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Numerical Simulation of 2-D Transversal Seismic Waves
by Network Method
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Abstract: In this paper, the propagation of 2-D, transversal elastic waves is sim-
ulated by using the network method. The spatially discretized wave equation is the
basis for designing the model of the volume element which contains as many com-
ponents as addends in the governing equation. The whole network model, including
the boundary conditions, is run in a suitable circuit simulation code such as PSpice
with a relatively small computational time. The rules for the design are very few
since there is a special component in the libraries of such codes, named controlled
source, that is capable of implementing any kind of non-linearity or coupled term
in the equation. The design routines as well as those required for the subsequent
post-processing of output data are carried out by MATLAB. After the study and
simulation of a standard case, in order to compare the network solutions with those
obtained by the finite-difference explicit method, two problems are presented using
the known Ricker pulse as excitation.
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1 Introduction

The network method is a numerical tool, which has been extensively used in recent
years for successfully solving a large variety of problems in science and engineer-
ing [Morales et al. (2011); Moreno et sal. (2007); Soto et al. (2007)]. In this paper
the technique is applied for the first time to solve 1-D and 2-D transversal (SH)
seismic waves problems, a scenarios already investigated by other numerical meth-
ods [Simos and Vigo-Aguilar (2003), Natesan et al. (2003), Martin-Vaquero and
Vigo-Aguilar (2006) and Vigo-Aguilar and Natesan (2006), Akbarti et al. (2010),
Zhuang et al. (2011,2012].

Despite the disadvantage of the need to be familiar with the basic principles of elec-
tric circuit theory, the proposed method [González Fernández (2002)] has demon-
strated itself to be an accurate and reliable tool for many researchers. Although it
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is based on the electric analogy widely treated in many books, particularly in heat
transfer problems for educational purposes [Mills (1995); Incropera and De Witt
(1996)], when it serves –as an alternative representation of a problem in the con-
text of the general analogy between equations–, it goes far beyond the scope of this
subject and can be used as a real numerical tool, making good use of the powerful
algorithms implemented in the circuit simulation codes. In addition, no mathemat-
ical manipulations are required to treat the finite-difference equations that normaly
have to be solved by iteration; this work is done by the code. In this context and for
the first time, we apply the method to obtain the solution of the wave equation: the
emergence and propagation of transversal elastic waves in 1-D and 2-D domains
from the point source.

The starting point for the design of the model is the finite-difference differential
equation that results from the spatial discretization of the mathematical model. The
addends of this equation are assumed to be electrical currents that are balanced,
according to their signs, at a common node of the network, the voltage of which
is generally the solution to the equation. The implementation of each addend in
the network is made by choosing an electrical component or device whose equa-
tion is simply that of the addend obtained by substituting the dependent variables
of the physical processes by their analogous ones (electric current and voltage).
Most of the linear terms of the PDEs are easily implemented in the model by sim-
ple devices (resistors, capacitors and coils), while non-linear or coupled addends
require special devices named controlled current sources, as defined in the libraries
of the electric simulation codes, that make the implementation of these non-linear
or coupled terms a straightforward task. In addition, second order time derivative
or other possible derivative terms of a higher order require auxiliary networks to
be designed. These controlled sources, whose output current can be specified by
software as a function of other variables defined at any point (voltage) or any com-
ponent (current) of the model, in combination with auxiliary circuits if required,
allow any mathematical problem to be designed regardless of its complexity (see,
for example, the models of moving boundary problems in heat transfer or elas-
tostatic problems, [Alhama and González Fernández (2002)] and [Morales et al.
(2012)], respectively).

After a detailed explanation of the network model design and of how the bound-
ary conditions are implemented, the simulation is carried out in PSpice [Microsim
Corporation (1994)], providing the transient perturbation at any point in the output
ambience of the code. The widespread use of PSpice and its new versions confirms
the applicability of the program to a large variety of circuit simulation problems. It
also provides a valuable base of experience that demonstrates the advantages of the
powerful, efficient and reliable numerical algorithms that are implemented therein.
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Instantaneous pictures of the perturbation along the domain are depicted by pro-
cessing the output data with MATLAB which, in turn, is also used as programming
tool to generate the text file of the network model. To illustrate its application,
we first studied a standard case in order to compare the network solutions with
those obtained by the explicit finite-difference method, illustrating the deviations
between both numerical techniques. In addition, typical 1-D and 2-D scenarios of
transversal seismic waves subjected to a Ricker pulse [Ricker (1945)] as excitation
and with different types of boundary conditions are also presented.

2 The mathematical model

The governing (hyperbolic) equation for the SH waves in a elastic domain is [Aki
and Richards (2002)]

ρ
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∂

2
ν/∂ t2)= µ

{(
∂

2
ν/∂x2)+ (∂ 2
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where ν = ν (x,z, t) is the perturbation (transversal displacement), which propa-
gates in all directions of the plane XOZ, and µ and ρ are the transversal elasticity
modulus (one of the Lamé parameters) and the density. The ratio (µ/ρ)1/2 = β is
a positive constant equal to the group velocity of the wave. The stresses related to
the displacement ν are given by σxy = µ (∂ν/∂x) and σyz = µ (∂ν/∂y).

For the excitation point source, the classical Ricker pulse wave is considered, the
instantaneous amplitude of which is given by the expression

A(t) =
(

a2− 1
2

)
e−a2

(2)

with a = π (t− ts)/tp. Fig. 1 shows the form of this wave as well as its Fourier
spectrum for the values ts=2 s, tp=1 s. The pulse contains a continuous window
of frequencies that extends from 0 to approximately 3 Hz (Fig. 2). Two types of
boundary conditions are assumed: homogeneous (Dirichlet), which implies null
displacement at the boundary, and the second type (Neumann), which implies free
surface or absorbent boundary reflecting continuity in the model.

3 The network model

The first step in the application of the network method, whose purpose is to convert
the SH problem into a network (circuit) problem, to design a model for a vol-
ume element or cell, whose circuit equations are formally equivalent to the finite-
difference differential equations that come from the spatial discretization of the
governing (partial differential) equations. Time remains as a continuous variable



264 Copyright © 2013 Tech Science Press CMES, vol.94, no.3, pp.261-277, 2013

Figure 1: The Ricker pulse, temporal dependence of the amplitude

Figure 2: The Ricker pulse, Fourier spectrum

in the network (as in line methods). Once the network cell is designed, the whole
model is formed by simple (electrical) ideal connections between adjoining nodes
and adding the boundary conditions using suitable electrical components.

Since the simulation code provides the exact solution of the network, errors in the
results can only be due to the grid size. The experience gained with the large
variety of non-linear problems to which the method has been applied, demonstrates
that in 2-D benchmark type problems, a model containing in the order of 50×50
cells provides errors well below 1%. The main advantage of the method is that no
mathematical manipulations are required by the user since this work is carried out
by the simulation code.

In the network analogy used the following equivalence between the real and elec-
tric variables applies at any point of the domain: the displacement or perturbation
is related to the electric voltage. Now, the network model of the cell it designed
following these steps: i) write the finite-difference differential equation resulting
from the spatial discretization of the governing Eq. 1, ii) implement each addend
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of the equation as the current of a suitable source whose voltage-current expression
is given by a constitutive equation of the same form as that of the addend, iii) bal-
ance these currents (as many currents as are addends in the equation) at a common
node by simple electrical connection of the components according to the topology
(sign of the addend) in the equation, iv) complete the network of the domain by
direct electrical connection between adjacent volume elements, v) implement the
boundary conditions by suitable electrical devices, and vi) define the sources that
implement the excitation or initial conditions.

As is immediately clear, step ii) is easily addressed if the current that defines the
source is a linear function of the dependent variable. In this case, the implementa-
tion can be done by using simple electrical components such as resistors, for which
the relation between current and voltage is algebraic and direct, or capacitors and
coils, for which the variables are related by time derivative expressions. However,
if the current is not a linear function of the dependent variable –as occurs when the
addend that expresses a derivative term is of an order greater than unity or when it is
a coupled term containing more than one dependent variable– the implementation
requires special attention. In the first case (derivative terms), auxiliary circuits are
required to define successive derivatives, while in the second case (coupled terms),
the current is implemented by a controlled source whose output can be specified by
software as an arbitrary function of the dependent variables defined at any point of
the medium.

In order to satisfy the topology of the governing equation, the electrical compo-
nents related to each term must be suitably placed in the model so that the balance
implicit in the equation is satisfied. If this is done, the whole network model is
simply equivalent to the problem defined by the governing and boundary condi-
tions equations and, as a consequence, the SH problem is implemented as a circuit
problem. A more detailed explanation of the implementation of different types of
addends in strongly non-linear and coupled problems can be found in [González
Fernández (2002)].

Let us apply the above steps to our problem. Using the nomenclature of Fig. 3 for a
symmetric volume element in the domain, the finite-difference differential equation
derived from the wave Eq. 1 is
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This equation contains five linear terms, four spatially discretized in the right-hand
part of the equation plus one on the left, the time second derivative term. First,
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Figure 3: Nomenclature of the volume element or cell

each discretized term is implemented by a resistor (R) since the current of this
component (iR) is related with the voltage by the linear Ohm’s law, iR = ∆V/R.
In this way, the values of the resistors are easily obtained using Ohm’s law, by
considering the term as an electric current:
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Rout put,x and Rout put,z are also defined by Eqs. 4 and 5, respectively, due to the sym-
metry of the cell. To satisfy the topology of Eq. 3, the four resistors are connected
between the common (central) node of the cell and their respective boundary nodes,
as shown in Fig. 4. Note that we considered the solution ν = ν(t) at any node of
the cell as the voltage in that node.

The term (∂ 2ν /∂ t2) is also considered as an electric current that counterbalances
the other terms and is implemented in a more complex form by auxiliary circuits
as follows. The first derivative of the perturbation is obtained by the components
Ea, Ca and the null battery Vnull,a. Ea is a (controlled) voltage-source whose input
(ν i) is the voltage at the common node of the volume element in the main circuit;
its output, also ν i, is applied to the capacitor of capacitance 1.0 farad. In this way,
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the current through it is given by IC = dν i/dt, the first time derivative of the pertur-
bation. This current crosses the battery, which acts as an ammeter (a requirement
imposed by PSpice to read the current through the capacitor). The new auxiliary
circuit formed by Fa and La force the current ICa to cross through a coil of induc-
tance unity. Fa is a current-source controlled by the current of the battery (ICa),
whose output current is just ICa. In this way, the voltage through the coil, given by

VLa = La
(
dILa

/
dt
)
= La

(
dICa

/
dt
)
=
(
d2

νi
/

dt2) (6)

is the second derivative of the perturbation. Since this is the current that has to be
balanced in equation (3), a new dependent current-source connected at the common
node of the volume element –whose output current (and input voltage) is the voltage
through the coil, (d2ν i/dt2)– satisfies this requirement and the five terms of the
equation are suitability balanced according to its topology. The complete network
model of the volume element is shown in Fig. 4.

Figure 4: Network model of spatially discretized wave equation

The connection of Nx×Nz networks, such as that of Figure 4, by ideal electrical
contacts covers the physical domain of the problem, which is completed by adding
the implementation of boundary conditions at those nodes that form the limit of
the domain. Null displacement at the boundaries (ν |b = 0) is related to a large
inertia; electrically, this means a constant zero voltage at the nodes that define the
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contour (Dirichlet homogeneous condition), Fig. 5a. On the contrary, small inertia
masses or a free surface, which means free tractions on the boundary surface (ty|b
= 0), allow the voltage to change in the contour nodes according to the arrival of
the perturbation (homogeneous Neumann condition); so, a resistor of very high
value (theoretically infinite) is the suitable component to implement this condition,
Fig. 5b. This is justified by the connection between traction forces and stress and
displacement

ty|b = σxy cosα +σyz cosγ = µ
(
∂ν
/

∂x
)

cosα +µ
(
∂ν
/

∂ z
)

cosγ (7)

with α and γ being the angles of the outer normal vector to the free surface. When
ty|b = 0 the value of ∂ν /∂x = ∂ν /∂z = 0, a condition that is only satisfied by a
resistor of infinite value. Other more real conditions that partially or totally absorb
the energy transported by the wave can be assumed by programming controlled
sources.

Finally, in order to release the domain to the excitation source, an electrical switch
is required between the Ricker pulse generator and the node where this is applied;
the network for this condition is shown in Fig. 5c. The switch opens when the
pulse is finished, releasing the node to allow it to move freely.

Figure 5: Boundary conditions: a) Dirichlet type, b) Neumann type, c) Switch for
the application of a Ricker pulse

Since very few components are required in most cases, including boundary condi-
tions, very few rules are required for the design of the complete model, which is
run, without other mathematical manipulations, in a suitable code such as PSpice.
Since they work with signals of very high frequencies, the powerful computational
algorithms implemented in such codes mean that the simulation reproduces the ex-
act solution of the network model; consequently, the errors can only be attributed
to the choice of the grid size. In linear problems such as transversal elastic waves,
relative errors are within the permissible ranges in this engineering field.
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4 Simulation results

First, the method is applied to solve a kind of benchmark problem in order to com-
pare the results and estimated errors with the solution given by Luzón et. al [2003]
using explicit finite-difference methods. The 2-D domain is a square of side 10 m,
with free boundaries; the wave velocity is β = 3.5m/s and a Ricker pulse, defined
by ts = tp = 2s, is applied at the center of the domain. A simulation time of 4 s has
been considered.

Ten points per wavelength are chosen in order to ensure the quality of the finite-
difference solution; for the maximum frequency of the Ricker spectrum (3 Hz), this
assumption leads to ∆xmax = ∆ymax = βmax/(10·fmax) = 0.2333m. To fit the grid to
45x45 and 121x121 volume elements, the final values of ∆x (and ∆y) are 0.2273
and 0.08333 m, respectively. In addition, according to the stability criterion of von
Neumann, the maximum time step for the finite-difference solution must satisfy the
expression ∆t = 2−1/2*∆x/βmax; we have chosen 0.0066 s (or 600 time intervals), a
value that fits the former expression for the two simulations.

Figures 6 and 7 compare network method and finite-difference solutions at two
typical points of the domain located in the symmetry line, (5, 6.14) and (5, 7.73),
respectively. While both solutions approximately converge when the number of the
volume elements is increased, significant deviations appear for small grids. Table
1 shows vertical displacements at selected times (points related to maximum and
minimum vertical displacements as well as inflexion points) for both methods with
grids of 45×45 and 121×121. For the small grid, standard deviations are also
pointed out in the table (taking 50 regular time intervals along the range 0÷4 s)
using as approximately exact solutions those of the larger grid.

Table 1: Vertical displacement at typical times and standard deviation
x = 5.00, z = 6.14 m

Time 1.2 1.6 1.9 2.4 2.8 3.5 4.0 σ

DF 45x45 0.038 0.080 0.012 0.161 0.026 0.080 0.068 0.015
DF 121x121 0.031 0.069 0.014 0.136 0.029 0.059 0.070 0.0026
NSM 45x45 0.029 0.072 0.031 0.149 0.051 0.070 0.070 0.0096

NSM 121x121 0.030 0.067 0.018 0.133 0.032 0.058 0.069 -
x = 5.00, z = 7.73 m

Time 1.8 2.1 2.3 2.8 3.2 3.6 4.0 σ

DF 45x45 0.039 0.054 0.030 0.091 0.002 0.047 0.017 0.0066
DF 121x121 0.032 0.046 0.023 0.079 0.009 0.047 0.013 0.0016
NSM 45x45 0.033 0.051 0.013 0.083 0.023 0.050 0.009 0.0053

NSM 121x121 0.031 0.046 0.019 0.076 0.011 0.045 0.012 -
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Figure 6: Perturbations at x = 5, z = 6.14 m

Figure 7: Perturbations at x = 5, z = 6.14 m
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Secondly, two new illustrative applications of the model to 1-D and 2-D domains
are studied. For the 1-D case, the following values are imposed: ρ = 3,000 kg/m3;
µ = 4·109 N/m2, L (length of the domain) = 5,000 m (resulting in propagation
velocity of β = 1,155 m/s), time window of the simulation 0-20 s and N (number
of volume elements in the domain) = 191. To simulate the absorbent condition at
the ends of the domain, 10 new volume elements of a length 10 times larger than
that of the domain have been added (5 on the right of the domain and 5 on the left).
Ricker’s condition for ts=2 s, tp=1 s (Fig. 5c) is applied to the central node of the
volume element 101, so that complete symmetry is imposed on the problem.

Figure 8: Instantaneous perturbation at four typical locations, x = 3000, 3500, 4000
and 4500 m

Figure 9: Domain perturbation at t = 4 s. Continuous line: β = 1155, dashed line:
β = 2309 m/s
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Figure 10: Domain perturbation at t = 2.5, 4.5, 5.0, 5.5, 6.0 and 6.5 s. Excitation
located at the centre of the domain
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Figure 11: Domain perturbation at t = 2.5, 4.5, 5.0, 5.5, 6.0 and 6.5 s. Excitation
located at the centre of a side
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 a) 

 b) 

Figure 12: Transient perturbation along the lines: a) x = 0 and b) x = 2,500 m

The simulation provides the results shown at Figs. 8 and 9. In the first, the instanta-
neous perturbation for four typical locations of the domain is depicted in the PSpice
ambience. As time progresses the perturbation reaches points far from the source
and dispersion phenomena are clearly appreciated as a result of wave deformation.
The deformed domain at t = 4 s, in the MATLAB ambience, for two values of the
wave velocity (β = 1,155 and 2,309 m/s) are represented in Figure 7, showing, once
again, the dispersion effect. The computational time for this application is 96 s in
an AMD ATHLON 64×2 Dual Core Processor 5200+, 1.80 GHz PC.

As regards the 2-D application, the following parameters have been chosen: ρ =
103 kg/m3, β = 103 m/s, the domain extends to the square Lx = Lz = 5„000 m,
the mesh is formed by 21×21 volume elements and the time window is reduced
to 0-10 s. Ricker pulses under the condition given by Fig. 5c, with ts=2 s, tp=1
s, are successively applied to the central node of the volume element (11,11) and
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 a) 

 b) 

Figure 13: Transient perturbation along the lines: a) x = 2,500 and b) z = 2,500 m

to the centre of a boundary side (1,11). The boundary condition is changed to a
Neumann type condition (free boundary), equivalent to assuming null shear stress,
in the form

σxy = µ
(
∂ν
/

∂x
)
, at x=0 and x = Lx; σyz = µ

(
∂ν
/

∂ z
)
, at z=0 and z = Lz(8)

Figs. 10 and 11 show the domain perturbation at successive times (the first pic-
ture of both figures corresponds to a time for which the Ricker pulse has not fin-
ished). As the time increases a smoother representations emerges due to dispersion
phenomena. Finally, Figs. 12 and 12 show typical representations of the seismic
wave propagation corresponding to instantaneous perturbation at two typical sec-
tions with the excitation applied at the center of the domain and at the center of the
boundary side, respectively; these displacements are shown using a scale of 5,000.
The computational time for this application is 1,220 s.
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5 Conclusions

The network method demonstrated to be an efficient tool for solving the transver-
sal wave equation problem by numerical simulation. The design of the network,
as well as the implementation of the boundary conditions, in all cases, are rela-
tively direct and easy, since very few rules are required for the design thanks to
the existence of the special controlled sources defined in the libraries of the circuit
simulation codes. In addition, no mathematical manipulation other than the spa-
tial discretization of the partial differential equation is required since this work is
done by the software PSpice and the data treatment routines. For a standard prob-
lem, simulation results can be considered to suitably match those obtained with the
explicit finite-difference method.
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