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GDQFEM Numerical Simulations of Continuous Media
with Cracks and Discontinuities
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Abstract: In the present paper the Generalized Differential Quadrature Finite El-
ement Method (GDQFEM) is applied to deal with the static analysis of plane state
structures with generic through the thickness material discontinuities and holes of
various shapes. The GDQFEM numerical technique is an extension of the Gener-
alized Differential Quadrature (GDQ) method and is based on the idea of conven-
tional integral quadrature. In particular, the GDQFEM results in terms of stresses
and displacements for classical and advanced plane stress problems with discon-
tinuities are compared to the ones by the Cell Method (CM) and Finite Element
Method (FEM). The multi-domain technique is implemented in a MATLAB code
for solving irregular domains with holes and defects. In order to demonstrate the
accuracy of the proposed methodology, several numerical examples of stress and
displacement distributions are graphically shown and discussed.

Keywords: Generalized Differential Quadrature Finite Element Method, Cracks
and Discontinuities, Cell Method.

1 Introduction

Dealing with elastic structures containing cracks and material discontinuities has
always been a complicated problem to solve numerically, due to high-order gradi-
ents of the solutions in terms of displacements and stresses at crack tips and edges
[Li, Shen, Han, and Atluri (2003); Sladek, Sladek, and Atluri (2004); Viola and
Marzani (2004); Viola, Artioli, and Dilena (2005); Han, Liu, Rajendran, and Atluri
(2006); Ricci and Viola (2006); Viola, Ricci, and Aliabadi (2007); Li and Atluri
(2008a,b)]. Computational problems are connected with the numerical techniques
under consideration. For instance, the well-known Finite Element Method (FEM)
has a lot of numerical issues when line cracks and holes are present in physical
models. For this reason many scientists have tried new ways for analysing elastic
structures using alternative numerical techniques [Viola, Li, and Fantuzzi (2012);
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Viola, Fantuzzi, and Marzani (2012); Li and Viola (2013); Li, Fantuzzi, and Torn-
abene (2013)]. However, in this work it is assumed that there is no contact between
two separated parts of a body and the singularity effects at the crack tip or at the
ends of material discontinuities are not investigated. The same assumption was
considered by other researchers in recent papers [Huang, Leissa, and Liao (2008);
Huang and Leissa (2009); Huang, Leissa, and Chan (2011); Huang, Leissa, and
Li (2011)] when fracture mechanics is not the main purpose of the study, such as
the one presented in this paper. In addition, concerning the materials and the loads
considered in this paper, the plastic zone is very small with respect to the crack
dimensions. Thus, the crack can be considered equal to the initial crack length,
due to the fact that it does not propagate. In a future study, the fracture mechanics
analysis according to the approach outlined in the papers [Dong and Atluri (2012,
2013a,b)] will be taken into account. Here, the Generalized Differential Quadra-
ture Finite Element Method (GDQFEM) is investigated, nevertheless any special
element is considered for treating the singularity connected with fracture mechan-
ics problems. In fact, any kind of discontinuity is treated as a free edge boundary.
There are some other methods which differ from FEM that can deal with cracks
and discontinuities, too. In particular, the Cell Method (CM) [Tonti (2001); Ferretti
(2001, 2003, 2004a,b,c, 2005, 2009, 2012); Ferretti, Casadio, and Di Leo (2008)].
The works by [Ferretti (2014, 2013a,b)] are also used in the following.

The main aim of this paper is to compare the numerical solutions obtained through
GDQFEM, FEM and CM. The advantages and disadvantages of each method are
pointed out. The GDQFEM is an advanced version of the Generalized Differential
Quadrature (GDQ) method, which has been applied by the authors to composite
plates and shells over the years [Artioli, Gould, and Viola (2005); Viola and Torn-
abene (2005, 2006, 2009); Tornabene, Fantuzzi, Viola, and Ferreira (2013)]. It
should be mentioned that irregular GDQ implementation [Civan and Sliepcevich
(1985); Lam (1993); Bert and Malik (1996)] has been introduced in order to solve
structures that do not have a regular shape. This occurs in civil, mechanical and
aerospace engineering applications, as well as in other fields of science. One of the
main advantages of GDQ is linked to its mesh-less behaviour, which is based on
the strong formulation of any mathematical problem. Furthermore, it can lead to
accurate and reliable results, also using a very small amount of grid points. How-
ever, for the classic GDQ application, a regular physical geometry is required, that
is the one described by orthogonal Cartesian or curvilinear coordinates [Tornabene
(2009, 2011b,a,c)]. In the present work, the geometrical and material discontinu-
ities are treated by dividing the whole physical domain into several sub-domains.
The GDQFEM mesh should follow the irregularities of the problem under consid-
eration. Nevertheless, for every sub-domain the mechanical and geometric proper-
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Figure 1: Generic irregular domain configuration and sub-domain decomposition.

ties must be at least continuous. For 2D plane problems these parameters are the
thickness and the elastic constants.

2 Plane elasticity equations

As far as plane elastic problems with material discontinuities and holes are con-
cerned, in this paper the basic mathematical formulation is related to two- dimen-
sional elasticity. Thus, the general 2D plane elastic theory is summarized follow-
ing the book by [Timoshenko (1934)]. The main hypothesis of a 2D plane strain
problem concerns the strain components which are εz = γxz = γyz = 0. When a
plane stress problem is taken into account the out-of-plane stresses are negligible
σz = τxz = τyz = 0. It should be noted that a plane strain state does not correspond
to a plane stress one, since σz 6= 0. Analogously, when a plane stress is considered
results εz 6= 0 and the deformation problem is not plane. The very well-known elas-
tic kinematic relationships, valid both for the plane stress and strain cases, assume
the aspect

εεε = Du, where D =

[
∂

∂x 0 ∂

∂y
0 ∂

∂y
∂

∂x

]T

(1)

where D is the kinematic operator, and the strain vector and the displacement vec-
tor are defined as εεε =

[
εx εy γxy

]T , u =
[
u v

]T , respectively. The constitutive
equations, connecting the states of stress and strain, in concise form are

σσσ = Cεεε , where C =

2G+λ λ 0
λ 2G+λ 0
0 0 G

 (2)
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and the stress vector is σσσ =
[
σx σy τxy

]T . In all the numerical examples, the
Young’s modulus E and Poisson’s ratio ν are used in place of the Lamè’s elastic
constants λ and G [Timoshenko (1934)]. The equilibrium equations are reported
in compact matrix form

D∗σσσ + f = 0, where D∗ =

[
∂

∂x 0 ∂

∂y
0 ∂

∂y
∂

∂x

]
(3)

and the force vector, which identifies the body forces, is defined by f =
[

fx fy
]T .

Since the strong form of the differential problem has to be solved, the fundamental
system of equations in terms of displacements parameters u and v must be found.
Substituting the kinematic equations in the constitutive ones and the results in the
equilibrium equations, the fundamental system for the static case becomes

Lu+ f = 0 (4)

where L=D∗CD is named the fundamental operator. The formulation for dynamic
plane problems can be obtained from Eq. 4, by adding the inertia forces

Lu+ f = fI (5)

In Eq. 5 fI =
[
ρ ü ρ v̈

]T , ρ denotes the material density and ü, v̈ stand for the
translational accelerations. As it is well-known, the partial differential system of
equations Eq. 5 can be only solved when the boundary conditions are included. In
the 2D elasticity problems in hand, two types of boundary conditions are enforced:
a condition on the displacements u = ū and another condition on the derivatives
of the displacement parameters ∂u

∂n = q. The first condition on the displacements
is called the kinematic boundary condition or Dirichlet type boundary condition.
The second condition on the displacements derivatives is called static boundary
condition or Neumann type boundary condition. In particular, for a fixed edge
ū = 0 the vector q is called the flux vector and in the present paper can be given by
the external applied loads to the fixed physical domain, such as normal and shear
forces. Since GDQFEM operates on sub-domains, the elements connectivity must
be introduced. In the present case the C 1 continuity conditions are enforced. In
using the GDQFEM, a domain can have any shape. Using a mapping technique, it
is transformed into a set of regular Cartesian parent elements. Thus, the external
flux boundary conditions must be written following the outward unit normal vector
n as reported in [Xing, Liu, and Liu (2010); Zhong and He (1998); Zhong and Yu
(2009)]

σσσn = Nσσσ , where N =

[
n2

x n2
y 2nxny

−nxny nxny n2
x−n2

y

]
(6)
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and nx, ny are the components of the unit normal vector n, also termed direction
cosines. For the sake of completeness, the theoretical development of GDQFEM is
explained in the following, in order to show the implementation procedure for the
current methodology.

3 Generalized differential quadrature finite element method

As it is well-known from literature [Chen (1999a,b, 2003); Fantuzzi (2013)], the
GDQFEM decomposes a domain Ω into several sub-domains or elements Ω(n), for
n = 1, . . . ,ne, where ne is the total number of sub-domains of the current mesh. A
sample of the GDQFEM mesh is depicted in Fig. 1, where four sub-domains are
indicated and the external and internal boundary conditions are also underlined. It
is important to note that all the couples of sub-domains are considered as disjoint,
such as Ω(n) ∩Ω(m) = /0, for n 6= m. The symbol /0 is referred to as the empty
set. Moreover, the whole physical domain Ω is obtained as Ω = Ω(1)∪ ·· ·∪Ω(ne),
namely the union of a collection of sets. For 2D plane problems, the total degrees
of freedom per node are related to the number of constrains. The mathematical
problem is regulated by two in-plane displacement parameters u, v. Two boundary
conditions per node are involved at the domain external boundary. As a result,
the total number of degrees of freedom for any of the following problems can be
computed as N ·N ·ne ·nd , where N are the number of collocation points on a single
edge and nd = 2 for 2D plane problems. The inter-element compatibility conditions
are enforced by the connection between two adjacent elements, concisely indicated
by Bm

n = Bn
m. B indicates one of the two conditions that can be imposed for each

element edge. The subscripts and superscripts n, m are referred to the two adjacent
elements. Indeed the two conditions are algebraically different as it is illustrated in
the following. The compatibility, or continuity, conditions between elements entail
kinematic and static conditions. These conditions, with reference to Fig. 1, can be
indicated as

u(n) = u(m) kinematic condition

σ
(n)
n = σ

(m)
n static condition

(7)

For instance, the kinematic condition is imposed on the left edge that belongs to
element Ω(n) and the static condition is enforced on the right edge that belongs
to Ω(m). In particular the kinematic conditions can be imposed directly, never-
theless the static ones, since they are functions of the outward unit normal vector
n =

[
nx ny

]T , follow relation 6. For example, when the kinematic condition is
concerned Bm

n indicates the boundary displacements of element Ω(n) and Bn
m re-

ports the boundary displacements of element Ω(m). At the same time regarding the
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static condition Bm
n contains the stresses σ

(n)
n of element Ω(n) that act towards ele-

ment Ω(m) and Bn
m, vice versa, are the stresses σ

(m)
n of element Ω(m) that correspond

to element Ω(n). Due to the form of the continuity conditions the inter-element ac-
curacy is of C 1 type. Therefore it is higher than the connectivity of standard FEM
procedure. In addition to the element edge conditions, the corner type boundary
conditions must be considered. The implementation of the corner type boundary
conditions for higher-order numerical schemes is still an open problem. In fact very
few papers hitherto have been published about this topic [Wang, Wang, and Chen
(1998); Wang, Wang, and Zhou (2004); Viola, Tornabene, and Fantuzzi (2013b)].
In the present paper, where the corner belongs to two adjacent elements, the same
continuity conditions of the facing sides can be used. When more than two elements
share a single corner point a problem arises, since more than two algebraic condi-
tions have to be enforced. For the sake of conciseness, the reference for the actual
corner points boundary conditions is the work by [Viola, Tornabene, and Fantuzzi
(2013b)]. The numerical integration upon each element is performed through GDQ
[Marzani, Tornabene, and Viola (2008); Tornabene and Ceruti (2013a,b)]. How-
ever, the GDQ method can be applied only to regular coordinate systems, such as
Cartesian or orthogonal curvilinear coordinates [Tornabene, Fantuzzi, Viola, and
Reddy (2014); Tornabene, Fantuzzi, Viola, and Ferreira (2013); Tornabene, Viola,
and Fantuzzi (2013)]. Thus, mapping technique must refer to every sub-domain
in order to transform the physical coordinates x-y into the parent element coordi-
nates ξ -η . The general mapping transformation, that is the same as in FEM, can
be written as follows

x = x(ξ ), y = y(η) (8)

Deriving the Cartesian mapping and applying the derivative laws, from Eq. 8 one
gets

∂

∂x
=

∂ξ

∂x
∂

∂ξ
+

∂η

∂x
∂

∂η
,

∂

∂y
=

∂ξ

∂y
∂

∂ξ
+

∂η

∂y
∂

∂η
(9)

Since a higher order computational scheme is solved in this work, the second order
derivatives have to be calculated

∂ 2

∂x2 =
∂ 2ξ

∂x2
∂

∂ξ
+

∂ 2η

∂x2
∂

∂η
+

(
∂ξ

∂x

)2
∂ 2

∂ξ 2 +

(
∂η

∂x

)2
∂ 2

∂η2 +2
∂ξ

∂x
∂η

∂x
∂ 2

∂ξ ∂η

∂ 2

∂y2 =
∂ 2ξ

∂y2
∂

∂ξ
+

∂ 2η

∂y2
∂

∂η
+

(
∂ξ

∂y

)2
∂ 2

∂ξ 2 +

(
∂η

∂y

)2
∂ 2

∂η2 +2
∂ξ

∂y
∂η

∂y
∂ 2

∂ξ ∂η

∂ 2

∂x∂y
=

∂ 2ξ

∂x∂y
∂

∂ξ
+

∂ 2η

∂x∂y
∂

∂η
+

∂ξ

∂x
∂ξ

∂y
∂ 2

∂ξ 2 +
∂η

∂x
∂η

∂y
∂ 2

∂η2+

+

(
∂ξ

∂x
∂η

∂y
+

∂ξ

∂y
∂η

∂x

)
∂ 2

∂ξ ∂η

(10)
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The first and second order Cartesian derivatives of Eqs. 9, 10 are used to map
the fundamental equations and the boundary conditions of the two-dimensional
plane problem at hand. The interested reader can find all the details about coordi-
nate transformation and mapping technique applied to differential quadrature in the
works by [Cen, Chen, Li, and Fu (2009); Liu (1999); Xing and Liu (2009); Zong
and Zhang (2009)]. As it is well-known, the GDQ technique evaluates a partial,
or total, derivative of a function at a point as a weighted sum of some coefficients
a(n)i j for the corresponding values of the function at issue. In considering a one-
dimensional problem, the GDQ technique allows to write the first order derivative
as

d f (x)
dx

∣∣∣∣
x=xi

∼=
N

∑
j=1

ax,(1)
i j f (x j), i = 1,2, . . . ,N (11)

where N is the total number of collocation points and ax,(1)
i j are the weighting coeffi-

cients, evaluated using Lagrange interpolation polynomials L. These test functions
can be found in literature [Civan and Sliepcevich (1984); Bert and Malik (1997);
Tornabene, Viola, and Inman (2009); Viola, Dilena, and Tornabene (2007); Torn-
abene, Marzani, Viola, and Elishakoff (2010); Tornabene, Fantuzzi, Viola, Cinefra,
Carrera, Ferreira, and Zenkour (2014)] and have the form

L(1)(xi) =
N

∏
q=1,q6=i

(xq− xi), L(1)(x j) =
N

∏
q=1,q6= j

(xq− x j) (12)

The weighting coefficients of the second and higher order derivatives can be com-
puted from recurrence relationships [Shu (2000); Viola, Rossetti, and Fantuzzi
(2012); Ferreira, Viola, Tornabene, Fantuzzi, and Zenkour (2013); Tornabene, Fan-
tuzzi, Viola, and Carrera (2014)]. A generalized higher order derivative can be
written as

dn f (x)
dxn

∣∣∣∣
x=xi

= f (n)x (xi) =
N

∑
j=1

ax,(n)
i j f (x j)

for i = 1,2, . . . ,N, n = 2,3, . . . ,N−1

(13)

This general approach based on the polynomial approximation, as shown in [Viola,
Tornabene, and Fantuzzi (2013a,c); Tornabene, Fantuzzi, Viola, and Reddy (2014);
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Tornabene and Reddy (2013)], allows to write the following weighting coefficients

ax,(n)
i j = n

(
ax,(n−1)

ii ax,(1)
i j −

ax,(n−1)
i j

xi− x j

)
for i 6= j, n = 2,3, . . . ,N−1

ax,(n)
ii =−

N

∑
k=1,k 6=i

ax,(n)
ik for i = j

(14)

There are various articles about the GDQ weighting coefficients calculation, that
it is impossible to cite them all. Among others, here are mentioned the ones by
[Shu, Chen, and Du (2000); Tornabene, Liverani, and Caligiana (2011, 2012a,b,c);
Tornabene and Viola (2007, 2008, 2009a,b, 2013)]. Since cracks lead to high stress
concentrations at their tips, in the following numerical examples a localized ver-
sion of GDQ has been worked out. In particular, Local Generalized Differential
Quadrature (LGDQ) has been considered as introduced in literature by [Sun and
Zhu (2000); Zong and Lam (2002); Lam, Zhang, and Zong (2004); Shen, Young,
Lo, and Sun (2009); Tsai, Young, and Hsiang (2011); Hamidi, Hashemi, Talebbey-
dokhti, and Neill (2012); Tornabene (2012); Nassar, Matbuly, and Ragb (2013);
Wang, Cao, and Ge (2013); Yilmaz, Girgin, and Evran (2013)]. The main differ-
ence between LGDQ and GDQ is that in the former the nth-order derivative of f (x)
is computed locally as

dn f (x)
dxn

∣∣∣∣
x=xi

∼=
Ni

∑
j=1

āx,(n)
i j f (x j), i = 1,2, . . . ,Ni (15)

where Ni are the points of the local domain around the point xi as depicted in Fig. 2.
The overline of a(n)i j in Eq. 15 denotes the different weighting coefficients from the
ones corresponding to the GDQ method. In this way, the local numerical error at
the crack tip does not propagate through the GDQ domain due to its local numerical
scheme.

Ni

1 2 N...       i ...
Figure 2: Local GDQ scheme.
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4 Examples

In the study, the static and dynamic behaviour of two dimensional structures con-
taining cracks and discontinuities is mainly investigated by the GDQFEM. It is re-
called that the aim of this paper is not to study the fracture mechanics of 2D solids,
but to show some numerical applications and comparisons of plane structures with
discontinuities that do not consider the stress and strain singularities at the crack
tip. The numerical analysis can be divided into two main parts. In the first part
some benchmark tests are performed. A comparison with the FEM results is also
performed. Moreover, some unpublished results about composite structures with
discontinuities are presented. In the second part of this section, a cracked structure
is examined by considering not only homogeneous materials but also composite
materials. In particular two different numerical techniques are used in the follow-
ing. In the first part the classic GDQ is applied. A Chebyshev-Gauss-Lobatto
(C-G-L) grid distribution is used for all the computations. The C-G-L points are
located as

ξi,ηi =−cos
(

i−1
N−1

π

)
, for i = 1, . . . ,N (16)

where ξ and η are the parent element coordinates involved in the mapping trans-
formation and ξ ,η ∈ [−1,1]. When cracked structures are investigated the local
GDQ method is used, since it reduces the error propagation. Hence, a uniform grid
distribution is employed

ξi,ηi =
i−1
N−1

, for i = 1, . . . ,N (17)

4.1 Cantilever wall

The accuracy of the GDQFEM technique is explored by examining the in-plane
vibration of the square cantilever plate shown in Fig. 3. It can be viewed as a kind
of beam under the plane stress condition. This cantilever wall is a consolidated
FEM benchmark through literature [Gupta (1978); Cook and Avrashi (1992); Zhao
and Steven (1996); de Miranda, Molari, and Ubertini (2008)]. In fact, this problem
has been studied in great detail and a reference solution was obtained by using a
very fine FEM mesh of the plane stress under consideration. In addition to the
other assessments that can be found in the aforementioned papers, here a different
and alternative solution for the same problem is worked out using GDQFEM. The
present solution is searched through the strong formulation of the elasticity problem
at issue. The previous papers [Gupta (1978); Cook and Avrashi (1992); Zhao and
Steven (1996); de Miranda, Molari, and Ubertini (2008)] used FEM and adopted a
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Table 1: First ten eigenfrequencies of a cantilever wall.

ω
Ref. † FEM

GDQFEM ne = 1
[rad/s] N = 11 N = 21 N = 31 N = 41

1 0.065853 0.065820 0.065917 0.065828 0.065819 0.065816
2 0.157951 0.157956 0.157948 0.157948 0.157950 0.157951
3 0.176908 0.177207 0.177197 0.177206 0.177206 0.177205
4 0.279651 0.281591 0.281572 0.281588 0.281590 0.281590
5 0.30337 0.303671 0.303475 0.303636 0.303652 0.303656
6 0.321367 0.322280 0.322276 0.322281 0.322280 0.322280
7 - 0.406225 0.406195 0.406225 0.406223 0.406223
8 - 0.427679 0.427694 0.427663 0.427662 0.427662
9 - 0.472234 0.472220 0.472235 0.472233 0.472233

10 - 0.475256 0.475288 0.475252 0.475249 0.475248
ω GDQFEM ne = 4 (Regular) GDQFEM ne = 4 (Distorted)

[rad/s] N = 7 N = 11 N = 21 N = 7 N = 11 N = 21
1 0.065952 0.065845 0.065818 0.065794 0.065826 0.065819
2 0.157974 0.157952 0.157951 0.158004 0.157952 0.157950
3 0.177241 0.177218 0.177208 0.177212 0.177217 0.177210
4 0.281638 0.281595 0.281591 0.281752 0.281601 0.281592
5 0.303666 0.303665 0.303661 0.303519 0.303671 0.303667
6 0.322306 0.322286 0.322281 0.322317 0.322287 0.322282
7 0.406221 0.406209 0.406222 0.406472 0.406213 0.406226
8 0.427720 0.427660 0.427665 0.427872 0.427694 0.427678
9 0.472557 0.472227 0.472232 0.472759 0.472242 0.472233

10 0.475375 0.475225 0.475243 0.475507 0.475209 0.475239

† [Zhao and Steven (1996)]

weak formulation of the differential system of equations. In Fig. 3a) the problem
geometry is graphically depicted, where the width of the given cantilever wall is
L = 10 m. The material is elastic, homogeneous and isotropic and its Young’s
modulus is E = 1 Pa, Poisson’s ratio ν = 0.3 and density ρ = 1 kg/m3.

Three different meshes are taken into account: a single element mesh ne = 1, a four
element mesh ne = 4 (see Fig. 3b)) and a four element distorted mesh ne = 4 (see
Fig. 3c)). It is noted that one of the four distorted elements of Fig. 3c) shows a high
distortion degree. The GDQFEM element used in this computation is an 8 node el-
ement. The numerical results in terms of circular frequencies are summarized in
Tab. 1 where the FEM reference solution and the GDQFEM solution obtained with
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Figure 3: Cantilever wall: a) Model geometry; b) GDQFEM four element regular
mesh; c) GDQFEM four element highly distorted mesh.

(a)

(b)

Figure 4: Convergence tests for a cantilever wall: a) Four regular elements; b) Four
elements within a highly distorted mesh.
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several meshes are shown. Very good agreement is observed among all the com-
putations. For each numerical case the same number of points along the master
element coordinates is considered N = M. A detailed accuracy test is presented in
Fig. 4, where the logarithm of the absolute error E = |ωGDQFEM−ωFEM|, between
GDQFEM and FEM numerical solutions, is reported as a function of the number
of grid points per element. In particular, in Fig. 4a) the four element regular mesh
is examined, whereas in Fig. 4b) the four element distorted mesh is investigated. It
is noted that the error increases if a distorted mesh is used. However, for each fre-
quency the graphs always tend to decrease when the number of points per element
N is increased. The convergence tests of Fig. 4 involve the first ten circular fre-
quencies. For both meshes a good agreement is achieved for the higher frequency
modes, which are usually the controlling factors for the accuracy assessment of a
finite element solution.

4.2 Tapered cantilever plate with a central circular hole

In the second benchmark the vibration of a tapered cantilever plate with a central
circular hole under plane stress conditions is considered. The aim of this applica-
tion is to examine the accuracy and applicability of the present methodology when
irregular and unstructured meshes are used. In fact, it should be noted that in the
previous case multi-domain GDQ could be applied when regular squared elements
were used. On the contrary, distorted elements with curved boundaries are used in
the following. The plate geometry is represented in Fig. 5a) where the greatest side
is L = 10 m and the inner hole radius is R = 1.5 m. In particular the hole centre has
coordinates (5,5) m and the shortest side is l = 5 m. The tapered plate shows one
symmetry axis. This geometry has been also studied by several authors [Zhao and
Steven (1996); de Miranda, Molari, and Ubertini (2008)]. Regarding the material,
it is assumed, isotropic and homogeneous with elastic modulus E = 1 Pa, Poisson’s
ratio ν = 0.3 and density ρ = 1 kg/m3. The reference FEM solution is evaluated us-
ing the mesh illustrated in Fig. 5b) where ne = 7312 using S8R element type. Two
different GDQFEM meshes were used in the computations: a four element mesh
ne = 4 (see Fig. 5c)) and an eight element mesh ne = 8 (see Fig. 5d)). This choice
has been made in order to map differently the circular internal hole. It has been
shown from Figs. 5c)-d) that four elements are the minimum number of elements
for a good mapping of circular shapes. The first ten circular frequencies of Tab. 2
show that the eight node mesh leads to a more accurate convergence than the four
element mesh. To summarize, the absolute circular frequency error, of the first ten
frequencies, is plotted as a function of the number of grid points per element for
the two meshes at issue. The accuracy tests represented in Fig. 6a) show the results
obtained with a four element mesh. In Fig. 6b) an eight element mesh has been
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used. It appears that the solution obtained with ne = 8 is 10 times more accurate
than the solution with ne = 4 for the same amount of grid points per element.

x

y

L

L l

(a) (b)

(c) (d)

Figure 5: Cantilever tapered plate with a central circular hole: a) Model geometry;
b) FEM mesh with ne = 3712 using 8 node S8R Abaqus elements; c) Four element
mesh; d) Eight element mesh.

4.3 Square plate with circular hole

In the next numerical application, the classic problem of a homogeneous plate with
a circular centred hole is considered under static loading. In Fig. 7a) the problem
geometry is depicted, where the dimensional plate parameter is L = 5 m and the
applied normal tension is σ = 100 N/m. The material has a Young’s modulus
E = 3 ·107 Pa and Poisson’s ratio ν = 0.3. The numerical solutions are presented
in terms of the normal stress σy calculated at any point of the line segment AB,
from the point A at the circular edge to the external point B of the plate straight
edge. Every stress distribution is computed for a fixed value of the geometrical
ratio χ = D/L between the diameter D of the hole and the plate side length L. The
side L remains constant in all the calculations. The GDQFEM mesh used in the
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Table 2: First ten eigenfrequencies of a tapered cantilever plate with a circular
central hole.

ω
FEM

GDQFEM ne = 4 GDQFEM ne = 8
[rad/s] N = 11 N = 21 N = 41 N = 11 N = 21 N = 31

1 0.0700 0.071226 0.070128 0.070120 0.069976 0.069978 0.069978
2 0.1558 0.155596 0.155998 0.155998 0.155851 0.155863 0.155864
3 0.1999 0.199411 0.199967 0.199962 0.199874 0.199880 0.199879
4 0.2620 0.262110 0.262643 0.262636 0.262028 0.262070 0.262071
5 0.2917 0.292303 0.292199 0.292197 0.291744 0.291732 0.291732
6 0.4192 0.419199 0.419846 0.419847 0.419260 0.419256 0.419259
7 0.4208 0.420896 0.420925 0.420918 0.420825 0.420818 0.420818
8 0.4678 0.468142 0.468025 0.468024 0.467834 0.467844 0.467845
9 0.4801 0.480427 0.480894 0.480894 0.480190 0.480122 0.480124

10 0.5281 0.525467 0.528197 0.528203 0.528079 0.528074 0.528076

(a)

(b)

Figure 6: Convergence tests for a tapered cantilever plate with a central circular
hole: a) Four element mesh; b) Eight element mesh.
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σ

(a) (b)

Figure 7: Square plate with a centred circular hole subjected to tension σ : a) Geo-
metric representation; b) GDQFEM mesh.

Figure 8: Stress profiles of a square plate subjected to tension σ = 100 N/m with a
central circular hole .

computations, for χ = 0.5 and χ = 0.25, is an eight element mesh with 8 node per
element as shown in Fig. 7b). For every calculation a N = 21 C-G-L grid points is
used. For the other two cases (χ = 0.1 and χ = 0.05) sixteen elements and N = 15
are used. As it can be noted from Fig. 8 the GDQFEM solution is superimposed to
the FEM solution for every χ value. Furthermore, when the plate side is four times
greater than the circle diameter the normal stress σy tends to the applied stress value
σ = 100 N/m and the tip stress value tends to be three times the applied load, as
it is very well-known from the literature, when the dimension L→ ∞. It should be
underlined that the abscissa of Fig. 8 is the horizontal line between point A and B
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Figure 9: Square plate subjected to tensile stress σ with a centred hollow inclusion.

Figure 10: Stress profile of a square plate subjected to tensile stress σ = 100 N/m
with a centred elastic hollow inclusion.

of Fig. 7a), where the point B is fixed at x = 5 m and point A moves from x = 2.625
m to x = 3.75 m (because the circular hole diameter decreases, whereas the plate
remains of the same size).

In order to study the interaction effect between a matrix containing a circular hole
and a hollow elastic inclusion, the system depicted in Fig. 9 is investigated. The
plate side is L = 5 m, the outer radius is R1 = 1.5625 m and the inner radius R2 =
1.25 m. The external normal load is σ = 100 N/m. The soft matrix has Em = 3 ·106

Pa and Poisson’s ratio νm = 0.25, whereas the inner hollow inclusion is made of
a harder material with Ei = 3 · 107 Pa and νi = 0.3. In Fig. 10 the stress profile
involving the points between A and B is graphically shown. The single dashed
curve represents the homogeneous case, presented above and where only the matrix
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material is present. The presence of a hollow inclusion gives rise to an abrupt jump
at the material interface between the two materials. The GDQFEM solution with
black circles is superimposed to the solid FEM line.

4.4 Soft-core elliptic arch

In the last benchmark the free vibrations of a composite three layer soft-core elliptic
arch with elliptic holes is presented. The two external layers are made of a material
which is stiffer than the one that the core layer is made of. Fig. 11 shows the
GDQFEM mesh used in the computation. The soft-core arch is clamped on the
horizontal axis and free along its curvilinear edges, as well as along the boundary
of the holes. The darker elements refer to the two stiffer sheets with Es = 3 ·109 Pa,
νs = 0.3 and ρs = 1000 kg/m3. The inner soft-core has Ec = 3 ·107 Pa, νc = 0.25
and ρc = 500 kg/m3, instead. The dimensions of the outer ellipse are a1 = 10 m,
b1 = 5 m, whereas the inner ellipse is defined by a2 = 5 m, b2 = 2.5 m, where a1, b1
and a2, b2 are the semi-diameters of the ellipses in hand. The structure has a vertical
symmetry and variable radii of curvature. The location and the dimensions of the
three elliptic holes can be deducted according to the drawing scale of the elliptic
soft-core embedded between the external layers of the arch shown in Fig. 11. The
major axis of symmetry of each elliptic hole is tangent to the elliptic soft-core axis
at the point specified by the center of the elliptic hole itself. The GDQFEM uses 44
elements of irregular shape with various grid point number as reported in Tab. 3,
where the GDQFEM convergence is also shown. Very good agreement is observed
between the FEM solution and the GDQFEM numerical results obtained with the
mesh of Fig. 11. It appears that few grid points are sufficient to obtain an accurate
solution, since here a high number of elements has been used. For the sake of
completeness, the first four modal shapes of the structure at issue are shown in
Fig. 12, where the soft-core behaviour of the structure is clearly displayed by the
deformed mode shapes.

Figure 11: Geometric representation of an elliptic soft-core arch with holes.
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1st mode

2nd mode

3rd mode

4th mode
Figure 12: First four modal shapes for an elliptic soft-core arch with holes.

Table 3: First ten frequencies of the hollow soft-core elliptic arch.

f [Hz] FEM GDQFEM
N = 9 N = 11 N = 13

1 25.2318 25.2320 25.2691 25.2757
2 31.0079 31.8934 31.5975 31.4676
3 45.6878 45.9543 45.8373 45.8205
4 46.5109 47.9696 47.4468 47.1375
5 56.1484 57.5597 57.1569 56.8099
6 65.019 65.3243 65.2754 65.2259
7 70.9465 71.0756 70.9368 70.9230
8 74.8534 75.7430 75.4100 75.1430
9 87.995 88.2576 88.2303 88.2124

10 91.3028 91.5527 91.6743 91.6779
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4.5 Bi-material edge crack problem

In the following a bi-material edge crack problem is studied. The structure under
consideration is a rectangular plate with an edge linear through-the-thickness crack
where L = 16 m, D = 7 m and a = 3.5 m as depicted in Fig. 13. Different con-
figurations are shown in dealing with homogeneous and bi-material cases under
tensile stress and shear force. The two homogeneous and isotropic materials used
in the following computations are characterized by the corresponding mechanical
parameters: E1 = 1000 Pa, ν1 = 0.3 for material 1 and E2 = 100 Pa, ν2 = 0.3 for
material 2. Both tangential and normal loads have the same intensity: q = 3.42857
N/m. For each loading condition, the normal stress σy has been computed using
FEM, CM and GDQFEM for the three distinct sections indicated in Figs. 13a)-
b) (θ = 0,+45,−45). The meshes used for computations according to CM, FEM
and GDQFEM are shown in Fig. 14. It is noted that the CM mesh is composed
of ne = 2668. The FEM mesh has ne = 6125, where a strong refinement is present
around the crack tip with collapsed eight node elements [Pu, Hussain, and Lorensen
(1978); Anderson (1995)]. Finally, the GDQFEM mesh is made of four elements
(ne = 4), where 21× 21 grid points per elements are used. In the following sev-
eral representations are shown for different cases. For the edge cracked plate under
shear loading, the σy numerical results are reported in Figs. 15-20. In the second
group of figures depicted in Figs. 21-26, the same plate model is studied under uni-
form tension. For each group four different cases are studied: two homogeneous
cases (when material 1 and material 2 are the same) and two bi-material systems,
where the material 1 is set below the crack and material 2 above and vice versa.
The static analysis results are presented in terms of σy stress comparison. Plots
involving points of the contour, and cross sections of the system for the crack tip,
are shown and discussed. Starting from the uniform shear stress applied at the top
of the cracked plate (see Figure 13a)), the stress contour plot comparison for the
two homogeneous cases are depicted in Fig. 15 for the material 1 case and in Fig.
16 for the material 2 case. It is observed that the color maps obtained though the
CM, FEM and GDQFEM are similar among them. On the other hand, looking at
the composite system graphically reported in Fig. 17, when material 1 is below the
line crack and material 2 is above the crack itself, and in Fig. 18, when material 2
is below the line crack and material 1 is above the crack, very good agreement is
observed between all the computations.

As far as the normal stress σy comparison is concerned, the plots in Figs. 19-
20 show the solid blue line to indicate the CM solution, the line made of black
crosses is the FEM solution and, finally, the line made of black circles represents
the GDQFEM solution. In detail, Figs. 19a)-c) show the homogeneous material 1
case, where σy is represented at θ = 0◦, θ = +45◦ and θ = −45◦. Figs. 19d)-f)
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Figure 13: Edge crack plate configurations: a) when a shear force is applied; b)
when a normal stress is applied.

(a) (b) (c)
Figure 14: Used meshes: a) CM; b) FEM; c) GDQFEM.
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(a) (b) (c)
Figure 15: Normal stress σy comparison for the homogeneous material 1 under
shear: a) CM; b) FEM; c) GDQFEM.

(a) (b) (c)
Figure 16: Normal stress σy comparison for the homogeneous material 2 under
shear: a) CM; b) FEM; c) GDQFEM.

present the homogeneous material 2 solution under shear for the same three sec-
tions (θ = 0◦,+45◦,−45◦). Comparisons for the bi-material system are reported in
Figs. 20a)-f). Very good agreement is observed for all the investigated sections and
all the numerical techniques. As second numerical application the uniform tensile
stress σ = 100 N/m is considered. As in the previous example, the numerical re-
sults obtained by GDQFEM are compared with FEM and CM results at different
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(a) (b) (c)
Figure 17: Normal stress σy comparison for the bi-material system as shown in Fig.
13 a): a) CM; b) FEM; c) GDQFEM.

(a) (b) (c)
Figure 18: Normal stress σy comparison for the bi-material system: material 2
below and material 1 above under shear: a) CM; b) FEM; c) GDQFEM.

sections (θ = 0◦, θ = +45◦, θ = −45◦). Four material configurations are stud-
ied: two homogeneous cases and two bi-material cases. In Figs. 21-24 the normal
stress σy contour plots are depicted for the three numerical techniques at issue. It
is noted from the deformed shapes of Figs. 21-22 that the material is homogeneous
above and below the line crack, whereas in Figs. 23-24 it is clear that the materials
above and below the line crack are different, because one part deforms more than
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(a) (b)

(c) (d)

(e) (f)
Figure 19: Normal stress profile σy for homogeneous material under shear: a)
material 1 at θ = 0◦; b) material 1 at θ = +45◦; c) material 1 at θ = −45◦, d)
material 2 at θ = 0◦; e) material 2 at θ =+45◦; f) material 2 at θ =−45◦.

the other one. Finally, Figs. 25-26 show the stress plots for the four aforementioned
configurations. In all the reported plots the solid blue line represents the CM solu-
tion, the black crosses indicate the FEM solution and the black circles stand for the
GDQFEM solution. For each cross section, all the graphs of Figs. 25-26 start at the
crack tip and finish at the free edge of the given plate. Good agreement is observed
among the CM, FEM and GDQFEM solutions.
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(a) (b)

(c) (d)

(e) (f)
Figure 20: Normal stress profile σy for a bi-material system under shear: a) material
1 below and material 2 above at θ = 0◦; b) material 1 below and material 2 above
at θ =+45◦; c) material 1 below and material 2 above at θ =−45◦, d) material 2
below and material 1 above at θ = 0◦; e) material 2 below and material 1 above at
θ =+45◦; f) material 2 below and material 1 above at θ =−45◦.
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(a) (b) (c)
Figure 21: Normal stress σy comparison for the homogeneous material 1 under
tensile stress: a) CM; b) FEM; c) GDQFEM.

(a) (b) (c)
Figure 22: Normal stress σy comparison for the homogeneous material 2 under
tensile stress: a) CM; b) FEM; c) GDQFEM.
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(a) (b) (c)
Figure 23: Normal stress σy comparison for the bi-material system as shown in Fig.
13b): a) CM; b) FEM; c) GDQFEM.

(a) (b) (c)
Figure 24: Normal stress σy comparison for the bi-material system: material 2
below and material 1 above under tensile stress: a) CM; b) FEM; c) GDQFEM.
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(a) (b)

(c) (d)

(e) (f)
Figure 25: Normal stress profile σy for homogeneous material under tensile stress:
a) material 1 at θ = 0◦; b) material 1 at θ = +45◦; c) material 1 at θ = −45◦, d)
material 2 at θ = 0◦; e) material 2 at θ =+45◦; f) material 2 at θ =−45◦.
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(a) (b)

(c) (d)

(e) (f)
Figure 26: Normal stress profile σy for a bi-material system under tensile stress: a)
material 1 below and material 2 above at θ = 0◦; b) material 1 below and material
2 above at θ = +45◦; c) material 1 below and material 2 above at θ = −45◦, d)
material 2 below and material 1 above at θ = 0◦; e) material 2 below and material
1 above at θ =+45◦; f) material 2 below and material 1 above at θ =−45◦.
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5 Conclusions

The main aim of this paper is to present several GDQFEM solutions to plane elastic
problems with cracks and holes. The GDQFEM methodology differs from the
FEM approach, since the former numerical procedure is based on the strong form
of the differential system of equations, whereas the latter one starts from a weak
formulation. As a result, the numerical solution gives the physical displacements
of the model under consideration directly when the system is numerically solved.

It can be noted throughout the paper that GDQFEM leads to accurate and reliable
results, in terms of both frequencies and stresses when compared with FEM and
CM. Furthermore, the mesh-free GDQ character remains at the sub-domain level.
Therefore, cracks and holes are treated through element decomposition, namely
by dividing the physical domain into smaller parts. Since the approximation order
can be imposed by the user, selecting more grid points N for each element, the
GDQFEM elements have better convergence properties than the standard low or-
der FEM elements implemented in commercial FEM codes. Finally, the GDQFEM
numerical applicability is also general, because it can treat the model discontinu-
ities increasing the number of elements in the global mesh ne, having C 1 continuity
among them.

In the near future the cracked plate problem could be developed by considering
an inclined crack and a biaxial loading condition [Carloni, Piva, and Viola (2003);
Nobile, Piva, and Viola (2004)]. In addition, a comparison between the results as-
sociated to the plane stress condition at issue and the ones related to the formulation
of a cracked beam element will be made [Viola, Nobile, and Federici (2002)].
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