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A Wavelet Method for Solving Nonlinear Time-Dependent
Partial Differential Equations

Xiaojing Liu1, Jizeng Wang1,2, Youhe Zhou1,2

Abstract: A wavelet method is proposed for solving a class of nonlinear time-
dependent partial differential equations. Following this method, the nonlinear equa-
tions are first transformed into a system of ordinary differential equations by using
the modified wavelet Galerkin method recently developed by the authors. Then,
the classical fourth-order explicit Runge-Kutta method is employed to solve the re-
sulting system of ordinary differential equations. To justify the present method, the
coupled viscous Burgers’ equations are solved as examples, results demonstrate
that the proposed wavelet algorithm have a much better accuracy and efficiency
than many existing numerical methods, and the order of convergence of such a
wavelet method can even reach about 5.

Keywords: modified wavelet Galerkin method, Runge-Kutta method, nonlinear
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1 Introduction

The nonlinear time-dependent partial differential equations (PDEs) provide a quan-
titative description for many nonlinear phenomena which play crucial roles in al-
most every scientific and engineering field [Caffarelli, Golse, Guo, Kenig and
Vasseur (2012); Yi and Chen (2012); Zhou, Wang, Wang and Liu (2011); Chen,
Sun, Li and Fu (2013); Kuo, Gu, Young and Lin (2013); Wei, Chen, Li, and Yi
(2012)]. Solving these nonlinear PDEs are critically important for the resolutions of
many practical problems in science and engineering. However, until now, it is still
very difficult to obtain high accurate solutions of nonlinear PDEs, either theoreti-
cally or numerically [Baines, Hubbard and Jimack (2011); Tadmor (2012); Eslami
and Mirzazadeh (2013); Feng, Glowinski and Neilan (2013); Su and Chen (2013)].
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Most nonlinear time-dependent PDEs, including for instance the nonlinear vibra-
tion equation of beams, nonlinear reaction-diffusion equations and Navier–Stokes
equation of fluids etc. can be converted into the general form as

∂ui(x, t)/∂ t=
M
∑

l=1
L0

i,lul(x, t)+
M2
∑

l=1
L1

i,lNi,l [u1(x, t), ...,uM(x, t),x, t]+fi(x, t), 0<x<1, t>0

∂
j0i,sui(x, t)/∂

j0i,s x|x=0 = ∂
j1i,sui(x, t)/∂

j1i,sx|x=1 = 0, ui(x,0) = gi(x), i = 1,2, ...,M

(1)

in which L0
i,l and L1

i,l denote differential operators in the spatial variable x, Ni,l is a
nonlinear functional of the unknown functions ui(x,t), j0

i,s, j1
i,s and s are nonnegative

integers.

A typical example of Eq. (1) is the so-called coupled viscous Burgers’ equations,
as the fundamental partial differential equations from fluid mechanics, which can
be expressed as

∂u
∂ t = ς

∂ 2u
∂x2 − η

2
∂u2

∂x −α
∂ (uv)

∂x + p(x, t)

∂v
∂ t = ξ

∂ 2v
∂x2 − ε

2
∂v2

∂x −β
∂ (uv)

∂x +q(x, t)
, x ∈ (0, 1), t > 0 (2)

with the boundary conditions u(0, t) = u0(t), u(1, t) = u1(t), v(0, t) = v0(t) and
v(1, t) = v1(t), and the initial conditions u(x,0) = f (x) and v(x,0) = g(x), where
ζ , η , α , ξ , ε and β are constants.

In recent years, a number of numerical methods have been proposed to solve Eq.
(2), because solving the coupled viscous Burgers’ equations (2) has two-fold im-
portance. On one hand, Eq. (2) has been widely adopted to describe various phys-
ical processes, including the polydispersive sedimentation, diffusion of two kinds
of particles in fluid suspensions and fluid turbulence etc. [Nee and Duan (1998);
Abdou and Soliman (2005); Mittal and Jiwari (2012)]. On the other hand, the
coupled viscous Burgers’ equations (2) have been used as a benchmark testing
problem for many existing numerical methods on the solution of nonlinear time-
dependent PDEs, such as the variational iteration method [Abdou and Soliman
(2005)], the decomposition method [Kaya (2001)], the discrete Adomian decom-
position method [Zhu, Shu and Ding (2010)], the implicit finite difference method
[Srivastava, Singh and Awasthi (2013); Srivastava, Awsthi and Tamsir (2013)], the
differential quadrature method [Mittal and Jiwari (2012)], the B-spline collocation
[Mitttal and Arora (2011)], and the conventional Galerkin method [Zhang, Yu and
Zhao (2011)]. These conventional methods are effective for the solution of nonlin-
ear time-dependent PDEs under certain conditions. However, it is still very difficult
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for most of them to solve the general form (1) of time-dependent PDEs with arbi-
trary strong nonlinearities.

In our recent works [Liu, Zhou, Wang and Wang (2013); Liu, Wang and Zhou
(2013)], we have developed a modified wavelet Galerkin method for solving non-
linear boundary value problems, which can simply and efficiently deal with arbi-
trary strong nonlinearities including the transcendental forms. And such a wavelet
algorithm has a much better accuracy and a much faster convergence rate than
many other numerical methods, including the finite difference method [Odejide and
Aregbesola (2006)], the classical weighted residual method [Odejide and Aregbesola
(2006)], the Non-polynomial spline method [Jalilian (2010)], the B-spline method
[Caglar, Caglar, Özer, Valaristos and Anagnostopoulos (2010)], the Lie-group shoot-
ing method [Abbasbandy, Hashemi and Liu (2011)], the differential transformation
method [Hassan and Ertürk (2007)], the Laplace transform decomposition method
[Khuri (2004)] and the decomposition method [Deeba, Khuri and Xie (2000)].
More importantly, the computational accuracy of this wavelet method [Liu, Zhou,
Wang and Wang (2013); Liu, Wang and Zhou (2013)] is insensitive to the non-
linear intensity of the equations. But on the contrary, the numerical accuracy of
most other methods [Jalilian (2010); Caglar, Caglar, Özer, Valaristos and Anagnos-
topoulos (2010); Abbasbandy, Hashemi and Liu (2011); Hassan and Ertürk (2007);
Khuri (2004); Deeba, Khuri and Xie (2000)] usually decays very fast along with
the nonlinear intensity.

In this study, as a development of the wavelet method for solving nonlinear bound-
ary value problems [Liu, Zhou, Wang and Wang (2013); Liu, Wang and Zhou
(2013)], we have combined such a wavelet technique with the Runge-Kutta method
to solve the class of nonlinear time-dependent PDEs in the form of Eq. (1). By us-
ing the modified wavelet Galerkin method [Liu, Zhou, Wang and Wang (2013);
Liu, Wang and Zhou (2013)], the nonlinear PDEs (1) are reduced into a system
of nonlinear ordinary differential equations (ODEs). Then the solution to PDEs
(1) can be obtained by using the Runge-Kutta method to solve these ODEs. Fur-
ther by using the coupled viscous Burgers’ equations (2) as examples, we conduct
a systematic investigation on the efficiency and accuracy of the proposed wavelet
algorithm for solving nonlinear time-dependent PDEs.

2 Solution procedure for time-dependent PDEs

Following our previous work [Liu, Zhou, Wang and Wang (2013); Liu, Wang and
Zhou (2013)], a function f (x) ∈ L2[0, 1] can be approximated by

f (x)≈ P j f (x) =
2 j

∑
k=0

f (k/2 j)ϕ j,k(x), x ∈ [0, 1] (3)
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where the modified wavelet basis

ϕ j,k(x) =



−1
∑

i=−9
T0,k(

i
2 j )φ(2 jx− i+7)+φ(2 jx− k+7) k ∈ [0, 3]

φ(2 jx− k+7) k ∈ [4, 2 j−4]
2 j+6
∑

i=2 j+1
T1,2 j−k(

i
2 j )φ(2 jx− i+7)+φ(2 jx− k+7) k ∈ [2 j−3, 2 j]

.

(4)

In Eq. (4), φ (x) is the generalized Coiflet-type orthogonal scaling function devel-
oped by Wang [Wang (2001)], and

T0,k(x) =
3

∑
i=0

p0,i,k

i!
xi, T1,k =

3

∑
i=0

p1,i,k

i!
(x−1)i (5)

in which the numerical differentiation coefficients p0,i,k and p1,i,k are assigned as

P0 =


1 0 0 0

−11/6 3 −3/2 1/3
2 −5 4 −1
−1 3 −3 1

 , P1 =


1 0 0 0

11/6 −3 3/2 −1/3
2 −5 4 −1
1 −3 3 −1

 (6)

through relations P={2−i j p0,i,k} and P1={2−i j p1,i,k}, and i, k=0, 1, 2, 3.

The accuracy of the wavelet approximation (3) of the function f (x) ∈ L2[0,1],
which is dependent on the number of vanishing moment γ=6 of the wavelet function
associated with the scaling function φ(x) in Eq. (4) and the decomposition level j
has been determined by [Liu, Wang and Zhou (2013); Wang (2001); Resnikoff and
Wells (1998)]

|| f (x)−P j f (x)||L2[0, 1] ≤C12− jγ (7)

and for the approximation of its derivatives, we similarly have

||d
m f (x)
dxm − dmP j f (x)

dxm ||L2[0, 1] ≤C22− j(γ−m) (8)

where constants C1 and C2 depend on the smoothness and boundary extension prop-
erty of f (x), m is a positive integer satisfying m <γ .

To meet homogeneous boundary conditions in Eq. (1) the coefficients p0, j0
i,s,k

and
p1, j1

i,s,k
(k=0, 1, 2, 3) in matrix (6) should be set as zeros, and keeping all other el-

ements unchanged [Liu, Zhou, Wang and Wang (2013)] Then the modified scaling
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basis ϕ j,k(x) in Eq. (4) will be specified accordingly, which is re-denoted as hi
j,k(x).

Thus the unknown function ui(x) can be approximated by Eq. (3) as

ui(x, t)≈
2 j

∑
k=0

ui(k/2 j, t)hi
j,k(x), i = 1,2, ...,M. (9)

And following the nonlinear operational property for the wavelet approximation (3)
[Liu, Zhou, Wang and Wang (2013)], the nonlinear term Ni,l[u1(x, t), ...,uM(x, t),x, t]
in Eq. (1) can be expressed as

Ni,l[u1(x, t), ...,uM(x, t),x, t]≈
2 j

∑
k=0

Ni,l[u1(
k
2 j , t), ...,uM(

k
2 j , t),

k
2 j , t]ϕ j,k(x) (10)

and the function fi(x, t) can be written as

fi(x, t)≈
2 j

∑
k=0

fi(k/2 j, t)ϕ j,k(x) (11)

where the modified scaling basis ϕ j,k(x) is denoted in Eq. (4) with coefficients
p0,i,k and p1,i,k specified in Eq. (6). Substituting Eqs. (9) (10) and (11) into Eq. (1),
yields

2 j

∑
k=0

dui(k/2 j,t)
dt hi

j,k(x)≈
M
∑

l=1

2 j

∑
k=0

ul(k/2 j, t)L0
i,lh

l
j,k(x)+

2 j

∑
k=0

fi(k/2 j, t)ϕ j,k(x)

+
M2

∑
l=1

2 j

∑
k=0

Ni,l[u1(
k
2 j , t), ...,uM( k

2 j , t), k
2 j , t]L1

i,lϕ j,k(x), i = 1,2, ...,M
. (12)

Multiplying both sides of the ith equation in Eq. (12) by hi
j,l(x), l = 0, 1, 2, ..., 2 j,

respectively and perform integration over the interval [0, 1], gives

AidUi(t)/dt ≈
M

∑
n=1

Bi,nUn(t)+
M2

∑
l=n

Ci,nDi,n(t)+EiFi(t) (13)

in which

matrixes Ai = {ai
lk =

∫ 1
0 hi

j,k(x)h
i
j,l(x)dx} and Bi,n = {bi,n

lk =
∫ 1

0 L0
i,nhn

j,k(x)h
i
j,l(x)dx}

matrixes Ci,n = {ci,n
lk =

∫ 1
0 L1

i,nϕ j,k(x)hi
j,l(x)dx} and Ei = {ei

lk =
∫ 1

0 ϕ j,k(x)hi
j,l(x)dx}

vectors Ui(t) = {ui
k = ui(k/2 j, t)}T and Fi(t) = { f i

k = fi(k/2 j, t)}T

vector Di,n(t) = {di,n
k = Ni,n[u1(k/2 j, t), ...,uM(k/2 j, t),k/2 j, t]}T ,

where the subscripts i = 1, 2, ..., M, and k, l = 0, 1, 2, ..., 2 j. And the general-
ized connection coefficients ai

lk, bi,n
lk ci,n

lk and ei
lk can be obtained exactly by using
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the procedure suggested by Wang [Wang (2001)], and the expression of the modi-
fied scaling basis have been given by Eq. (4).

In the system of ODEs (13), the numbers of both equations and unknown functions
ui(k/2 j, t) (i = 1, 2, ..., M, and k = 0, 1, 2, ..., 2 j) are M(2 j + 1). Thus we can
obtain the nodal values of unknown function u(k/2 j,n∆t) (k = 0,1, 2, ..., 2 j, and
n = 1,2,3, ...), by directly using the time-integration methods with time step ∆t.

3 Solution of coupled viscous Burgers’ equations

In this section, we will apply the proposed method to solve the coupled viscous
Burgers’ equations (2). Firstly, we set the nodal values of unknown functions
u(0/2 j, t) = u0(t), u(2 j/2 j, t) = u1(t), v(0/2 j, t) = v0(t) and v(2 j/2 j, t) = v1(t) to
meet the boundary conditions in Eq. (2), without any change of matrix (6). Thus,
the unknown functions and nonlinear terms in Eq. (2) can be expressed as

u(x, t)≈
2 j

∑
k=0

u(
k
2 j , t)ϕ j,k(x), v(x, t)≈

2 j

∑
k=0

v(
k
2 j , t)ϕ j,k(x) (14)

u2(x, t)≈
2 j

∑
k=0

u2(
k
2 j , t)ϕ j,k(x), v2(x, t)≈

2 j

∑
k=0

v2(
k
2 j , t)ϕ j,k(x) (15)

u(x, t)v(x, t)≈
2 j

∑
k=0

u(
k
2 j , t)v(

k
2 j , t)ϕ j,k(x) (16)

p(x, t)≈
2 j

∑
k=0

p(
k
2 j , t)ϕ j,k(x), q(x, t)≈

2 j

∑
k=0

q(
k
2 j , t)ϕ j,k(x). (17)

Substituting Eqs. (14-17) into Eq. (2) and consider boundary conditions, we have

2 j−1

∑
k=1

du j,k(t)
dt

ϕ j,k(x)≈ ς

2 j−1

∑
k=1

u j,k(t)
d2ϕ j,k(x)

dx2 −
2 j−1

∑
k=1

[
ηu2

j,k(t)

2
+αu j,k(t)v j,k(t)]

dϕ j,k(x)
dx

+
2 j

∑
k=0

p j,k(t)ϕ j,k(x)−
du0(t)

dt
ϕ j,0(x)−

du1(t)
dt

ϕ j,2 j(x)+ς [u0(t)
d2ϕ j,0(x)

dx2 +u1(t)
d2ϕ j,2 j(x)

dx2 ]

− [
ηu2

0(t)
2

+αu0(t)v0(t)]
dϕ j,0(x)

dx
− [

ηu2
1(t)
2

+αu1(t)v1(t)]
dϕ j,2 j(x)

dx
(18a)
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2 j−1

∑
k=1

dv j,k(t)
dt

ϕ j,k(x)≈ ξ

2 j−1

∑
k=1

v j,k(t)
d2ϕ j,k(x)

dx2 −
2 j−1

∑
k=1

[
εv2

j,k(t)

2
+βu j,k(t)v j,k(t)]

dϕ j,k(x)
dx

+
2 j

∑
k=0

q j,k(t)ϕ j,k(x)−
dv0(t)

dt
ϕ j,0(x)−

dv1(t)
dt

ϕ j,2 j(x)+ξ [v0(t)
d2ϕ j,0(x)

dx2 + v1(t)
d2ϕ j,2 j(x)

dx2 ]

− [
εv2

0(t)
2

+βu0(t)v0(t)]
dϕ j,0(x)

dx
− [

εv2
1(t)
2

+βu1(t)v1(t)]
dϕ j,2 j(x)

dx
(18b)

Multiplying both sides of Eq. (18) by ϕ j,l(x), l = 1, 2, ..., 2 j−1, respectively and
perform integration over the interval [0, 1], yields{

dU/dt ≈ ςA−1BU−A−1CE+A−1DP−A−1G
dV/dt ≈ ξ A−1BV−A−1CF+A−1DQ−A−1H (19)

where the matrixes A = {alk = Γ
0,0
l,k }, B = {blk = Γ

0,2
l,k }, C = {clk = Γ

0,1
l,k } and

D = {dli = Γ
0,0
l,i }, and the vectors U = {uk = u j,k(t)}T , V = {vk = v j,k(t)}T , E =

{ek = ηu2
j,k(t)/2 + αu j,k(t)v j,k(t)}T , P = {pi = p j,i(t)}T , Q = {qi = q j,i(t)}T ,

and F = { fk = εv2
j,k(t)/2 + βu j,k(t)v j,k(t)}T , and vectors G = {gl =

du0
dt Γ

0,0
l,0 +

du1
dt Γ

0,0
l,2 j − ςu0Γ

0,2
l,0 − ςu1Γ

0,2
l,2 j +(

ηu2
0

2 +αu0v0)Γ
0,1
l,0 +(

ηu2
1

2 +αu1v1)Γ
0,1
l,2 j}T and H =

{hl=
dv0
dt Γ

0,0
l,0+

dv1
dt Γ

0,0
l,2 j−ξ v0Γ

0,2
l,0−ξ v1Γ

0,2
l,2 j+(

εv2
0

2 +βu0v0)Γ
0,1
l,0+(

εv2
1

2 +βu1v1)Γ
0,1
l,2 j}T .

Here, the generalized connection coefficients Γ
0,m
l,k =

∫ 1
0 dmϕ j,k(x)/dxmϕ j,l(x)dx,

the subscripts l, k=1, 2, . . . , 2 j-1 and i=0, 1, . . . , 2 j.

In this study, the classical fourth-order explicit Runge-Kutta method with the time
step ∆t is employed to solve the system of ODEs (19).

4 Numerical results and discussions

To effectively evaluate the performance of the present wavelet method, we consider
the maximum error Lmax, the relative L2 errors, and the order of convergence R,
which are respectively defined as [Mitttal and Arora (2011)]

Lmax = max
k
{|unum(xk, t)−uexact(xk, t)|} (20)

L2 =
√

∑
k
|unum(xk, t)−uexact(xk, t)|2/∑

k
|uexact(xk, t)|2 (21)

R =
log[Error(N1)/Error(N2)]

log(N2/N1)
(22)
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in which Error(N1) and Error(N2) are the Lmax errors for number of spatial parti-
tions N = N1 and N2, respectively

As a numerical test, we consider the coupled viscous Burgers’ equation (2) with
constants ζ =ξ =1/4π2, η=ε=-1/π and α=β=1/2π , initial conditions u(x, 0)=v(x,
0)=-sin(2πx), boundary conditions u(0, t) = u(1, t) = v(0, t) = v(1, t)=0, and func-
tions p(x, t)= q(x, t)=0 [Mitttal and Arora (2011); Mittal and Jiwari (2012); Srivas-
tava, Awsthi and Tamsir (2013); Zhang, Yu and Zhao (2011)]. The exact solutions
of this problem are u(x, t) = v(x, t) = e−tsin(2πx-π).

Table 1: Maximum error Lmax of u(x, t) for time setp ∆t=0.01, at different time t

t Present,
N=64

Mittal and
Arora (2011),

N=400

Srivastava et
al. (2013),

N=400

Zhang et al.
(2011),
N=64

Rashid and Ismail
(2009), N=64

0.1 2.02E-07 1.86E-06 4.80E-05 — —
0.5 1.36E-07 6.22E-06 1.62E-04 1.38E-05 —
1.0 8.25E-08 7.56E-06 1.98E-04 — 1.16E-05

Table 2: Relative L2 errors of u(x, t) for time setp ∆t=0.01, at different time t

t Present,
N=64

Mittal and Arora
(2011), N=400

Srivastava et al.
(2013), N=400

Rashid and Ismail
(2009), N=64

0.1 5.68E-08 2.05E-06 5.30E-05 —
0.5 5.71E-08 1.02E-05 2.67E-04 —
1.0 5.75E-08 2.04E-05 5.38E-04 2.91E-05

The maximum errors Lmax and relative L2 errors under ∆t= 0.01 for different time
t are listed in Table 1 and Table 2, respectively. It can been seen from Table 1
and Table 2 that the present wavelet method with much less number of spatial par-
titions N has a better numerical accuracy than many existing methods, including
the B-spline collocation [Mitttal and Arora (2011)], the finite difference method
[Srivastava, Awsthi and Tamsir (2013)], the conventional Galerkin method [Zhang,
Yu and Zhao (2011)] and the Fourier pseudospectral method [Rashid and Ismail
(2009)]. In Table 3 and Fig.1, we have shown the relationship between the maxi-
mum errors Lmax and the number of spatial partitions N. From Table 3 and Fig.1
we can find out that the order of convergence R of the proposed wavelet method
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is about 5, which obviously exceeds the order of convergence of the B-spline col-
location [Mitttal and Arora (2011)] and the conventional Galerkin method [Zhang,
Yu and Zhao (2011)]. It clearly demonstrates the accuracy and efficiency of the
present wavelet method.

Table 3: Maximum error Lmax and order of convergence R for u(x, t) at time t=0.5

N
Present Mittal and Arora (2011) Zhang et al. (2011)

Lmax R Lmax R Lmax R
8 3.05E-03 — — — — —
16 1.339E-04 4.511 — — — —
32 4.336E-06 4.949 9.748E-04 — 1.106E-04 —
64 1.360E-07 4.995 2.436E-04 2.005 1.379E-05 3.003

128 — — 6.090E-05 2.001 1.722E-06 3.001
256 — — 1.522E-05 2.001 2.153E-07 3.000

As the other example, we study the following problem [Mitttal and Arora (2011);
Mittal and Jiwari (2012); Srivastava, Awsthi and Tamsir (2013); Zhang, Yu and
Zhao (2011)]:

∂u
∂ t

=
1

400
∂ 2u
∂x2 −

1
20

∂u2

∂x
− α

20
∂ (uv)

∂x
∂v
∂ t

=
1

400
∂ 2v
∂x2 −

1
20

∂v2

∂x
− β

20
∂ (uv)

∂x

, x ∈ (0, 1), t > 0 (23)

with the initial and boundary conditions which are taken from the travelling wave
solution

u(x, t) = a0{1− tanh[A(20x−2At−10)]}

v(x, t) = a0

{
2β −1
2α−1

− tanh[A(20x−2At−10)]
}
, A =

a0

2
4αβ −1
2α−1

(24)

in which α and β are arbitrary constants, anda0=0.05.

We present a comparison between the numerical solutions of Eq. (23) obtained
by the proposed wavelet method and those obtained by other existing methods in
Tables 4-7, which display the maximum error and the relative L2 error for various
values of t, α , and β As can be seen from Tables 4-7, the present wavelet solutions
can achieve a similar accuracy comparing to those obtained by many other methods
[Khater, Temsah and Hassan (2008); Rashid and Ismail (2009); Mitttal and Arora
(2011); Srivastava, Awsthi and Tamsir (2013)], with much less number of spatial
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Figure 1: Errors of numerical solutions u(x, t) under time setp ∆t=0.01 for different
time t, as a function of the number spatial partitions N: (a) Maximum error Lmax,
and (b) Relative L2 errors.

partitions N, implying that the proposed wavelet algorithm has a much higher effi-
ciency than these methods [Khater, Temsah and Hassan (2008); Rashid and Ismail
(2009); Mitttal and Arora (2011); Srivastava, Awsthi and Tamsir (2013)].
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Table 4: Maximum error Lmax for u(x, t) at different time t

t α β Present,
N=8

Khater et
al. (2008),

N=20

Rashid and
Ismail

(2009), N=16

Mittal and
Arora (2011),

N=100

Srivastava et
al. (2013),

N=100
0.5 0.1 0.3 4.59E-05 4.38E-05 3.25E-05 4.17E-05 4.12E-05

0.3 0.03 4.60E-05 4.58E-05 2.73E-05 4.59E-05 4.31E-05
1 0.1 0.3 8.61E-05 8.66E-05 2.41E-05 8.26E-05 8.15E-05

0.3 0.03 9.16E-05 9.16E-05 2.83E-05 9.18E-05 8.54E-05

Table 5: Relative L2 errors for u(x, t) at different time t

t α β Present,
N=8

Khater et
al. (2008),

N=20

Rashid and
Ismail

(2009), N=16

Mittal and
Arora (2011),

N=100

Srivastava et
al. (2013),

N=100
0.5 0.1 0.3 7.21E-04 1.44E-03 9.62E-04 6.74E-04 6.63E-04

0.3 0.03 8.03E-04 6.68E-04 4.31E-04 7.33E-04 6.90E-04
1 0.1 0.3 1.42E-03 1.27E-03 1.15E-03 1.33E-03 1.30E-03

0.3 0.03 1.59E-03 1.30E-03 1.27E-03 1.45E-03 1.36E-03

Table 6: Maximum error Lmax for v(x, t) at different time t

t α β Present,
N=8

Khater et
al. (2008),

N=20

Rashid and
Ismail

(2009), N=16

Mittal and
Arora (2011),

N=100

Srivastava et
al. (2013),

N=100
0.5 0.1 0.3 2.38E-05 4.99E-05 2.75E-05 1.48E-04 2.13E-05

0.3 0.03 1.81E-04 1.81E-04 2.45E-04 5.73E-04 4.91E-05
1 0.1 0.3 4.45E05 9.92E-05 3.75E-05 4.77E-05 4.11E-05

0.3 0.03 3.61E-04 3.62E-04 4.53E-04 3.62E-04 9.78E-05

Table 7: Relative L2 errors for v(x, t) at different time t

t α β Present,
N=8

Khater et
al. (2008),

N=20

Rashid and
Ismail

(2009), N=16

Mittal and
Arora (2011),

N=100

Srivastava et
al. (2013),

N=100
0.5 0.1 0.3 5.40E-04 5.42E-04 3.33E-04 9.06E-04 4.89E-04

0.3 0.03 1.41E-03 1.20E-03 1.15E-03 1.59E-03 7.06E-04
1 0.1 0.3 1.06E-03 1.29E-03 1.16E-03 1.25E-03 9.53E-04

0.3 0.03 2.80E-03 2.35E-03 1.64E-03 2.25E-03 1.39E-03
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5 Conclusion

In this paper, we have proposed a wavelet scheme for numerically solving the non-
linear time-dependent partial differential equations. The accuracy and efficiency of
this wavelet method have been demonstrated by taking the coupled viscous Burg-
ers’ equations as test examples. The numerical results show that the proposed
wavelet method has a much better accuracy and efficiency than many other nu-
merical methods, and the order of convergence of such a wavelet method is about
5, better than other methods
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