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The Cell Method: Quadratic Interpolation with
Tetrahedra for 3D Scalar Fields

Martino Pani1, Fulvia Taddei1

Abstract: The Cell Method (CM) is a numerical method to solve field equa-
tions starting from its direct algebraic formulation. For two-dimensional problems
it has been demonstrated that using simplicial elements with an affine interpola-
tion, the CM obtains the same fundamental equation of the Finite Element Method
(FEM); using the quadratic interpolation functions, the fundamental equation dif-
fers depending on how the dual cell is defined. In spite of that, the CM can still
provide the same convergence rate obtainable with the FEM. Particularly, adopting
a uniform triangulation and basing the dual cells on the Gauss points of the primal
edges, the CM is able to reach the 4th order of convergence.
In this note the use of quadratic interpolation to solve the Laplace equation in three-
dimensional problems is presented, adopting as primal cell the 10-nodes tetrahe-
dron. A convergence analysis demonstrates that, as in two-dimensional case, the
CM with quadratic interpolation can obtain the fourth order of convergence in solv-
ing the Laplace equation.

Keywords: Cell Method, Discrete Formulation, Quadratic Interpolation, Laplace
Equation

1 Introduction

In the last few years a new purely algebraical formulation of scalar fields (such as
thermal conduction, diffusion, electrostatics, acoustics, irrotational fluid flow, etc.)
has been developed: the Cell Method (CM). This formulation starts directly from
experimental facts and avoids the discretization of the differential equations de-
scribing physical laws. This new approach is based on the observation that in every
physical theory, the global variables are always referred to geometrical elements of
the space such as points, lines, surfaces and volumes.
Due to its adherence with the experimental approach to the physical problem, the
CM has been successfully applied in many different fields such as elastostatics
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[Tonti and Zarantonello (2009), Cosmi (2001)], elastodynamics [Tonti and Zaran-
tonello (2010); Cosmi (2005)], electromagnetism [Tonti (2002),Marrone (2001)],
acoustics [Tonti (2001a)]. Many technical applications of the CM have been pre-
sented in fracture mechanics [Ferretti (2003, 2004b,a, 2005a); Ferretti, Casadio,
and Di Leo (2008); Ferretti (2009, 2013a)], fatigue [Cosmi and Hoglievina (2010)],
bone mechanics [Cosmi and Dreossi (2007)] and vibrations [Cosmi (2008)]. Fur-
thermore, some direct meshless approach based on the discrete approach of the
CM have been proposed [Zovatto and Nicolini (2003, 2007, 2006)] and an applica-
tion to a technical problem in bone mechanics have been presented [Taddei, Pani,
Zovatto, Tonti, and Viceconti (2008)]. Finally, the strict relationship between the
algebraic formulation of the CM and the possibility of avoiding spurious solutions
in Physics has been shown in Ferretti (2005b) and Ferretti (2013b).

The philosophy of the CM is presented in Tonti (2001b) where the numerical solu-
tion of the two-dimensional scalar field is presented using both affine and quadratic
interpolation. In that paper it is proved that using simplicial elements with affine
interpolation, the CM provides the same fundamental equation produced by the Fi-
nite Element Method (FEM); furthermore, it is shown that adopting the quadratic
interpolation the CM obtains the fourth convergence order when compared with
the theoretical solution of the problem. This order is greater than the value usually
obtained by FEM [Zienkiewicz and Taylor (1989)] although FEM shows supercon-
vergence phenomena under specific circumstances [Lin and Zhang (2008); Zhang
and Lin (2005); Krizek (2005, 1994, 2005); Babuška, Strouboulis, Upadhyay, and
Gangaraj (1996); Brunett (1987); Chen (2006)] mainly related to the regularity of
the triangularization and to the kind of discretized equation.

From Tonti (2001b) a question arises: is this convergence rate available also using
the CM with quadratic interpolation for three-dimensional problems? In this paper
the quadratic formulation of CM for 10-node tetrahedra is presented for the solution
of the Laplace equation ∇2u = 0. A convergence test over a Dirichlet problem is
presented to prove that, in three-dimensional problems as well, the CM can provide
the fourth convergence rate value performing as well as the FEM.

2 Quadratic interpolation

2.1 Primal and dual cells

The cell complexes constitute the basis of the discrete approach of the CM. The
theoretical bases of the method was widely presented in the works which describe
the philosophy of the Method. Nevertheless, it is worth to provide here a brief
summary of the key points of the CM. The CM uses global variables associated
to the elements of a pair of cell complexes. A cell complex is conceived as a
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collection of cells of various dimensions: points (0-cell), edges (1-cell), faces (2-
cell) and volumes (3-cell). The primal cell complex is obtained dividing the studied
domain (as usually done by the Finite Element Method) by collocating on it a set
of points and specifying the topology which define edges, surfaces and contiguous
volumes. The dual cell complex is defined from the primal one associating to each
primal volume (3-cell) a dual vertex (0-cell). The connection between the dual
points produces the elements of the dual cell complex. The duality between the
two cell complexes originates form the definition of the dual complex: to each
primal volume (0-cell) is associated a dual vertex (0-cell); the primal 1-cells are
associated to the dual 2-cells of the primal one, and so on. What is more, the
inner orientation established for the cells of the primal complex induces the outer
orientation to the cells of the dual complex. The primal cells constitute the natural
reference for the configuration variables of the studied field. On the other hand, the
dual cell complex offers the reference for the source variables.
The CM calculates the configuration variables at the primal nodes, and uses the dual
cells as reference for the balance equation of each primal node. Particularly, the
dual volumes constitute the tributary regions which collect the variables involved in
the balance equation. The definition of the dual cells starts from the collocation of
the dual points associated to the primal volumes. Since no limitations are imposed
by the balance equation to the shape and to the extension of the tributary region,
the definition of the dual complex is completely arbitrary.
To provide a quadratic interpolation of the configuration variable inside each primal
volume a tetrahedron defined by 10 nodes is required; each primal volume is then
defined by 4 vertexes and the 6 mid-side points of the edges, as shown in Fig. 1.

Figure 1: 10-node tetrahedron for the quadratic interpolation: conventional de-
nomination of nodes and local reference system of the affine coordinates.
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The dual cell can be obtained dividing each primal volume in parts associated to
its nodes; being completely arbitrary, an unique criterion to define the dual cell
complex does not exist. Nevertheless, from Tonti (2001b) appears that when the
dual subdivision is based on the Gauss points of the primal edges, a higher order of
convergence of the solution is obtained. This consideration could constitute a rea-
sonable grounds for basing the dual subdivision of each tetrahedron on the Gauss
points of the edges.

The criterion adopted in this study to define the dual cell complex can be summa-
rized as follows:

1. for each primal edge the Gauss points are detected; close to each vertex (e.g.
the vertex i) three points (i1, i2 and i3) are defined over the three edges exiting
the vertex.

2. for each vertex, the surface based on the three Gauss points close the vertex is
defined (e.g. the triangle based on the points i1, i2 and i3); for these triangles,
the mid points of the edges as well as the barycentre can be defined (e.g.
the mid points i12, i23, i31 and the barycentre ig). These surfaces bound the
portions of the primal cell associated to its vertexes. These portions are the
part of the dual cells associated to the vertexes which belongs to the primal
cell.

3. the barycentre g of the tetrahedron and of its surface (gh, gi, g j and gk where
the subscripts represent the vertex opposite to the considered surface) are
detected;

4. for each surface of the tetrahedron, three dual surface are defined: each sur-
face is a quadrilateral obtained connecting the barycentre of the tetrahedron
g, the barycentre of the considered surface (e.g. gh) the mid point of an
edge connecting two adjacent Gauss points of the surface (e.g. i31) and the
barycentre of the surface associated to this edge (ig in the example).

This procedure expand inside the volume of the tetrahedron what is done over its
surfaces adopting the criterion proposed in Tonti (2001b), as shown in Fig. 2 and
Fig. 3.
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Figure 2: Dual subdivision of a primal cell based on the Gauss points of its edges:
the dual portion associated to a vertex is defined by the surface based on the nearest
Gauss points of the three edges based on the vertex (considering the vertex h, h1
h2 and h3 are the Gauss points of edges hi, h j and hk, respectively); on the left is
highlighted a single piece of the dual surfaces defining the dual cells of the mid-
side point n, shown on the right: it is based on the four points g, gh, i31 and ig; g is
the barycentre of the primal cell; gh is the barycentre of the surface i jk; i31 is the
midpoint of the segment i3i1 based on the gauss points i1 and i3 close to the vertex
i; ig is the barycentre of the surface i1i2i3 defining the dual portion of the vertex i.

2.2 The local affine coordinates

To interpolate the nodal values of the scalar function onto the primal cell, a quadratic
function

uc(x,y,z) = a1 +a2x+a3y+a4z+a5xy+a6yz+a7zx+a8x2 +a9y2 +a10z2 (1)

is used. To deal with a general formulation independently from the single cell
geometry a local reference system can be used in each cell, instead of the global
Cartesian one. A local reference system is given by the local affine coordinates
defined by the 3 edges outgoing a same vertex, as shown in Fig. 1.
The relationship between the local affine and the global Cartesian coordinates is
given by:

x
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z

 =


xh

yh

zh

+


(xi− xh) (x j− xh) (xk− xh)

(yi− yh) (y j− yh) (yk− yh)

(zi− zh) (z j− zh) (zk− zh)




ξ

η

ζ

 . (2)



284 Copyright © 2013 Tech Science Press CMES, vol.94, no.4, pp.279-300, 2013

Figure 3: Dual subdivision of a primal cell based on the Gauss points of its edges:
exploded view of the dual surfaces associated to the edge nodes with the details of
the conventional notation adopted.

The inverse relationship is:
ξ

η

ζ

 =


r

s

t

+


α β γ

δ ε θ

µ ν π




x

y

z

 . (3)

Since the final balance equation does not require any quadrature formula, the adop-
tion of a local reference system is not mandatory. The final balance equation can
be formulated by referring all the involved quantities using the global Cartesian
coordinates as well. Nevertheless, the positioning of the dual points as well as the
availability of a regular shaped tetrahedra to which refer can justify the convenience
of a local reference system.
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2.3 The interpolating function

The quadratic interpolation of nodal values into the cell c is obtained adopting the
second order polynomial function of Eq. 1. On account of the linearity of the rela-
tionship between local affine coordinates and the global Cartesian coordinates, the
choice of the reference system is absolutely arbitrary. In the local affine reference
system the function uc that interpolate the function u(x,y,z) inside the cell c can be
expressed as:

uc(ξ ,η ,ζ ) =
(
1 ξ η ζ ξ η ηζ ζ ξ ξ 2 η2 ζ 2

)
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ar


c

. (4)

The 10 coefficients ay are calculated imposing to the polynomial function to assume
the nodal values at the vertices as it follows:



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 1/2 0 0 0 0 0 1/4 0 0
1 1/2 1/2 0 1/4 0 0 1/4 1/4 0
1 0 1/2 0 0 0 0 0 1/4 0
1 0 0 1/2 0 0 0 0 0 1/4
1 1/2 0 1/2 0 0 1/4 1/4 0 1/4
1 0 1/2 1/2 0 1/4 0 0 1/4 1/4
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inverting this relation the coefficients of the polynome are:
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=



1 0 0 0 0 0 0 0 0 0
−3 −1 0 0 4 0 0 0 0 0
−3 0 −1 0 0 0 4 0 0 0
−3 0 0 −1 0 0 0 4 0 0
4 0 0 0 −4 4 −4 0 0 0
4 0 0 0 0 0 −4 −4 0 4
4 0 0 0 −4 0 0 −4 4 0
2 2 0 0 −4 0 0 0 0 0
2 0 2 0 0 0 −4 0 0 0
2 0 0 2 0 0 0 −4 0 0
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(6)

or:

ac = C uc. (7)

Since local affine coordinates has been adopted, the elements of the matrix C in
Eq. 7 are constant, independent from the cell, its geometry and its spatial colloca-
tion. If the global Cartesian coordinates were adopted, these coefficients would be
dependent on the coordinates of the cell nodes and the matrix in Eq. 6 would need
to be calculated for each cell, causing greater computational cost. If the matrix
coefficients would depend on nodal coordinates, the smaller the cell the smaller the
values of the matrix coefficients and this might reduce the numerical precision of
the calculated inverse matrix, depending on the available computational facilities.
Adopting local affine coordinates this problem does not appear, and the precision
of the inverse computed matrix is uniform among the cells.
Eq. 4 can be written as:

uc(ξ ,η ,ζ ) =
(
1 ξ η ζ ξ η ηζ ζ ξ ξ 2 η2 ζ 2

)
C uc. (8)

which express the function’s value at point P into the cell c when its local coordi-
nates ξ η ζ are available.

2.4 Gradient

Inside the generic cell c the gradient vector gc is defined as:
∂ξ u

∂ηu

∂ζ u

 =


0 1 0 0 η 0 ζ 2ξ 0 0

0 0 1 0 ξ ζ 0 0 2η 0

0 0 0 1 0 η ξ 0 0 2ζ

C uc. (9)
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Its cartesian components are:


gx

gy

gz

 =
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∂yu

∂zu

 =
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 . (10)

From equation Eq. 3:
gx

gy

gz

 =


α δ µ

β ε ν

γ θ π




0 1 0 0 η 0 ζ 2ξ 0 0

0 0 1 0 ξ ζ 0 0 2η 0

0 0 0 1 0 η ξ 0 0 2ζ

C uc. (11)

2.5 Constitutive equation

The constitutive equation gives the relationship between the flux density vector q
and the gradient vector g inside each primal volume. For an anisotropic material
the constitutive equation assume the form:

qx

qy

qz


c

= −

λxx λxy λxz

λyx λyy λyz

λzx λzy λzz


c


gx

gy

gz


c

(12)

or, in matricial notation

qc = −Λc gc (13)

where Λc is a 3x3 matrix. Referring to the heat conduction problem, Eq. 12 is the
generalized form of the Fourier equation for a generic anisotropic body and the
terms λi j are the coefficients of thermal conductivity which define the so-called
thermal conductivity tensor.
If the material inside the cell c is isotropic Eq. 12 becomes:

qx = −λgx qy = −λgy qz = −λgz (14)

or, in vector form:

qc = −λ gc. (15)
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2.6 Flux

Flux is global quantity associated to a surfaces. Inside each primal cell, the gra-
dient vector g and then the flux density vector q are affine functions of the nodal
coordinates; the total flux Q across the surface A inside a primal cell c can be ex-
pressed as the scalar product of two vectors: the area-vector defining the surface
and the flux density vector q evaluated in the surface barycentre G. Denoting by
A = (Ax, Ay Az) the area-vector and G its barycentre:

Φ(A) = Aq =
(
Ax Ay Az

)
qx(G)
qy(G)
qz(G)

 . (16)

Combining Eq. 16, Eq. 12 and Eq. 11 the flux Q(An,i) can be expressed in terms of
nodal unknown values of the prrimal cell where the surface is placed:

Φ(A)c =
(

fh fi f j fk fl fm fn fo fp fq
)

c uc (17)

2.7 Fundamental equation

The fundamental equation for a scalar field is obtained writing the balance equation
at each primal node. Defined a tributary region associated to each primal node, the
flux through its boundary is equivalent to the source rate collected by the tributary
region. In the CM the natural tributary regions are offered by the cells of the dual
cell complex. Since the structure of the balance equation is independent from both
the shape and the extensions of the tributary region, the criterion adopted to define
the dual subdivision is arbitrary.

Using the quadratic interpolation with simplicial elements in two-dimensional prob-
lems, it has been found that the criterion adopted for the definition of the dual com-
plex could produce effects on the convergence rate of the numerical solution [Tonti
(2001b)]. When the dual subdivision is based on the Gauss points of the primal cell
edges, the 4th order of convergence was obtained at nodes for the solution of the
Laplace equation. On the basis of this fact, the same criterion has been adopted for
the dual subdivision of each 10-nodes primal cell, as described in section 2.1.

The fundamental equation is obtained assembling the balance equations referred to
each dual cell. There are two ways to do this:

one node at time : considering a primal node n, we will denote by ℑ(n) is the set
of primal cells sharing the node; this set of cells permit to define the dual cell
of the node n. With reference to Fig. 4 and Fig. 5 this dual cell is a poly-
hedron composed by different parts belonging to the primal cells of ℑ(n);
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Figure 4: Dual cell of associated to a midside point of the primal cell complex:
the figure shows how to merge the dual parts defined in each primal cell with the
criterion illustrated in Fig. 2.

Figure 5: Dual cell associated to a primal vertex: the figure shows how to merge
the dual parts defined by the Gauss points of the edges of each primal cell sharing
the vertex.

the boundary of the dual cell is composed by polygons An,i and each poly-
gon belong to a specific primal cell c of ℑ(n). To calculate the flux balance
it is necessary to calculate the flux Φ(An,i) crossing each single polygonal
surface An,i, inside the corresponding primal cell. Combining Eq. 16, Eq. 12
and Eq. 11 the flux Q(An,i) can be expressed in terms of the unknown func-
tion at the nodes of the involved primal cells. Once all flux terms have been
calculated, it is possible to write the flux balance on the considered node n,
calculating the source terms collected by the dual volume associated to the
node:

∑
c∈ℑ(n)

Rc
A,i uc = Sh (18)

where Sh is the source collected by the dual cell associated to the primal
node h and Rc

A,i is the vector of coefficients fi of Eq. 17. These coefficients
express the flux through the area An,i in terms of the nodal values of the
corresponding primal cell c. The resulting equation involves the values of
the unknown function at all the nodes of the set ℑ(n), and constitutes the row
n of the fundamental matrix of the algebraic formulation of the problem.
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one cell at time : analysing a single primal cell by time, it is possible to write
the fluxes through the contained dual surfaces. These surfaces separate the
portions of the primal cell associated to its primal nodes, defining the portions
of the dual cells included in the considered primal cell. Combining equations
Eq. 11, Eq. 12 and Eq. 16 the flux terms of tributary regions associated to
each primal cell node are calculated; the fluxes are expressed in terms of
nodal values of the examined primal cell. The balance equation of each node
is built partially, calculating only the fluxes belonging to the considered cell.

With both methods the systems of linear equations defining the problem is built.
Using the “one node at time” procedure the fundamental matrix is defined row by
row. Adopting the “one cell at time” procedure a local system of linear equations is
built involving the nodal values of the considered primal cell and the flux generated
or absorbed in the dual parts of the primal volume associated to each primal node:

kcuc = Sc. (19)

These equations must be assembled in the global system considering the indices as-
sociated to the primal nodes in the global numbering adopted for the primal nodes.
Even if the two methods are completely equivalent from the theoretical point of
view, the “one cell at time” strategy results probably more convenient in a practical
implementation of the method. Usually, for each primal cell is directly stored the
list of the primal vertexes. The ‘one cell at time” procedure is therefore straightfor-
ward available. On the other hand, detecting the set of primal cell sharing a primal
nod can be computationally more expensive.

2.8 Convergence tests

In order to assess the numerical accuracy and the convergence rate of the presented
implementation of the CM, numerical tests was performed solving the Laplace
equation ∇2u(x,y,z) = 0 over a simple geometry with Dirichlet boundary condi-
tions. Two test functions were used:

T 1(x,y,z) = ex siny+ ey sinz+ ez sinx (20)

and

T 2(x,y,z) = ez (cosx+ cosy+ sinx+ siny) . (21)

As reference domain a cube with unit edge was adopted: the cube was centred in
the origin of the global Cartesian reference system and was aligned with the refer-
ence axes. Two kind of meshes were considered as primal cell complex: a generic
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10-node tetrahedra mesh (Fig. 6), with no regularity in the spatial positioning of
the nodes and a regular mesh composed by tetrahedra with uniform geometry over
the volume (Fig. 7). For this second mesh a two step procedure has been adopted:
a first second-order hexahedra mesh was been created to obtain a regular subdivi-
sion of the original volume with an imposed side size; each hexahedra was then
be divided in tetrahedra. This procedure produces a mesh of tetrahedra character-
ized by high regularity which is referred in literature as uniform tetrahedralization
[Hannukainen, Korotov, and Krizek (2009); Krizek (2005)].
The presented formulation for the CM using the quadratic tetrahedra as primal cells
was implemented in a in-house Matlab/Octave code. A direct solver was used to
solve the fundamental equation, limiting the numerical errors to the round off of
the used machine.

Figure 6: Generic mesh of 10-node tetrahedra.

As comparison, the same tests (using both the same meshes and the same boundary
conditions) were replicated with the FEM using the Ansys commercial suite; to best
replicate the conditions of the CM tests, the second-order tetrahedron constituted
by the SOLID87 element was adopted and the sparse direct solver was selected to
calculate the solution.
The accuracy of the numerical solution was assessed calculating the root mean
square difference between the numerical solution and the exact solution of the prob-
lem, at internal nodes.
The root mean square error for the two tests is plotted against the edge length of
the primal mesh in Fig. 8 for the generic mesh and Fig. 9 for the uniform mesh.
The equation of the linear regression of the obtained values is also reported. The
corresponding data are reported in Tab. 2 and Tab. 1.
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Figure 7: Mesh of 10-node tetrahedra obtained from a regular partitioning of the
geometry.

Table 1: Convergence rate analysis: mean square difference between numerical re-
sults and theoretical values for the test functions Eq. 20 and Eq. 21 using a uniform
tetrahedralization; both CM and FEM results are reported.

cell edge
length

CM - mean square error FEM - mean square error
function T1 function T2 function T1 function T2

0.33 5.60E-005 1.57E-004 4.16E-005 1.28E-004
0.25 1.63E-005 5.15E-005 1.40E-005 4.25E-005
0.20 7.99E-006 1.48E-005 5.89E-006 1.43E-005
0.17 3.11E-006 7.92E-006 2.72E-006 7.89E-006
0.14 1.74E-006 4.36E-006 1.51E-006 4.34E-006
0.13 1.40E-006 3.80E-006 1.07E-006 2.99E-006
0.11 8.42E-007 1.56E-006 5.94E-007 1.50E-006
0.10 4.68E-007 1.14E-006 4.20E-007 1.16E-006
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Table 2: Convergence rate analysis: mean square difference between numerical
results and theoretical values for the test functions Eq. 20 and Eq. 21 using a generic
mesh; both CM and FEM results are reported.

cell edge
length

CM - mean square error FEM - mean square error
function T1 function T2 function T1 function T2

0.25 4.10733e-05 5.12121e-05 3.90999e-05 4.71238e-05
0.125 3.99E-006 5.04E-006 4.22414e-06 5.19181e-06
0.0625 3.72418e-07 4.82215e-07 4.06564e-07 5.10299e-07
0.03125 3.95E-008 5.44E-008 3.81627e-08 4.83266e-08

Figure 8: Convergence rate analysis: mean square difference (ε) versus cell edge
length (d) for the test functions using the generic mesh of second order tetrahedra.
The results obtained with the FEM are plotted on the left, those obtained using the
CM are plotted on the right. The logarithmic scale is adopted.
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Figure 9: Convergence rate analysis: mean square difference (ε) versus cell edge
length (d) for the test functions using the uniform mesh of second order tetrahedra.
The results obtained with the FEM are ploted on the left, those obtained using the
CM are plotted on the right. The logarithmic scale is adopted.

3 Conclusion

The Cell Method is a numerical method based in algebraic discrete formulation
of physical law. It has been applied to many different fields, in both two and
three dimensional problems. The quadratic formulation has been applied for the
two dimensional problems in both harmonic problems (thermal conduction, [Tonti
(2001b)]) and biharmonic problems (plane elasticity, [Cosmi (2001)]). Adopting
the quadratic formulation, the 4th order of convergence has been reached in solv-
ing the Laplace equation over a uniform triangulation and basing the dual cells on
the Gauss points of the primal edges. The comparison studies demonstrated that the
CM is able to reach both a numerical accuracy and convergence rate comparable
with that obtained by the FEM in solving the studied reference problems.
To date, for the three dimensional cases only the linear formulation has been pre-
sented.
In this paper the quadratic formulation to solve the Laplace equation in three dimen-
sional domain has been presented. Adopting the 10-nodes tetrahedron as primal
cell, the physical quantities involved in the balance equation have been described
in their analytical expression.
Using the described formulation, a verification test relative to a simple domain has
been presented to asses the accuracy as well as the convergence rate of the numeri-
cal solution obtained with the CM in solving the Dirichelet problem. Two different
harmonic functions were adopted to impose the boundary conditions and two dif-
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ferent kind of meshes (generic and uniform tetrahedralization) were used as primal
complex.
As comparison, the results obtained with a commercial code implementing the
FEM were considered. The FEM analyses were performed using as elements the
primal cells defined for the CM approach. As for the CM, the numerical solution
of the fundamental equation was obtained using a direct solver, in order to avoid
differences due to convergence tolerances of an iterative algorithm.
The difference between numerical and theoretical solution of the Dirichlet prob-
lem at the internal nodes was considered. As accuracy metric the root mean square
value of that difference has been adopted.
For both the harmonic functions used as test both the root mean square error and
convergence rate of CM resulted comparable with that obtained using the FEM.
Using the uniform tetrahedrlized mesh, the CM showed to be able, as well as
the FEM, to obtain an order of convergence close to 4 for both the test func-
tions. This convergence rate is greater than that usually achievable with the Fi-
nite Element Method. This behaviour is what is reported as superconvergence
phenomenon [Krizek (2005)], and is mainly related to the high regularity of the
used mesh decomposition, which is usually referred as uniform tetrahedralization
[Krizek (2005)].
CM and FEM resulted comparable in terms of accuracy and convergence rate. It is
worth to remember that, in in the present study, the homogeneous problem ∇2u = 0
was considered. This fact did not involve the well known difference between the
two methods in the discretisation of the source therm [Tonti (2002)]. In fact, when
a distributed source is present, the source term resulted the same for CM and FEM.
Nevertheless, concentrated sources are computed differently by the two methods:
the CM assigns the whole concentrated sources to the primal node associated to
the dual volume where the source is placed. The FEM distributes the source to the
nodes of the element where the source is placed, following the “lever rule”.
The presented results confirm the agreement between CM and the FEM even for
quadratic tetrahedral elements. This provides another important confirmation of the
consistency of the CM as a tool for the numerical solution of technical problems.
Allowing the same accuracy of FEM, the CM adopts an approach that avoid the
differential formulation, the concept of residual, and the orthogonality of the resid-
ual to the shape functions, the CM could constitute a reliable basis for approaching
problems in that fields (e.g. biomechanics, fracture mechanics, ..) where the dis-
crete nature of the studied problems could found a powerful agreement with the
philosophy at the basis of the CM.
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Appendix A: Local coordinates of the points that define the dual surfaces

A significant advantage of using the local affine coordinates is the possibility to
deal with a regular geometry independently from the actual geometry of the primal
cell. Particularly, that is useful to collocate the points which define the surfaces
bounding the dual volumes onto each primal cell.
The local affine coordinates of the vertexes of the cell are reported in Tab. 3. Tab. 4
reports the local coordinates of the barycentre of the cell and of its surfaces.

Local coordinates of the points used to define the dual surfaces following the proce-
dure presented in section 2.1 are reported in Tab. 6, Tab. 7 and Tab. 8. The notation
reported in Fig. 2 and Fig. 3 is adopted. A parametric form is adopted: using the
Gauss points of the primal edges, these parameters are worth α = 1/

(
2
√

3
)

and
β = 1−α .
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Table 3: local affine coordinates of the primal nodes

Primal node
h i j k m n o p q r

ξ 0 1 0 0 1/2 1/2 0 0 1/2 0
η 0 0 1 0 0 1/2 1/2 0 0 1/2
ζ 0 0 0 1 0 0 0 1/2 1/2 1/2

Table 4: local affine coordinates of the baricentre of the cell and of its surfaces

Barycentre
g gh gi g j gk

ξ 1/4 1/3 0 1/3 1/3
η 1/4 1/3 1/3 0 1/3
ζ 1/4 1/3 1/3 1/3 0

Table 5: local affine coordinates of the dual points close to the primal vertex h

Dual nodes
h1 h2 h3 h12 h23 h31 hg

ξ α 0 0 α/2 0 α/2 α/3
η 0 α 0 α/2 α/2 0 α/3
ζ 0 0 α 0 α/2 α/2 α/3

Table 6: local affine coordinates of the dual points close to the primal vertex i

Dual nodes
i1 i2 i3 i12 i23 i31 ig

ξ β β β β β β β

η α 0 0 α/2 0 α/2 α/3
ζ 0 0 α 0 α/2 α/2 α/3
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Table 7: local affine coordinates of the dual points close to the primal vertex j

Dual nodes
j1 j2 j3 j12 j23 j31 jg

ξ 0 α α/2 α/2 3α/4 α/4 α/2
η β β β β β β β

ζ 0 0 α 0 α/2 α/2 α/3

Table 8: local affine coordinates of the dual points close to the primal vertex k

Dual nodes
k1 k2 k3 k12 k23 k31 kg

ξ 0 α 0 α/2 0 α/2 α/3
η 0 0 α 0 α/2 α/2 α/3
ζ β β β β β β β


