. it can be easily combined with any existing regularization techniques, to re-
duce the effects of measurement noises.
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