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On Static Analysis of Composite Plane State Structures via
GDQFEM and Cell Method
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Abstract: In this paper, an advanced version of the classic GDQ method, called
the Generalized Differential Quadrature Finite Element Method (GDQFEM) is for-
mulated to solve plate elastic problems with inclusions. The GDQFEM is com-
pared with Cell Method (CM) and Finite Element Method (FEM). In particular,
stress and strain results at fiber/matrix interface of dissimilar materials are pro-
vided. The GDQFEM is based on the classic Generalized Differential Quadrature
(GDQ) technique that is applied upon each sub-domain, or element, into which
the problem domain is divided. When the physical domain is not regular, the map-
ping technique is used to transform the fundamental system of equations and all the
compatibility conditions. A differential problem defined on the regular master ele-
ment in the computational domain is turned into an algebraic system. With respect
to the very well-known Finite Element Method (FEM), the GDQFEM is based on a
different approach: the direct derivative calculation is performed by using the GDQ
rule. The imposition of the compatibility conditions between two boundaries are
also used in the CM for solving contact problems. Since the GDQFEM is a higher-
order tool connected with the resolution of the strong formulation of the system
of equations, the compatibility conditions must be applied at each disconnection
in order to capture the discontinuity between two boundaries, without losing accu-
racy. A comparison between GDQFEM, CM and FEM is presented and very good
agreement is observed.

Keywords: Generalized Differential Quadrature Finite Element Method, Inclu-
sion problem, Boundary Value Problem, Cell Method.

1 Introduction

It is well-known in literature that the elastic behaviour of composite solids such
as particle and fiber-reinforced composites can be described as a Boundary Value
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Problem (BVP), that is an elliptic system of equations containing non-homoge-
neous conditions. When discontinuous coefficients, such as different elastic mod-
uli, are introduced in the physical model, finite jumps in terms of displacements
and stresses occur across the interface. The BVPs presented in this paper are com-
mon in mechanics of two dimensional solids when a certain material is embedded
into a matrix with different mechanical properties. There are several computational
methodologies that study the present problem [Tonti (2001); Ferretti (2001, 2003,
2004a,b,c, 2005, 2009, 2012, 2014, 2013a,b); Ferretti, Casadio, and Di Leo (2008);
Wu, Park, and Chen (2011); Wu, Guo, and Askari (2013)]. Moreover, many sci-
entists have tried new ways for analysing elastic structures using several numerical
procedures [Li, Shen, Han, and Atluri (2003); Sladek, Sladek, and Atluri (2004);
Han, Liu, Rajendran, and Atluri (2006); Li and Atluri (2008a,b)]. In addition,
the computational mechanics of micro and macro composites also lies in the fol-
lowing works [Dong and Atluri (2012b,a,c,d, 2013)]. Furthermore, such problems
are solved using the Generalized Differential Quadrature Finite Element Method
(GDQFEM). This numerical technique is an advanced version of the well-known
Generalized Differential Quadrature (GDQ) method, which has been increasingly
developed over the years [Artioli, Gould, and Viola (2005); Tornabene and Ceruti
(2013a,b); Tornabene, Fantuzzi, Viola, and Carrera (2014)]. Compared to the Fi-
nite Element Method (FEM), GDQ yields very accurate results by using a very
small amount of nodal points [Tornabene (2009, 2011a,b,c); Viola, Dilena, and
Tornabene (2007); Viola, Tornabene, and Fantuzzi (2013a,c)]. However, several
computational difficulties arise when GDQ is applied to plane elastic problems
where discontinuities are present, such as geometry distortion and mechanical in-
homogeneities. Generally a finite stress jump occurs when a BVP is considered. It
has been demonstrated mathematically that a discontinuity must be treated with a
higher-order numerical scheme [Sod (1978)]. It is worth reminding that the phrase
"differential quadrature" is equivalent to Lagrange interpolation and differentia-
tion using Lagrange polynomials [Shu (2000); Tornabene, Marzani, Viola, and El-
ishakoff (2010); Tornabene (2012)]. In short, it is a higher-order numerical scheme
that can be differentiable for many orders and can be applied on regular domains,
such as squares and rectangles, as well as curvilinear orthogonal coordinate sys-
tems [Tornabene, Liverani, and Caligiana (2011, 2012b,c,a); Tornabene and Viola
(2007, 2008, 2009a,b, 2013); Tornabene and Reddy (2013)]. In the present paper,
an advanced version of the classic GDQ method is formulated to solve plane elas-
tic problems with inclusions. The given physical system is divided into several
sub-domains (or elements) in order to capture the mechanical and geometrical dis-
continuities of the problem under consideration. The BVP is solved considering
the boundary of each sub-domain at the interface of two different materials and the
computational discontinuity is transformed into a proper imposition of compatibil-
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ity condition at the interface itself. In detail, the continuity condition is made of
two relationships. The first condition imposes the equality of the displacements
between the two adjacent edges, whereas the second one enforces the equality of
stresses between neighboring sides. Furthermore, it has been proven in literature
[Chen (1999a,b, 2000, 2003)] that the boundary condition treatment is a key point
of GDQFEM. Thus, numerical accuracy can change significantly when the imple-
mentation of boundary conditions is modified.

In conclusion, it should be mentioned that irregular GDQ implementation [Bert
and Malik (1996)] has been introduced in order to solve structures that did not
have a regular shape. This occurs especially in civil, mechanical and aerospace
engineering applications.

2 Plane elasticity

In the theory of elasticity, stress and strain components are generally described by
three dimensional tensors but, for some cases, when the length of the structure is
much smaller than the other two dimensions [Timoshenko (1934)] they may be
assumed as two dimensional. For the plane strain conditions, the strain associated
with the structure thickness εz and the shear strains γxz, γyz are equal to zero. The
kinematic relations for the plane strain problem can be written in matrix form as

εεε = Du, for D =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 (1)

where the strain vector is εεε =
[
εx εy γxy

]T and the displacement vector is u =[
u v

]T . The constitutive relationships assume the aspect

σσσ = Cεεε, for C =

2G+λ λ 0
λ 2G+λ 0
0 0 G

 (2)

where the stress vector is σσσ =
[
σx σy τxy

]T . It should be noted that, for the
plane strain condition at issue, σz = λ (εx + εy). In fact, the stress corresponding
to a plane strain condition does not form a plane stress tensor. Since in the fol-
lowing numerical examples the elastic modulus E and the Poisson’s ratio ν are
used, the equation of transformation for the elastic constants must be introduced
[Timoshenko (1934)], G = E

2(1+ν) , λ = νE
(1+ν)(1−2ν) .
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Figure 1: Local reference system for a generic inclined boundary.

Finally, the equilibrium equations for an elastic plane problem take the form

D∗σσσ + f = 0, for D∗ =

[
∂

∂x 0 ∂

∂y
0 ∂

∂y
∂

∂x

]
(3)

where the body force vector is defined as f =
[

fx fy
]T . In conclusion, substituting

the kinematic equations Eq. 1 in the constitutive ones Eq. 2 and the results in the
equilibrium equations Eq. 3, the fundamental system of equations for the static
case is found D∗CDu+ f = 0 or Lu+ f = 0, where L = D∗CD is also termed the
fundamental operator. The dynamic case can be obtained from the static one by
adding the inertia forces fI =

[
ρ ü ρ v̈

]T
Lu+ f = fI (4)

The partial differential system of equations summarized in Eq. 4 can be solved only
when proper boundary conditions are imposed on the domain boundaries. In gen-
eral, as it is well-known, two types of boundary conditions can be enforced in order
to solve a differential system of equations: a Dirichlet type, u = ū, and a Neumann
type ∂u

∂n = q. The first conditions are referred to the displacements and are called
kinematic boundary conditions. The second conditions involve the displacement
vector derivatives and they are known as static boundary conditions. In particu-
lar, ū denotes certain fixed boundary displacements that are usually equal to zero
for a fixed edge, ū = 0. The vector q stands for the flux vector and in the present
paper it gathers the external applied loads to the given physical domain. It should
be noted that static boundary conditions are very important, because they also are
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Figure 2: Generic irregular domain configuration and sub-domain decomposition.

used for implementing the connectivity conditions among adjacent elements. Since
a generic GDQFEM element can have the edges that are not parallel to the axes of
the external Cartesian reference system, the external stresses must be written as
functions of the direction cosines of the given boundary as follows

σσσn = Nσσσ , for N =

[
n2

x n2
y 2nxny

−nxny nxny n2
x−n2

y

]
(5)

In Eq. 5 the components of the normal vector n are indicated as nx and ny and σσσn =[
σn τns

]T is the transformed stress vector from the external Cartesian reference
system xyz to the local one nsz, that is depicted in Fig. 1.

3 Generalized differential quadrature finite element method

As it has been stated in the introduction, the GDQFEM decomposes a domain Ω

into several sub-domains Ω(n), for n = 1, . . . ,ne, where ne is the total number of
sub-domains. It is important noticing that a mesh generation in the presence of
mechanical irregularities involves element matching and irregular geometries. For
the present case every element boundary is exposed to its adjacent elements and
two elements are disjoint, that is Ω(n) ∩Ω(m) = /0, for n 6= m. Furthermore, in
set-theoretic notation the global domain is given as the union of a collection of
sets Ω = Ω(1)∪ ·· ·∪Ω(ne). In general, the decomposition procedure of GDQFEM
follows the general guidelines of FEM. In fact, on every sub-domain the physical
parameters must be constants (or, at least, continuous).



426 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.421-458, 2013

U U

U

U

1

2

3

4

5
S

1,3

4,1

2,4

5,2

3,5

IB

IB

IB

IB

IB

(a)

U
1,4

U
4,2

U
2,5

5,3
U

3,5
S

1

2

3

4

5

EB
EB

IB

IB

IB

IB

(b)

Figure 3: Corner type boundary conditions: a) corner with uniform internal condi-
tions; b) corner under internal and external conditions.

The proposed numerical procedure solves the strong form of the differential prob-
lem. Therefore, the fundamental equation Eq. 4 is discretized directly. In general,
to approximate the physical problem correctly, distorted elements have to be used
in the division procedure. Thus, a coordinate transformation technique must be in-
troduced, in order to map an arbitrarily shaped element from Cartesian coordinates
x-y to a parent element in computational coordinates ξ -η as

x = x(ξξξ ), for x =
[
x y

]T and ξξξ =
[
ξ η

]T (6)

Developing the well-known mathematical calculations for coordinate transforma-
tion, that can be found in a number of works [Cen, Chen, Li, and Fu (2009); Liu
(1999); Xing and Liu (2009); Xing, Liu, and Liu (2010); Zhong and He (1998);
Zhong and Yu (2009)], the first Cartesian derivatives are

∂

∂x
=

1
detJ

[
∂y
∂η

− ∂y
∂ξ

− ∂x
∂η

∂x
∂ξ

]
∂

∂ξξξ
(7)

where detJ = ∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

. Moreover the second order Cartesian derivatives are

∂∂∂
2
x = ΞΞΞ

(2)
x ∂∂∂

2
ξξξ (8)
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where

∂∂∂
2
x =

[
∂ 2

∂x2
∂ 2

∂y2
∂ 2

∂x∂y

]T

∂∂∂
2
ξξξ =

[
∂

∂ξ

∂

∂η

∂ 2

∂ξ 2
∂ 2

∂η2
∂ 2

∂ξ ∂η

]T (9)

and ΞΞΞ
(2)
x is a differential operator

ΞΞΞ
(2)
x =


∂ 2ξ

∂x2
∂ 2η

∂x2

(
∂ξ

∂x

)2 (
∂η

∂x

)2
2 ∂ξ

∂x
∂η

∂x

∂ 2ξ

∂y2
∂ 2η

∂y2

(
∂ξ

∂y

)2 (
∂η

∂y

)2
2 ∂ξ

∂y
∂η

∂y
∂ 2ξ

∂x∂y
∂ 2η

∂x∂y
∂ξ

∂x
∂ξ

∂y
∂η

∂x
∂η

∂y
∂ξ

∂x
∂η

∂y +
∂ξ

∂y
∂η

∂x

 (10)

The general interface of two elements is given by the superposition of the bound-
ary points of the element Ω(n) and its adjacent element Ω(m), as depicted in Fig.
2. The external boundary conditions, indicated by B0

n are treated as in the classic
GDQ method [Tornabene, Viola, and Inman (2009); Viola, Rossetti, and Fantuzzi
(2012)], whereas Bm

n and Bn
m must be considered separately. In fact, they denote the

continuity conditions of the boundaries of the elements Ω(n) and Ω(m). It is worth
noticing that compatibility conditions are associated to the governing equations un-
der consideration [Zong, Lam, and Zhang (2005); Fantuzzi (2013)]. In general,
continuity conditions can be written as

u(n) = u(m), σσσ
(n)
n = σσσ

(m)
n (11)

where n,m are two adjacent elements. For the sake of clarity the continuity condi-
tions between two facing edges are reported in the following. As far as the kine-
matic conditions are concerned

[
u
v

](n)
=

[
u
v

](m)

(12)

where u and v are the displacement parameters of the model of the two facing
elements. Since no derivative is involved in Eq. 12, the relations can be written at
the discrete nodes of the edges directly. On the contrary, the static conditions are
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Figure 4: Geometry configuration of a tapered cantilever beam.

Table 1: Eigenvalues of a variable cross-section cantilever elastic beam.

ω
MLPG† FEM†

ne = 1 ne = 1 ne = 1 ne = 1
[rad/s] N = 13 N = 21 N = 31 N = 41

1 263.21 262.09 261.8031 261.6137 261.5746 261.5648
2 293.03 918.93 917.4574 917.5720 917.5941 917.5994
3 953.45 951.86 951.9089 951.9198 951.9247 951.9265
4 1855.14 1850.92 1852.2551 1852.2071 1852.1880 1852.1838
5 2589.78 2578.63 2584.4408 2584.3861 2584.3747 2584.3716
6 - - 2736.5644 2736.5885 2736.5902 2736.5905
7 - - 3286.4464 3286.4786 3286.4916 3286.4953
8 - - 3701.2990 3701.8364 3701.8417 3701.8412
9 - - 3853.8719 3853.9282 3853.9316 3853.9321

10 - - 4155.5147 4155.4625 4155.4595 4155.4590

† [Gu and Liu (2001)]

given by the development of Eq. 5.

σn =

((
(2G+λ )n2

x +λn2
y
) ∂

∂x
+2Gnxny

∂

∂y

)
u+

+

(
2Gnxny

∂

∂x
+
(
(2G+λ )n2

y +λn2
x
) ∂

∂y

)
v

τns =

(
−2Gnxny

∂

∂x
+G

(
n2

x−n2
y
) ∂

∂y

)
u+

+

(
G
(
n2

x−n2
y
) ∂

∂x
+2Gnxny

∂

∂y

)
v

(13)

Once the stresses of Eq. 13 are written as functions of the displacement parameters,
the GDQ rule can be applied as in [Viola and Tornabene (2005, 2006, 2009)] and the
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discretized form of Eq. 13 can be evaluated. It is pointed out that the derivatives of
Eq. 13 are written with respect to the external Cartesian system, nevertheless they
must be transformed into the computational ξ -η system when the elements are
distorted, using coordinate transformation of Eqs. 6,8. Then the static equations
can be written as[

σn

τns

](n)
=

[
σn

τns

](m)

(14)

Since plane elastic problems are considered in the following, the static compatibil-
ity conditions are also taken by Eq. 5. Besides, these displacements are set equal at
the element interface. It is clear that the numerical conditions across each bound-
ary is of C 1 continuity type, due to the first order derivatives of Eqs. 5,11. The
stress components along a generic interface depend on the direction cosines of the
outward unit normal vector n, as it appears in Eq. 5. It is pointed out that this kind
of boundary conditions has been introduced in the study of revolution shells and
toroid in the works [Tornabene, Viola, and Fantuzzi (2013); Tornabene, Fantuzzi,
Viola, and Ferreira (2013); Tornabene, Fantuzzi, Viola, and Reddy (2014)], where
the same implementation can be followed. In fact, in order to consider a closed
domain two edges must be superimposed as in GDQFEM approach. In addition to
the element edge conditions, the corner type boundary conditions must be consid-
ered. A schematic representation of a generic corner is presented in Fig. 3, where
in Fig. 3a) an internal corner is depicted, whereas in Fig. 3b) a corner that connects
internal and external boundaries is shown. The symbol EB denotes the external
boundaries and IB indicates the internal boundaries. As shown by the corners con-
figurations in Fig. 3 more than two compatibility conditions have to be enforced.
Therefore, at the same time, it is not possible to impose a static and a kinematic
boundary condition on the current points as in Eqs. 12,14. Hence, with reference
to Fig. 3a), kinematic conditions are enforced at the adjacent elements. It is noted
that Un,m→U (n) =U (m) indicates the generic displacement parameter u or v. Thus,
these kinematic conditions lead to

U (1) =U (3)

U (3) =U (5)

U (5) =U (2)

U (2) =U (4)

⇒U (4) =U (1) (15)

Since several static conditions can be imposed, the implementation choice was to
set the parameters equality of the two facing elements, such S4,1 → S(4) = S(1),
where S4,1 represents one of the two stresses σn and τns that are written as func-
tions of the displacement parameters and the direction cosines of the current facing
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Figure 5: MacNeal’s beam three elements mesh under shear force.

Table 2: Normalized tip deflection of MacNeal’s thin beam for different mesh ge-
ometries.

Exact† 1.000 (0.1081 m)

FEM‡
Regular Parallelogram Trapezoidal
0.993 0.985 0.988

GDQFEM
ne = 1 ne = 3, θ ≈ π/6 ne = 3, θ ≈ π/18

0.99882 0.99775 1.00031
† [Cen, Chen, Li, and Fu (2009)], ‡ [Rezaiee-Pajand and Karkon (2013)]

normal n. In a similar manner, when a free boundary condition in Fig. 3b) is im-
posed externally (EB = free), the last static condition cannot be enforced across
the two external conditions, because it gives rise to numerical instabilities. So, the
algorithm imposes it between the last two elements, that is S3,5→ S(3) = S(5). It is
pointed out that, for the case depicted in Fig. 3b), if one of the external boundaries
is clamped, all of these conditions do not have to be applied, because the corner is
fixed, so five clamped conditions are imposed. For a complete survey of the corner
and edge boundary conditions, the interested reader can refer to the work [Viola,
Tornabene, and Fantuzzi (2013b)].

4 Worked out examples

The GDQFEM is used in the study of static and dynamic behaviour of two dimen-
sional structures. For all the computations, a Chebyshev-Gauss-Lobatto (C-G-L)
grid distribution is used. The aforementioned grid has widely been known in liter-
ature for carrying out the most accurate results based on GDQ method [Marzani,
Tornabene, and Viola (2008); Ferreira, Viola, Tornabene, Fantuzzi, and Zenkour
(2013); Tornabene, Fantuzzi, Viola, Cinefra, Carrera, Ferreira, and Zenkour (2014)].
Since a 2D GDQ problem is solved, two grid point numbers must be chosen. The
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Figure 6: Cook’s cantilever beam geometry.

C-G-L points are located as

ξi =−cos
(

i−1
N−1

π

)
, for i = 1, . . . ,N

η j =−cos
(

j−1
M−1

π

)
, for j = 1, . . . ,M

(16)

where ξ and η are the parent element coordinates due to mapping transformation
and ξ ,η ∈ [−1,1]. When the same number of grid points is considered along the
two main element directions, N indicates the number of grid points along each of
the two directions themselves. The first example analyzes the free vibrations of a
cantilever beam with variable cross-section. The beam geometry is depicted in Fig.
4. It is mentioned that the present case has been taken from the work by [Gu and Liu
(2001)], where a Meshless Local Petrov-Galerkin (MLPG) method is developed
and used for solving several dynamic 2D problems. The beam has a length of L =
10 m and the tapered height is defined by h(x = 0) = 5 m, h(x = L) = 3 m. As far as
the mechanical properties are concerned the material is elastic, homogeneous and
isotropic, with Young’s modulus E = 3 ·107 Pa, Poisson’s ratio ν = 0.3 and density
ρ = 1 kg/m3. The current problem has been solved using a single distorted element
for several numbers of grid points. The convergence of the results is reported in
Tab. 1, where the present solution is compared with a FEM solution and the MLPG
solution obtained by [Gu and Liu (2001)]. In order to assess the capabilities of
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(a) (b)

(c) (d)

Figure 7: Cook’s beam GDQFEM meshes: a) two element mesh after horizontal
division; b) two element mesh after vertical division; c) four element mesh within
a regular division; d) four element distorted mesh.

the suggested methodology, some other classic FEM benchmarks are proposed. In
the following, the MacNeal’s beam is analysed. For the sake of conciseness, a
three elements mesh is considered in the present paper, nevertheless a complete
study of the FEM MacNeal’s beam can be found in [Macneal and Harder (1985);
Rezaiee-Pajand and Karkon (2013)]. In fact, this investigation has become a classic
benchmark for measuring accuracy and testing the sensitivity to mesh distortion for
2D elastic plane elements. For the present case, the beam length is L = 6 m and
the height is H = 0.2 m. The model has a constant thickness h = 0.1 m, so a plane
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Figure 8: Cook’s cantilever beam FEM mesh of ne = 6960 S8R type (Abaqus)
elements.

stress case is considered. The MacNeal’s beam elastic modulus is E = 10 MPa
and Poisson’s ratio is ν = 0.3. The external applied load is a shear force F = 1
N, distributed along the element edges, and a static problem is solved. The results
in terms of tip’s deflection of the thin beam are reported in Tab. 2, where the
GDQFEM results are put at the bottom of the list arranged in rows and including
the exact solution by [Cen, Chen, Li, and Fu (2009)] and a FEM solution from
[Rezaiee-Pajand and Karkon (2013)]. The numerical results reported in Tab. 2 are
dimensionless with respect to the exact solution [Cen, Chen, Li, and Fu (2009)]. In
fact, on the first line the tip displacement is equal to 0.1081 m that is considered
congruent to 1. On the second line, the numerical FEM solution by [Rezaiee-Pajand
and Karkon (2013)] is reported for three kinds of mesh. The GDQFEM solution is
calculated for trapezoidal mesh only, where the slope θ indicates the angle between
the inclined edge and the horizontal edge. It is noted that, for a highly distorted
mesh with θ = π/18 = 10◦, the numerical solution is still in good accordance with
the exact solution, whereas the numerical results by [Rezaiee-Pajand and Karkon
(2013)] were obtained with θ = π/8 = 22.5◦. Since in the previous example a
regular geometry has been considered, an irregular and very common geometry
is studied in the following. A very popular benchmark, which has been used for
testing the sensitivity and efficiency of any FEM, is the Cook’s cantilever beam
[Cook (2001)]. The structure geometry is depicted in Fig. 6, where the cantilever
dimensions and loads are reported. The solutions in terms of displacements and
stresses are calculated at three points A, B and C and reported in Tab. 3. The
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Table 3: Numerical comparison for the Cook’s beam.

FEM Ref. † Ref. ‡
GDQFEM ne = 1

N = 21 N = 35 N = 41
M = 21 M = 27 M = 31

σA,max 0.2369 0.2362 0.2367 0.2374 0.2371 0.2367
σB,min -0.2035 -0.2023 -0.2039 -0.2034 -0.2060 -0.2014
uy,C 23.961 23.96 23.90 24.0627 23.9690 23.9677

GDQFEM ne = 2 (vertical) GDQFEM ne = 2 (horizontal)
N = 21 N = 31 N = 41 N = 21 N = 31 N = 41
M = 21 M = 31 M = 31 M = 11 M = 21 M = 21

σA,max 0.2379 0.2374 0.2383 0.2367 0.2371 0.2369
σB,min -0.1970 -0.1992 -0.1943 -0.1967 -0.2050 -0.2009
uy,C 23.9790 23.9717 23.9665 23.9644 23.9973 23.9680

GDQFEM ne = 4 (regular) GDQFEM ne = 4 (distorted)
N = 21 N = 23 N = 31 N = 21 N = 23 N = 31
M = 21 M = 17 M = 21 M = 21 M = 17 M = 21

σA,max 0.2371 0.2369 0.2369 0.2366 0.2368 0.2369
σB,min -0.2032 -0.1982 -0.1980 -0.1962 -0.1773 -0.1726
uy,C 24.0021 23.9756 23.9691 23.9431 23.9196 23.9386

† [Yuqiu and Yin (1994)], ‡ [Rezaiee-Pajand and Karkon (2013)]

beam is subjected to a constant shear force load P = 1 N, distributed along the free
edge and the beam is assumed to be linearly elastic, homogeneous and isotropic,
within E = 1 Pa and ν = 1/3. It should be emphasized that four different meshes
have been studied. They are all graphically reported in Fig. 7, where two of them
are made of two elements and each of the other two consists of four elements. In
particular, the mesh in Fig. 7d) is a specially distorted mesh. Furthermore, the
FEM mesh used in the numerical comparison is reported in Fig. 8. In particular
it is composed of ne = 6960 elements with eight nodes. The GDQFEM results are
compared with the solutions found by [Yuqiu and Yin (1994); Rezaiee-Pajand and
Karkon (2013)] and a FEM solution obtained by using commercial code. Very good
agreement is observed for all the computations, both in terms of displacements and
stresses. It is underlined that sometimes the grid point numbers are not equal along
the two element edges. In fact, it is sufficient that all the adjacent edges have the
same number of points in order to have a compatible connectivity.
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Figure 9: Geometry of a square plate with a square inclusion under uniform tension.

Figure 10: FEM mesh of a square plate with a square inclusion with ne = 6400 S8R
type (Abaqus) elements.

In the second part of the numerical applications proposed in this paper, some simu-
lations about material discontinuities will be proposed. As mentioned before, a dis-
continuity along a material interface is implemented as a compatibility condition
between adjacent elements. In particular, for the current methodology kinematic
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(a)

(b)

Figure 11: Square plate with a square inclusion: a) horizontal displacement u = ux;
b) vertical displacement v = uy.

and static compatibility conditions are imposed. So, the continuity between two
elements is C 1 type, whereas in some FEM applications the standard compatibility
is generally C 0. In the first example, of the second part of the numerical results,
a square plate with a square inclusion under a uniform tension and clamped along
one side is considered. In Fig. 9, the plate geometry is presented with the external
applied load. The present case is reported in the book by [Zong and Zhang (2009)].
The plate side is 2L = 4 m and the external load q = 100 N/m. The matrix mate-
rial has E1 = 3 ·107 N/m2, ν1 = 0.3, whereas the inclusion has E2 = 3 ·106 N/m2,
ν2 = 0.25. Fig. 10 represents the FEM mesh used in the computation and from
which the following plots are obtained. The FEM model is made of ne = 6400
elements with eight nodes. The red solid line, indicated in Fig. 9, refers to the
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(a)

(b)

(c)

Figure 12: Square plate with a square inclusion: a) normal stress σx; b) normal
stress σy; c) shear stress τxy.
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Table 4: Convergence of the GDQFEM results for the square plate with a square
inclusion

N σxA σyA uxB ·106 uyB ·106 σxC

7×7 38.5153 -6.9317 19.7554 -3.6159 100.0000
9×9 38.3985 -7.0648 19.7935 -3.6468 100.0000

11×11 38.3530 -7.1166 19.8141 -3.6722 100.0000
13×13 38.3300 -7.1423 19.8268 -3.6909 100.0000
15×15 38.3166 -7.1572 19.8353 -3.7049 100.0000
21×21 38.2980 -7.1775 19.8492 -3.7303 100.0000
FEM 38.2677 -7.2084 19.8945 -3.74357 99.8991

Table 5: Results of a square plate with a circular inclusion

N σxA σyA uyB ·106 σyB

7×7 -6.6406 33.3275 32.1107 100.0000
9×9 -6.5731 33.2575 32.0298 100.0000

11×11 -6.5719 33.2453 32.0189 100.0000
13×13 -6.5746 33.2422 32.0174 100.0000
15×15 -6.5771 33.2411 32.0174 100.0000
21×21 -6.5813 33.2403 32.0181 100.0000
FEM -6.5856 33.2365 32.0232 99.6211

plotting intervals of Figs. 11,12, where displacements and stresses are represented,
respectively. In particular, the GDQFEM solution, depicted with black circles, is
compared to a FEM solution, drawn with a solid black line. A 21× 21 C-G-L
grid point distribution is considered in the computation and very good agreement is
observed with the reference FEM solution for both displacements and stresses pro-
files. It is worth noticing that, due to material discontinuity, there is a finite stress
jump in Fig. 12b) and a sharp turning point in Fig. 12c). Fig. 9 shows three points
indicated by A, B and C, where displacements and stresses are computed in order
to have a punctual comparison with FEM, as reported in Tab. 4. The numerical
convergence illustrated by Tab. 4 shows stable and accurate results for all the pre-
sented numerical grids. It is also noticed that, due to the used higher-order scheme,
the stress recovered at the point C is equal to the external applied load, whereas
FEM gives an approximation of this value.

In the second example, a square plate with a circular inclusion is considered [Zong
and Zhang (2009)]. The plate side is L = 5 m and the external load is q = 100
N/m. The matrix and inclusion materials are taken from the previous case, such
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Figure 13: Geometry of a square plate with a circular inclusion.

Figure 14: FEM mesh of a square plate with a circular inclusion with ne = 12224
and S8R type (Abaqus) elements.

as E1 = 3 · 107 N/m2, ν1 = 0.3 and E2 = 3 · 106 N/m2, ν2 = 0.25. In this case,
mapping technique must be used because of the circular boundaries of the inner
inclusion. In the computation 8-node elements have been considered. In order to
map the circle at least 4 elements must be used, as reported in several examples
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(a)

(b)

Figure 15: Square plate with a circular inclusion: a) horizontal displacement u= ux;
b) vertical displacement v = uy.

[Fantuzzi (2013)]. So, ne = 12 is considered for the current computation. The
FEM mesh is shown in Fig. 14, where ne = 12224 elements with eight nodes. The
displacement and stress comparison is performed for the points along the red solid
line of Fig. 13 and the punctual displacements and stresses are calculated in A and
B of Fig. 13. A distribution of 21×21 grid points distribution is considered for all
the plots depicted in Figs. 15,16, where very good agreement is observed between
the GDQFEM results and the ones by FEM. The meaning of the symbols is the
same as the previous case, so the black solid line represents the FEM solution and
the black circles stand for the GDQFEM solution. From Fig. 15 it appears that
there is, for both the in-plane displacements, a sharp turning point due to the two
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(a)

(b)

Figure 16: Square plate with a circular inclusion: a) normal stress σx; b) normal
stress σy.

different derivatives at the material interface. In Fig. 16a) a finite stress jump at
the interface between the inclusion and the matrix appears for the horizontal stress
σx, where as in Fig. 16b) the normal stress σy does not show any discontinuity
at the interface, but the stress function oscillates when the mechanical properties
change. The GDQFEM convergence is summarized in Tab. 5, where displacements
and stresses at the two points A and B indicated in Fig. 13 are reported. The
recovered stress σy at the point B is equal to the applied external load, whereas the
FEM model has a value that is near to the applied external force, due to the low-
order differentiation scheme. In addition to the previous examples, the following
comparison is worked out considering the paper by [Dong and Atluri (2012d)] as
a reference. The problem under consideration is the classic study of an infinite
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Table 6: Computed horizontal and vertical displacements of the external node K
for the problem under consideration.

Elastic inclusion Rigid inclusion Void
u2 v2 u2 v2 u2 v2

Exact Solution 0.9986 0.2501 0.9964 0.2502 1.0069 0.2506
VCFEM-TT-BVP 0.9947 0.2480 0.9866 0.2446 1.0268 0.2634

VCFEM-TT-C 0.9947 0.2480 0.9866 0.2446 1.0268 0.2635
VCFEM-HS-PCE 1.0589 0.1855 1.0567 0.1828 2.0713 0.9333

GDQFEM 1.0013 0.2543 1.0036 0.2609 0.9893 0.2268

plate with a circular elastic/rigid inclusion or hole subjected to a remote tension P.
The radius of the circular inclusion/hole is indicated by R. A plane stress state is
investigated. The material properties of the matrix are Em = 1 Pa, νm = 0.25. An
elastic inclusion is considered, whose material properties are Ec = 2 Pa, νc = 0.3.
The magnitude of the remote tension P= 1 N/m and the radius of the inclusion/void
is R = 0.1 m. Since it is not possible to implement an infinite plate with element
of a finite dimension a truncate plate of sides L = 2 m is studied. The choice
L/R = 20 is based on the results obtained by [Li and Viola (2013)], in dealing with
the size effect investigation of a central interface crack contained in both bonded
finite and infinitive dissimilar materials. Furthermore, to correctly implement the
doubly symmetry condition a quarter of it is modeled. The GDQFEM mesh used
in the computations is depicted in Fig. 17. The present GDQFEM solution is
compared with the ones already shown in the paper [Dong and Atluri (2012d)]. In
particular, Tab. 6 shows the comparison of the in-plane displacements of several
methods and GDQFEM. Good agreement is observed among all the theories. The
stress σx along the y axis and σy along the x axis are also computed and compared
to the exact solution and other theories. It should be noted that the GDQFEM mesh
was not changed among the examples. In fact, for the rigid inclusion an elastic
modulus Ec = 106 Pa and for the void Ec = 10−6 Pa is taken into account. It can
be seen that good agreement is observed among the curves shown in Figs. 18-20
for all the listed cases: elastic and rigid inclusions as well as a void. It is noted that
the GDQFEM results are obtained by using a 35×35 grid for each element of the
current mesh (Fig. 17).

In the final example, a cantilever elastic beam with an elastic inclusion is investi-
gated. The sample geometry depicted in Fig. 21 is taken from the work by [Wu,
Guo, and Askari (2013)]. The beam is L = 4 m long, and D = 1 m high. A vertical
force P= 1 kN/m is distributed along the free right edge of the beam. The reference
FEM mesh is depicted in Fig. 22, where ne = 12296 elements with eight nodes are
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Figure 17: Reference GDQFEM mesh for the comparison with the work by [Dong
and Atluri (2012d)].

used. The mechanical properties of the matrix are E = 2 ·107 Pa, ν = 0.3 and the
ones of the circular inclusion are E = 2 · 1010 Pa and ν = 0.3. It is noted that the
inclusion radius is R = 0.4 m, with its center location defined by L1 = 2.11 m and
D1 = 0.5 m. The GDQFEM mesh composed of ne = 16 is shown in Fig. 23a). In
order to map a circle correctly, four elements are used in the GDQFEM mesh. Fig.
23a) also indicates five cross sections, where GDQFEM displacements and stresses
are compared with the ones by FEM and CM in the following. It is interesting to
note that, looking at the deformed Von Mises contour plot in Fig. 23b), the colour
mapping of the inclusion is different from the matrix due to the different mechanical
properties. The through-the-thickness plots concerning displacements and stresses
of the current cantilever beam are represented by Figs. 24-26. The GDQFEM solu-
tion is compared with the corresponding ones obtained by using FEM and CM. The
CM solution is indicated by a blue solid line, the GDQFEM solution is represented
by black circles and the FEM results are shown by black crosses. In particular, the
horizontal and vertical displacements at x = 2.11 m, that is the mid section of the
inclusion, are reported in Fig. 24. The normal stress σx and the shear stress τxy

are represented in five distinct sections in Figs. 25,26, respectively. The first ex-
amined section is located before the inclusion and the second divides the inclusion
into two equal parts. The other three sections are put on the right of the inclusion
as shown in fig. 23a). Regarding the normal stress σx, for the sections located in
the matrix material (x = 3 m, x = 3.5 m) the stress has the classic linear trend as
shown in Figs. 25d),e). For the sections just before and after the inclusion (x= 1.71
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(a)

(b)

Figure 18: Normal stresses computed for an infinite plate with an elastic inclusion:
a) σx along y axis, b) σy along x axis.
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(a)

(b)

Figure 19: Normal stresses computed for an infinite plate with a rigid inclusion: a)
σx along y axis, b) σy along x axis.
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(a)

(b)

Figure 20: Normal stresses computed for an infinite plate with a void: a) σx along
y axis, b) σy along x axis.
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Figure 21: Geometry and loading condition for a cantilever beam.

Figure 22: FEM mesh of a composite cantilever beam with ne = 12296 S8R type
(Abaqus) elements.

(a)

(b)

Figure 23: Cantilever composite beam with an elastic inclusion: a) GDQFEM mesh
and five marked cross sections; b) Mises contour plot and deformed shape.
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m, x = 2.51 m), the stress in Figs. 25a),c) has a nonlinear and continuous trend,
because the material is still homogeneous in those parts. Finally, at x = 2.11 m the
stress is non linear and shows two finite jumps at the material interfaces, due to the
different values of the elastic moduli. Analogous comments can be made about the
shear stress profiles depicted in Fig. 26. In fact, the classic parabolic trend can be
seen in Figs. 26d),e) at x = 3 m, x = 3.5 m, respectively. The curves do not have
a parabolic shape before and after the inclusion. Finally, two different slopes are
observed in Fig. 26c) at x = 2.11 m.

(a)

(b)

Figure 24: Displacements at the vertical section x = 2.11 m: a) axial displacement
u; b) vertical displacement v.



Manuscript Preparation for CMES 449

(a) (b)

(c) (d)

(e)

Figure 25: Normal stress σx at: a) x = 1.71 m; b) x = 2.11 m; c) x = 2.51 m; d)
x = 3 m; e) x = 3.5 m.
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(a) (b)

(c) (d)

(e)

Figure 26: Shear stress τxy at: a) x = 1.71 m; b) x = 2.11 m; c) x = 2.51 m; d) x = 3
m; e) x = 3.5 m.
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5 Conclusions

In this paper, an advanced version of the classic GDQ method is proposed for solv-
ing composite two dimensional linearly elastic problems. This method is based on
the strong form of the fundamental system of equations. The problem is formulated
on the actual physical displacements. It was observed that GDQFEM leads to very
accurate results when compared with FEM and CM. The meshfree quality of GDQ
remains at the sub-domain level, whereas the numerical technique is based globally
on a predefined mesh that basically divides homogeneous model areas. Therefore,
each sub-domain should follow the rules of FEM elements: homogeneous proper-
ties and loads. However, since it is possible to increase the approximating poly-
nomial, some GDQFEM elements can be more distorted than the FEM elements.
Several two dimensional composite solid examples were provided to examine the
effectiveness and the accuracy of the present method. The numerical results indi-
cate that the GDQFEM convergence rate is very fast with respect to the well-known
FEM. The interface problem is dealt with a compatibility condition between two
adjacent elements. It results in a C 1 condition type, because the equality of dis-
placements and stresses is imposed. This feature simplifies the implementation,
because it has been shown that a continuity condition works both for homogeneous
and non-homogeneous two dimensional problems.

Acknowledgement: This research was supported by the Italian Ministry for
University and Scientific, Technological Research MIUR (40 % and 60 %). The
research topic is one of the subjects of the Centre of Study and Research for the
Identification of Materials and Structures (CIMEST)-"M. Capurso" of the Univer-
sity of Bologna (Italy).

References

Artioli, E.; Gould, P. L.; Viola, E. (2005): A differential quadrature method
solution for shear-deformable shells of revolution. Engineering Structures, vol.
27, no. 13, pp. 1879–1892.

Bert, C. W.; Malik, M. (1996): The differential quadrature method for irregular
domains and application to plate vibration. International Journal of Mechanical
Sciences, vol. 38, no. 6, pp. 589–606.

Cen, S.; Chen, X.-M.; Li, C. F.; Fu, X.-R. (2009): Quadrilateral membrane
elements with analytical element stiffness matrices formulated by the new quadri-
lateral area coordinate method (QACM-II). International Journal for Numerical
Methods in Engineering, vol. 77, no. 8, pp. 1172–1200.



452 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.421-458, 2013

Chen, C.-N. (1999): The development of irregular elements for differential
quadrature element method steady-state heat conduction analysis. Computer Meth-
ods in Applied Mechanics and Engineering, vol. 170, no. 1-2, pp. 1–14.

Chen, C.-N. (1999): The differential quadrature element method irregular element
torsion analysis model. Applied Mathematical Modelling, vol. 23, no. 4, pp. 309–
328.

Chen, C.-N. (2000): A generalized differential quadrature element method. Com-
puter Methods in Applied Mechanics and Engineering, vol. 188, no. 1-3, pp. 553–
566.

Chen, C.-N. (2003): DQEM and DQFDM for the analysis of composite two-
dimensional elasticity problems. Composite Structures, vol. 59, no. 1, pp. 3–13.

Cook, R. (2001): Concepts and applications of finite element analysis. Wiley.

Dong, L.; Atluri, S. (2012): Development of 3D T-Trefftz Voronoi cell finite
elements with/without spherical voids &/or elastic/rigid inclusions for microme-
chanical modeling of heterogeneous materials. CMC: Computers, Materials, &
Continua, vol. 29, no. 2, pp. 169–211.

Dong, L.; Atluri, S. (2012): Development of 3D Trefftz Voronoi cell finite
elements with ellipsoidal voids &/or elastic/rigid inclusions for micromechanical
modeling of heterogeneous materials. CMC: Computers, Materials, & Continua,
vol. 30, no. 1, pp. 39–81.

Dong, L.; Atluri, S. (2012): A simple multi-source-point T-Trefftz method
for solving direct/inverse SHM problems of plane elasticity in arbitrary multiply-
connected domains. CMES - Computer Modeling in Engineering and Sciences,
vol. 85, no. 1, pp. 1–43.

Dong, L.; Atluri, S. (2012): T-Trefftz Voronoi cell finite elements with elas-
tic/rigid inclusions or voids for micromechanical analysis of composite and porous
materials. CMES - Computer Modeling in Engineering and Sciences, vol. 83, no.
2, pp. 183–219.

Dong, L.; Atluri, S. (2013): SGBEM Voronoi Cells (SVCs), with embedded
arbitrary-shaped inclusions, voids, and/or cracks, for micromechanical modeling
of heterogeneous materials. CMC: Computers, Materials, & Continua, vol. 33,
no. 2, pp. 111–154.

Fantuzzi, N. (2013): Generalized Differential Quadrature Finite Element Method
applied to Advanced Structural Mechanics. PhD thesis, University of Bologna,
2013.



Manuscript Preparation for CMES 453

Ferreira, A.; Viola, E.; Tornabene, F.; Fantuzzi, N.; Zenkour, A. (2013): Anal-
ysis of sandwich plates by generalized differential quadrature method. Math-
ematical Problems in Engineering, vol. 2013, pp. 1–12. Article ID 964367,
doi:10.1155/2013/964367.

Ferretti, E. (2001): Modellazione del Comportamento del Cilindro Fasciato in
Compressione. PhD thesis, Università del Salento, 2001.

Ferretti, E. (2003): Crack propagation modeling by remeshing using the Cell
Method (CM). CMES: Computer Modeling in Engineering & Sciences, vol. 4, pp.
51–72.

Ferretti, E. (2004): A Cell Method (CM) code for modeling the pullout test
step-wise. CMES: Computer Modeling in Engineering & Sciences, vol. 6, pp.
453–476.

Ferretti, E. (2004): Crack-path analysis for brittle and non-brittle cracks: A Cell
Method approach. CMES: Computer Modeling in Engineering & Sciences, vol. 6,
pp. 227–244.

Ferretti, E. (2004): A discrete nonlocal formulation using local constitutive laws.
International Journal of Fracture, vol. 130, no. 3, pp. 175–182.

Ferretti, E. (2005): A local strictly nondecreasing material law for modeling
softening and size-effect: a discrete approach. CMES: Computer Modeling in
Engineering & Sciences, vol. 9, pp. 19–48.

Ferretti, E. (2009): Cell Method analysis of crack propagation in tensioned
concrete plates. CMES: Computer Modeling in Engineering & Sciences, vol. 54,
pp. 253–281.

Ferretti, E. (2012): Shape-effect in the effective law of plain and rubberized
concrete. CMC: Computers, Materials, & Continua, vol. 30, pp. 237–284.

Ferretti, E. (2013): The Cell Method: an enriched description of physics starting
from the algebraic formulation. CMC: Computers, Materials, & Continua, vol.
36, no. 1, pp. 49–72.

Ferretti, E. (2013): A Cell Method stress analysis in thin floor tiles subjected to
temperature variation. CMC: Computers, Materials, & Continua, vol. 36, no. 3,
pp. 293–322.

Ferretti, E. (2014): The Cell Method: a purely algebraic computational method
in physics and engineering science. Momentum Press.

Ferretti, E.; Casadio, E.; Di Leo, A. (2008): Masonry walls under shear test: a
CM modeling. CMES: Computer Modeling in Engineering & Sciences, vol. 30,
pp. 163–190.



454 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.421-458, 2013

Gu, Y. T.; Liu, G. R. (2001): A Meshless Local Petrov-Galerkin (MLPG) method
for free and forced vibration analyses for solids. Computational Mechanics, vol.
27, no. 3, pp. 188–198.

Han, Z. D.; Liu, H. T.; Rajendran, A. M.; Atluri, S. N. (2006): The ap-
plications of Meshless Local Petrov-Galerkin (MLPG) approaches in high-speed
impact, penetration and perforation problems. CMES - Computer Modeling in
Engineering and Sciences, vol. 14, no. 2, pp. 119–128.

Li, Q.; Shen, S.; Han, Z.; Atluri, S. (2003): Application of Meshless Local
Petrov-Galerkin (MLPG) to problems with singularities, and material discontinu-
ities, in 3-D elasticity. CMES - Computer Modeling in Engineering and Sciences,
vol. 4, no. 5, pp. 571–585.

Li, S.; Atluri, S. N. (2008): The MLPG mixed collocation method for material
orientation and topology optimization of anisotropic solids and structures. CMES
- Computer Modeling in Engineering and Sciences, vol. 30, no. 1, pp. 37–56.

Li, S.; Atluri, S. N. (2008): Topology-optimization of structures based on the
MLPG mixed collocation method. CMES - Computer Modeling in Engineering
and Sciences, vol. 26, no. 1, pp. 61–74.

Li, Y.; Viola, E. (2013): Size effect investigation of a central interface crack
between two bonded dissimilar materials. Composite Structures, vol. 105, pp.
90–107.

Liu, F.-L. (1999): Differential quadrature element method for static analysis
of shear deformable cross-ply laminates. International Journal for Numerical
Methods in Engineering, vol. 46, no. 8, pp. 1203–1219.

Macneal, R. H.; Harder, R. L. (1985): A proposed standard set of problems to
test finite element accuracy. Finite Elements in Analysis and Design, vol. 1, no. 1,
pp. 3–20.

Marzani, A.; Tornabene, F.; Viola, E. (2008): Nonconservative stability prob-
lems via generalized differential quadrature method. Journal of Sound & Vibration,
vol. 315, no. 1-2, pp. 176–196.

Rezaiee-Pajand, M.; Karkon, M. (2013): An effective membrane element based
on analytical solution. European Journal of Mechanics - A/Solids, vol. 39, pp.
268–279.

Shu, C. (2000): Differential Quadrature and Its Applications in Engineering.
Springer Verlag.

Sladek, J.; Sladek, V.; Atluri, S. N. (2004): Meshless Local Petrov-Galerkin
method for heat conduction problem in an anisotropic medium. CMES - Computer
Modeling in Engineering and Sciences, vol. 6, no. 3, pp. 309–318.



Manuscript Preparation for CMES 455

Sod, G. A. (1978): A survey of several finite difference methods for systems of
nonlinear hyperbolic conservation laws. Journal of Computational Physics, vol.
27, pp. 1–31.

Timoshenko, S. (1934): Theory of Elasticity. Engineering Societies Monographs.
McGraw-Hill book Company, Incorporated.

Tonti, E. (2001): A direct discrete formulation of field laws: the Cell Method.
CMES: Computer Modeling in Engineering & Sciences, vol. 2, pp. 237–258.

Tornabene, F. (2009): Free vibration analysis of functionally graded conical,
cylindrical and annular shell structures with a four-parameter power-law distribu-
tion. Computer Methods in Applied Mechanics and Engineering, vol. 198, no.
37-40, pp. 2911–2935.

Tornabene, F. (2011): 2-D GDQ solution for free vibrations of anisotropic
doubly-curved shells and panels of revolution. Composite Structures, vol. 93,
pp. 1854–1876.

Tornabene, F. (2011): Free vibration of laminated composite doubly-curved
shells and panels of revolution via GDQ method. Computer Methods in Applied
Mechanics and Engineering, vol. 200, pp. 931–952.

Tornabene, F. (2011): Free vibrations of anisotropic doubly-curved shells and
panels of revolution with a free-form meridian resting on Winkler-Pasternak elastic
foundations. Composite Structures, vol. 94, pp. 186–206.

Tornabene, F. (2012): Meccanica delle Strutture a Guscio in Materiale Com-
posito. Il Metodo Generalizzato di Quadratura Differenziale. Esculapio.

Tornabene, F.; Ceruti, A. (2013): Free-form laminated doubly-curved shells and
panels of revolution on Winkler-Pasternak elastic foundations: A 2D GDQ solution
for static and free vibration analysis. World Journal of Mechanics, vol. 3, pp. 1–25.

Tornabene, F.; Ceruti, A. (2013): Mixed static and dynamic optimizazion
of four-parameter functionally graded completely doubly-curved and degenerate
shells and panels using GDQ method. Mathematical Problems in Engineering,
vol. 2013, pp. 1–33.

Tornabene, F.; Fantuzzi, N.; Viola, E.; Carrera, E. (2014): Static analysis
of doubly-curved anisotropic shells and panels using CUF approach, differential
geometry and differential quadrature method. Composite Structures, vol. 107, pp.
675–697.

Tornabene, F.; Fantuzzi, N.; Viola, E.; Cinefra, M.; Carrera, E.; Ferreira, A.;
Zenkour, A. (2014): Analysis of thick isotropic and cross-ply laminated plates by
generalized differential quadrature method and a unified formulation. Composite
Part B Engineering. In Press.



456 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.421-458, 2013

Tornabene, F.; Fantuzzi, N.; Viola, E.; Ferreira, A. J. M. (2013): Radial
basis function method applied to doubly-curved laminated composite shells and
panels with a general higher-order equivalent single layer theory. Composite Part
B Engineering, vol. 55, pp. 642–659.

Tornabene, F.; Fantuzzi, N.; Viola, E.; Reddy, J. (2014): Winkler-Pasternak
foundation effect on the static and dynamic analyses of laminated doubly-curved
and degenerate shells and panels. Composite Part B Engineering, vol. 57, pp.
269–296.

Tornabene, F.; Liverani, A.; Caligiana, G. (2011): FGM and laminated doubly-
curved shells and panels of revolution with a free-form meridian: a 2-D GDQ so-
lution for free vibrations. International Journal of Mechanical Sciences, vol. 53,
pp. 446–470.

Tornabene, F.; Liverani, A.; Caligiana, G. (2012): General anisotropic doubly-
curved shell theory: a differential quadrature solution for free vibrations of shells
and panels of revolution with a free-form meridian. Journal of Sound & Vibration,
vol. 331, pp. 4848–4869.

Tornabene, F.; Liverani, A.; Caligiana, G. (2012): Laminated composite rect-
angular and annular plates: a GDQ solution for static analysis with a posteriori
shear and normal stress recovery. Composite Part B Engineering, vol. 43, pp.
1847–1872.

Tornabene, F.; Liverani, A.; Caligiana, G. (2012): Static analysis of laminated
composite curved shells and panels of revolution with a posteriori shear and normal
stress recovery using generalized differential quadrature method. International
Journal of Mechanical Sciences, vol. 61, pp. 71–87.

Tornabene, F.; Marzani, A.; Viola, E.; Elishakoff, I. (2010): Critical flow
speeds of pipes conveying fluid by the generalized differential quadrature method.
Advances in Theoretical and Applied Mechanics, vol. 3, no. 3, pp. 121–138.

Tornabene, F.; Reddy, J. (2013): FGM and laminated doubly-curved and de-
generate shells resting on nonlinear elastic foundation: a GDQ solution for static
analysis with a posteriori stress and strain recovery. Journal of Indian Institute of
Science. In Press.

Tornabene, F.; Viola, E. (2007): Vibration analysis of spherical structural ele-
ments using the GDQ method. Computers & Mathematics with Applications, vol.
53, no. 10, pp. 1538–1560.

Tornabene, F.; Viola, E. (2008): 2-D solution for free vibrations of parabolic
shells using generalized differential quadrature method. European Journal of Me-
chanics - A/Solids, vol. 27, no. 6, pp. 1001–1025.



Manuscript Preparation for CMES 457

Tornabene, F.; Viola, E. (2009): Free vibration analysis of functionally graded
panels and shells of revolution. Meccanica, vol. 44, no. 3, pp. 255–281.

Tornabene, F.; Viola, E. (2009): Free vibrations of four-parameter functionally
graded parabolic panels and shell of revolution. European Journal of Mechanics -
A/Solids, vol. 28, no. 5, pp. 991–1013.

Tornabene, F.; Viola, E. (2013): Static analysis of functionally graded doubly-
curved shells and panels of revolution. Meccanica, vol. 48, pp. 901–930.

Tornabene, F.; Viola, E.; Fantuzzi, N. (2013): General higher-order equivalent
single layer theory for free vibrations of doubly-curved laminated composite shells
and panels. Composite Structures, vol. 104, pp. 94–117.

Tornabene, F.; Viola, E.; Inman, D. J. (2009): 2-D differential quadrature so-
lution for vibration analysis of functionally graded conical, cylindrical and annular
shell structures. Journal of Sound & Vibration, vol. 328, no. 3, pp. 259–290.

Viola, E.; Dilena, M.; Tornabene, F. (2007): Analytical and numerical results
for vibration analysis of multi-stepped and multi-damaged circular arches. Journal
of Sound & Vibration, vol. 299, no. 1-2, pp. 143–163.

Viola, E.; Rossetti, L.; Fantuzzi, N. (2012): Numerical investigation of function-
ally graded cylindrical shells and panels using the generalized unconstrained third
order theory coupled with the stress recovery. Composite Structures, vol. 94, pp.
3736–3758.

Viola, E.; Tornabene, F. (2005): Vibration analysis of damaged circular arches
with varying cross-section. Structural Integrity & Durability (SID-SDHM), vol. 1,
no. 2, pp. 155–169.

Viola, E.; Tornabene, F. (2006): Vibration analysis of conical shell structures
using GDQ method. Far East Journal of Applied Mathematics, vol. 25, no. 1, pp.
23–39.

Viola, E.; Tornabene, F. (2009): Free vibrations of three parameter functionally
graded parabolic panels of revolution. Mechanics Research Communications, vol.
36, no. 5, pp. 587–594.

Viola, E.; Tornabene, F.; Fantuzzi, N. (2013): General higher-order shear defor-
mation theories for the free vibration analysis of completely doubly-curved lami-
nated shells and panels. Composite Structures, vol. 95, pp. 639–666.

Viola, E.; Tornabene, F.; Fantuzzi, N. (2013): Generalized differential quadra-
ture finite element method for cracked composite structures of arbitrary shape.
Composite Structures, vol. 106, pp. 815–834.



458 Copyright © 2013 Tech Science Press CMES, vol.94, no.5, pp.421-458, 2013

Viola, E.; Tornabene, F.; Fantuzzi, N. (2013): Static analysis of completely
doubly-curved laminated shells and panels using general higher-order shear defor-
mation theories. Composite Structures, vol. 101, pp. 59–93.

Wu, C.; Guo, Y.; Askari, E. (2013): Numerical modeling of composite solids
using an immersed meshfree Galerkin method. Composites Part B: Engineering,
vol. 45, no. 1, pp. 1397–1413.

Wu, C. T.; Park, C. K.; Chen, J. S. (2011): A generalized approximation for
the meshfree analysis of solids. International Journal for Numerical Methods in
Engineering, vol. 85, no. 6, pp. 693–722.

Xing, Y.; Liu, B. (2009): High-accuracy differential quadrature finite element
method and its application to free vibrations of thin plate with curvilinear domain.
International Journal for Numerical Methods in Engineering, vol. 80, no. 13, pp.
1718–1742.

Xing, Y.; Liu, B.; Liu, G. (2010): A differential quadrature finite element method.
International Journal of Applied Mechanics, vol. 2, pp. 207–227.

Yuqiu, L.; Yin, X. (1994): Generalized conforming triangular membrane element
with vertex rigid rotational freedoms. Finite Elements in Analysis and Design, vol.
17, no. 4, pp. 259–271.

Zhong, H.; He, Y. (1998): Solution of Poisson and Laplace equations by quadri-
lateral quadrature element. International Journal of Solids and Structures, vol. 35,
no. 21, pp. 2805–2819.

Zhong, H.; Yu, T. (2009): A weak form quadrature element method for plane
elasticity problems. Applied Mathematical Modelling, vol. 33, no. 10, pp. 3801–
3814.

Zong, Z.; Lam, K.; Zhang, Y. (2005): A multidomain differential quadrature
approach to plane elastic problems with material discontinuity. Mathematical and
Computer Modelling, vol. 41, no. 4-5, pp. 539–553.

Zong, Z.; Zhang, Y. (2009): Advanced Differential Quadrature Methods. Chap-
man & Hall/CRC Applied Mathematics & Nonlinear Science. Taylor & Francis.


