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On the Continuum Modeling of the Tire/Road Dynamic
Contact
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Abstract: The continuum modeling of tire/road vibro-contact dynamics is devel-
oped in this paper by assuming continuum relationship between the contact force
and the deformation. An important aspect of this model is that the damping depends
on the indentation. In the continuum approach, no difference is made between im-
pact and contact, and the friction law can be other than the Coulomb’s law. Since
the road is rocky, a bristle model was chosen to take into account the effect of
the road irregularities. The identification of the contact domain is performed by
checking the minimum distance between bodies.
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1 Introduction

Most of real systems exhibit vibro-impacts with the frictional slip. Railway brakes,
chattering of machine tools, automotive seating, interaction between tire and the
road, for example, have been extensively studied for nearly three decades show-
ing a huge complexity of dynamical responses even for a simple impact oscillator
without the frictional slip [Wiercigroch (2006)].

The interfaces between the bodies in contact can experience the vibro-impacts and
frictional slips. The vibro-impacts are observed in the contact interfaces for high
amplitude vibrations, and they are characterized by very brief duration, rapid dis-
sipation of energy and large accelerations and decelerations. Including of friction
into continuum modeling improves the interaction between the driver and the ve-
hicle seat and makes the simulation more realistic. The frictional slips introduce
nonlinearities in the stiffness and damping characteristics of the contact interfaces.

1 Institute of Solid Mechanics of Romanian Academy, Dept. of Continuum Mechanics and Ultra-
sonics, Ctin Mille 15, Bucharest 010141.

2 Technical University of Cluj-Napoca, Faculty of Mechanics, Dept. of Mechatronics and Machine
Dynamics, Memorandumului 28, Cluj-Napoca 400114.



160 Copyright © 2013 Tech Science Press CMES, vol.94, no.2, pp.159-173, 2013

The friction plays a dual role by transmitting energy from one surface to the other
and by dissipating energy of relative motion.

The impact and the frictional slip mechanisms work together when they simultane-
ously develop in a contact interface. In this case, the distribution of forces can be
manifested in many different forms, as shown by Jalali et al. (2011), in the prob-
lem of micro-vibro-impacts of a clamped Euler-Bernoulli beam. The vibro-impact
dynamics changes the friction pattern by the appearance of slips consisting of elas-
tic and plastic deformation. Comprehensive investigations of contact friction and
vibro-impact mechanisms developing in contact interfaces have been performed in
a series of relevant papers [Chen and Huber (2012); Ferri (1995); Berger (2002);
Gilardi and Sharf (2002); Karnopp (1985); Menq et al. (1986)]. An important con-
clusion of these papers is that the continuous approach has several advantages over
the discrete formulation. In the continuous approach no difference is made between
impact and contact; therefore the methods of non-impact dynamics can be used to
solve the problem. An advantage of the continuous approach over a discrete formu-
lation is that it allows the application of the theory to multi-contact situations, as it
is the case for the multi-body system. The Coulomb’s law in the discrete approach
leads to multiple solutions what is not happened in the continuum approach.

The contact force depends on the deformation and it is defined by the interference
distance or penetration. Impacts between bodies are generally defined by the con-
dition of impenetrability [Kim (1999]. The contact can be identified by checking
the minimum distance between bodies [Gilardi and Sharf (2002)]

min
(

1
2
(r1− r2)

T (r1− r2)

)
, f1(r1)≤ 0, f2(r2)≤ 0, (1)

where r1 and r2 are the position vectors of two points belonging to the tire and the
road, respectively, and f1 and f2 are bounding surface constraints. The interference
distance is defined as

min(−d), f1(r1)≤−
d
2

e1, f2(r2)≤−
d
2

e2, (2)

where d is the interference distance and e1 and e2 are the unit vectors.

Following these ideas, a continuous approach of the vibro-contact dynamics is de-
veloped in this paper by using explicit relationships for contact and friction forces.
The main aim of the paper is to model the dynamic contact between the tire and the
road, when the slip and vibro-impact mechanisms are simultaneously developed in
a contact interface between them.

The model takes as inputs the function of bristle displacement which characterizes
the rocky road, and the vertical tire force, and produces as outputs, the identifica-
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tion of the contact domain and the distribution of contact pressures in the contact
domain.

The paper is organized as follows: Section 2 is devoted to the examination of the
contact and friction forces, in context of the rocky road. The identification of the
contact domain by checking the minimum distance between bodies is presented in
Section 3. Finally, concluding remarks are provided in Section 4.

2 Contact and friction forces

Let us consider the contact between two contacting bodies, namely the tire and
the road. These bodies have at the moment time t, a contact interface Ω(t). We
suppose that Ω(t) simultaneously undergoes the frictional slip and vibro-impact
mechanisms when tire is operating o the road. The tire load and velocity generate
forces at Ω(t). These forces act in three directions. There is a vertical component,
the contact force Fc = Fcz acting in z direction, the longitudinal component of the
friction force Ftxacting in the x direction, and the lateral component of the friction
force Fty acting in the y direction, respectively. A typical contact between the tire
and a rocky road is displayed in Fig. 1.

The lateral friction force Fty tend to close the grooves of the tire, remaining fairly
constant [Yap (1989]. The longitudinal friction force Ftx is directed towards the
center of the footprint and exhibit some changes in its direction close to the mid-
points of Ω(t). In contrast to longitudinal and lateral friction pressures, the vertical
contact force is generally non-uniform over Ω(t) especially because the Ω(t) is
composed by a sum of subdomains Dc j(t)⊂Ω(t), j = 1,2,3..., p.

Three problems are important to be discussed here, i.e. the modeling of the un-
known contact domains, and the definitions of contact and friction forces in Ω.

To shape of the unknown contact domain Dc is taken as the ellipse shape defined
by the Lamé curve(

x
a(t)

)n

+

(
y

b(t)

)n

= 1, n > 0, (3)

where x and y define the envelope of the contact area, a is half of the contact length,
and b is half of the contact width (radii of the oval shape are depending of time),
and n the power of the ellipsoid. The case of n = 2/3 corresponds to a squashed
astroid, n = 1 to a squashed diamond, n = 2 to ellipse and n→ ∞ to rectangles
[Gardner (1977]. The advantage of the Lamé curve consists in the effect of n to
rounding the sharp corners. It provides a smooth transition between the oval and
the rectangle shape.
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Figure 1: The contact between the tire and the rocky road.

The parametric representation of (3) is

x(t) = a(t)cos2/n
θ , y(t) = b(t)sin2/n

θ . (4)

For area of the ellipsoid (3), we find

A(t) = 4b
a∫

0

(
1−
( x

a

)n)1/n
dx =

41−1/na(t)b(t)
√

πΓ
(
1+ 1

n

)
Γ
(1

2 +
1
n

) , (5)

where Γ is the Gamma function

Γ(z) = lim
n→∞

n!nz

z(z+1)...(z+n)
, (z 6= 0,−1,−2, ...).

In what concerns the contact forces, we consider that they act in a continuous man-
ner during the dynamic contact, and thus, the analysis is performed by adding the
contact forces to the equations of motion [Gilardi and Sharf (2002); Sharf and
Zhang (2006)]. The case of contact interfaces with corners written in terms of the
stress intensity factors was studied by Hwu et al. (2009).
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Different models have been postulated in time to represent the contact force of
two contacting bodies [Hunt and Crossley (1975); Stronge (1995); Barkan (1974);
Brach (1991)]. Hertz (1986)] uses the elastostatic theory to calculate local inden-
tation without the use of damping. Dubowsky and Freudenstein (1971) assume a
linear viscous damping law and a Hertzian spring for modeling the contact inter-
faces. Hunt and Crossley (1975) proposed a model based on Hertz’s theory of con-
tact with a non-linear damping force defined in terms of local penetration and the
corresponding rate. Other damping models have been proposed to describe totally
or partially plastic impacts [Barkan (1974); Van Vliet, Sharf and Ma (2000); Sharf
and Nahon (1995); Lim and Stronge (1999); Johnson (1985); Goldsmith (1960)].

In the literature the indentation δ is the principal factor in defining the contact force
[Demiral et al, 2010]

Fc = f (δ , δ̇ ). (6)

A particular form of (6) is

Fc = kδ +bδ̇ , (7)

with k and b constants depending on the material and geometry [Sharf and Zhang
(2006); Van Vliet, Sharf and Ma (2000)]. This model has some limitations [Gilardi
and Sharf (2002)]. Firstly, the contact force at the start of the impact is discontin-
uous, due to the damping term. When the contacting bodies are separating when
the indentation is tending to zero, their relative velocity tends to be negative. As a
result, a negative force holding the objects together is present. The equivalent coef-
ficient of restitution defined for this model does not depend on impact velocity. But
both elastic and damping forces should be initially at zero and increase over time,
and the experimentally demonstrated that the coefficient of restitution edepends on
velocity [Goldsmith (1960)].

Another particular form of (7) is the Hertz model

Fc = kδ
n, (8)

with k and n constants depending on the material and geometry. In this model,
e = 1, because the dissipation energy is not present. However, this model can be
used only for low impact speeds and hard materials.

Hunt and Crossley (1975) reported another version for (6)

Fc = kδ
n +bδ

p
δ̇

q, (9)

where n, p,q are constants, coefficient k depends on the material and the geometric
properties of the bodies in contact, and b is defined with respect to the coefficient
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of restitution 0 ≤ e ≤ 1. These coefficients are calculated based on the viscoelas-
tic theory. For example, n = 3/2 in the case of two spheres in central impact and
k is defined in terms of Poisson’s ratios, Young’s moduli and the radii of the two
spheres. The standard values are p = n and q = 1. In the case of central impact
between two bodies, the coefficient of restitution is e = 1− 2bδ̇0/3k [Gilardi and
Sharf (2002)]. An important aspect of this model is that the contact area increases
with deformation and a plastic region can appear for larger indentation, i.e. the
damping depends on the indentation. Another advantage of (9) is that the con-
tact force has no discontinuities at initial contact and separation, and it begins and
finishes with the value of zero.

The energy Wr released during restitution at impact can be calculated as the negative
work done by Fc during the collision

Wr =−
∫
Fc

δ̇dt. (10)

The coefficient of restitution can be calculated as

e =

√
Wr

−Wc
, (11)

where Wr is the energy released during restitution and Wc is the energy absorbed
during compression.

In this paper we consider the contact pressure distribution obtained by extending
the Maugis-Dugdale model [Johnson (1985, 1997); Maugis (1992); Maugis and
Barquins (1978); Dugdale. (1960]. The effect of adhesive forces in the contact
between the tire and the road is to increase the contact radius above that prescribed
by the Hertz theory.

Dugdale approximation is that the adhesive force intensity σ0 is constant until a
separation h0 is reached, whereupon it falls to zero. Intimate contact is maintained
over the domain Dc. Adhesive forces of intensity σ0 extend the contact domain
to the adhesive domain Dc ⊂ Da, and value max(a,b) to a value c > max(a,b), c
being half of the contact length (or width).

We consider that the contact pressure in a point comprises two terms, the contact
pressure p1 and the adhesion pressure pa

p = pz + pa. (12)

The contact pressure pz is determined from the integral

Fc =−
pzdA∫
A

, (13)
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computed on the area A given by (5) of the contact domain Dc for a time value,
with Fc is given by (9). The adhesive pressure pa is given by

pa =−
σ0

π
arccos f , for r ≤max(a,b) (14)

with r =
√

x2 + y2 in a rectangular system of coordinates. Adhesive pressure ex-
tends the contact domain to Dc ⊂Da, with c > max(a,b), half of the contact length.
In the Hertz theory, the function f is given as

f =
2max(a,b)2− c2− r2

c2− r2 . (15)

Friction modeling is another key aspect of the vibro-impacts with the frictional slip
situation. The friction can stop and/or reverse the motion as well as, it contributes
to energy dissipation. The traditionally law used to determine the force of dry
friction is the Coulomb’s law, which states that the frictional force Ft , is related to
the normal force (contact force) Fc, through a friction coefficient, and its direction
is always opposite to the relative tangential motion.

Friction Ft occurring at the contact point during sticking can be defined as [Johnson
(1997)]

Ft = ktδt , (16)

where δt is the tangential component of displacement at the contact point and kt is
the tangential stiffness.

For the friction force Ft we propose a bristle model which is able to represent the
effect of road irregularities on the tire by using bristles [Haessig and Friedland
(1991); Ma (1995)]. Such a model is compatible to continuous contact dynamics
modeling because it effectively calculate Ft as a function of time (through depen-
dence on the road irregularities and Fc). The friction force is defined explicitly and
uniquely during sticking at the contact domain. If the road is rocky as in this paper,
the road bumpiness has to be taken into account. It is not unusual for automotive
designers to test virtual models of cars on virtual models of bumpy roads

The bristle model for the friction force is given by

Ft =


k f s(t0)+

t∫
t0

vtdt, |s|< smax,

µ
|Fc|
k f

vt

|vt |
, otherwise,

(17)
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where k f is the bristle stiffness, s(t) the function of the bristle displacement, t0 is the
start time of the last sticking at that contact point, vt the relative tangential velocity
and parameter smax is the maximum allowable deflection of the bristle.

Others attempts to develop on-road and off-road capable tire models for vehicle
dynamics simulations are reported in [Chan (2008); Lacombe (2000); Zeggelaar
(1998)].

3 Identification of the contact domain

In the case of a rocky road, the tire is rather deformable than rigid when operating
on the road. The identification of the contact patches in the interval T0 is performed
by checking the minimum distance between bodies according to (1) and (2). The
shape of the patches changes in time from an oval shape (n =2) at very low values
of the vertical loads to almost rectangular shape (n =4) at higher values of vertical
load (Fig. 2).

Figure 2: Different shapes of the contact patches.

The irregularities of the road (bumps, corners, peaks, shallows, etc.) are schemati-
cally shown in Fig. 3. At each moment several contact patches are identified in the
given interval of time. For each contact point j = 1,2, ..., the contact force Fc j, is
given by (9)

Fc j = kδ
n j +bδ

p j δ̇
q j , j = 1,2,3, ..., (18)

where n j, p j,q j, j = 1,2,3, ..., are constants, the coefficient k depends on the tire’s
material and the geometric properties of the tire, and b is defined with respect to
the coefficient of restitution 0 ≤ e ≤ 1. The friction force Ft j in the contact points
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Figure 3: Typically irregularities of the rocky road.

Figure 4: The function of bristle-displacements(t).

j = 1,2, ... are given by (17)

Ft j =


k f s(t0)+

t∫
t0

vt jdt, |s|< smax,

µ
|Fc j|
k f

vt j

|vt j|
, otherwise,

(19)

where k f is the bristle stiffness, s(t) the function of bristle displacement, t0 is the
start time of the last sticking at that contact point, vt j the relative tangential velocity
in tires and parameter smax is the maximum allowable deflection of the bristle. For
t = 0 and s = 0 it results f j(0) = 0.

The function s(t) of the bristle-displacement is displayed in Fig. 4.
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Numerical simulation of detection of the contact points between the tire and the
road in the intervalT0, is achieved by checking the minimum distance between
points belonging to the tire and the road, respectively. As results, for a speed of
the vehicle of 10 m/s, a number of more than 500 contact points were detected.
By defining a contact patch consisting from a minimum nearest 5 contact points, a
number of more than 100 contact patches were identified.

Table 1 shows, for example, the characteristics of the first 4 detected contact patches
in t ∈ [0; 5sec]. The maximum value of the contact pressures for the first contact
patch, with respect to a/a0 andb/b0, are plotted in Figs. 5 and 6, respectively. The
a0and b0 are the reference radii of the oval shape of Dc.

The enhanced size of the contact patches inDc ⊂ Da, c > max(a,b), because of the
adhesive pressures are presented in Table 2. We observe that the adhesive pressures
given by (14), represent about 65-72% from the corresponding contact pressures.

Table 1: Dimensions of first 4 contact patches in the interval T0.

Contact patch Vertical load Fz[N] a [mm] b[mm] n
Front tire 2000 35 46 2.02

38.3 51.2 2.18
Rear tire 39.4 52.0 2.22

41.2 52.4 2.33
Front tire 3000 45.2 53.9 2.41

50.2 54.8 2.55
Rear tire 52.7 57.0 2.67

63.4 61.2 2.71
Front tire 5000 68.0 63.2 2.88

73.6 65.5 2.91
Rear tire 77.8 67.2 2.98

79.4 67.9 3.01
Front tire 8000 89.5 72.3 3.15

92.5 74.9 3.93
Rear tire 98.3 75.0 4.04

100.1 76.3 4.11
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Figure 5: The maximum contact pressure in the first contact patch.

Figure 6: The maximum contact pressure in the first contact patch.
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Table 2: Enhanced dimensions of first 4 contact patches in the interval T0.

Contact
patch

Vertical
load Fz[N]

c [mm] Contact pressure
pz[kPa]

Adhesive
pressure pa[kPa]

Front tire 2000 47 141 100
51.7 145 103

Rear tire 53.4 153 101
53.2 154 103

Front tire 3000 55.4 155 105
55.9 156 107

Rear tire 57.2 161 108
61.9 166 115

Front tire 5000 68.4 173 114
73.9 175 114

Rear tire 78.5 176 115
80.3 181 120

Front tire 8000 90.0 185 125
92.8 186 125

Rear tire 98.8 186 125
101.7 189 127

4 Conclusions

The continuous approach of the modeling the dynamic contact between the tire and
the road has several advantages over the discrete formulation. In the continuous
approach no difference is made between impact and contact; therefore the methods
of non-impact dynamics can be used to solve the problem. An advantage of the
continuous approach over a discrete formulation is that it allows the application of
the theory to multi-contact situations, as it is the case for the multi-body system.
The Coulomb’s law in the discrete approach leads to multiple solutions what is not
happened in the continuum approach.

This paper is assuming continuum laws for the contact and friction forces. The
continuum modeling of tire/road vibro-contact dynamics is developed in this paper
in order to identify the contact domain by checking the minimum distance between
bodies. The model takes as inputs the function of bristle displacement and the
vertical tire force amd produces, as outputs, the distribution of contact pressure
in the interfaces between the tire and the road in a short interval of time T0 =
[0, 15sec].
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The contact pressure comprises two terms, the contact pressure and the adhesion
pressure. The adhesive forces extend the contact domain to the enhanced adhesive
domain Dc ⊂ Da, by a value c > max(a,b), where c is half of the contact length.
We observe that the that the adhesive pressures represent about 65-72% from the
corresponding contact pressures.
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