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FEM/Wideband FMBEM Coupling for Fluid-Structure
Interaction Problem and 2D Acoustic Design Sensitivity

Analysis

L.L. Chen1, H.B. Chen2 and C.J. Zheng3

Abstract: A coupling algorithm based on the finite element method and the
wideband fast multipole boundary element method (FEM/wideband FMBEM) is
proposed for the simulation of fluid-structure interaction and structural-acoustic
sensitivity analysis using the direct differentiation method. The wideband fast mul-
tipole method (FMM) formed by combining the original FMM and the diagonal
form FMM is used to accelerate the matrix-vector products in the boundary ele-
ment analysis. The iterative solver GMRES is applied to accelerate the solution of
the linear system of equations. The FEM/Wideband FMBEM algorithm makes it
possible to predict the effects of arbitrarily shaped vibrating structures on the sound
field numerically. Numerical examples are presented to demonstrate the validity
and efficiency of the proposed algorithm.

Keywords: Fluid-structure interaction, FEM, Wideband FMBEM, Design sensi-
tivity analysis, Direct differentiation method.

1 Introduction

Analysis of the acoustic radiation or scattering from elastic structure in heavy fluid
is a classical problem of underwater acoustics. Analytical solutions to the acoustic
fluid-structure interaction problems are only available when the structure has sim-
ple geometry with simple boundary conditions [Junger and Feit (1985)]. For more
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practical problems with complicated geometries, it is impossible to find analytical
solutions, and thus necessary to create efficient numerical methods.

FEM has been widely used to the analysis of the dynamic behavior of structure,
acoustic and fluid-structure interaction problems. However, the FEM has its limi-
tations in modeling infinite domains. It is well-known that BEM has been widely
used to solve acoustic problems, because it provides an excellent accuracy and easy
mesh generation. In particular, for exterior acoustic problems, the Sommerfeld ra-
diation condition at infinite is automatically satisfied. So, a suitable approach for
the analysis of fluid-structure interaction problems is the coupled FEM/BEM [Ev-
erstine and Henderson (1990); Fritze, Marburg, and Hardtke (2005); Chen, Hof-
stetter, and Mang (1998)]. But the coupling analysis of structural-acoustic under-
water based on FEM/Conventional BEM (CBEM) algorithm still represents the
bottleneck of large computation cost, because the CBEM produces a dense and
non-symmetrical coefficient matrix which induces O(N3) arithmetic operations
to solve the system of equations directly, such as by using the Gauss elimina-
tion method. The fast multipole method(FMM) [Greengard and Rokhlin (1987);
Coifman, Rokhlin, and Wandzura (1993); Song, Lu, and Chew (1997); Darve
and P.Havé (2004); Rokhlin (1993); Shen and Liu (2007); Zheng, Chen, Mat-
sumoto, and Takahashi (2012)] has been presented to accelerate the solution of
the CBEM system of equations and to decrease the memory requirement. And
the coupling algorithm based on FEM/fast multipole boundary element method
(FEM/FMBEM) had been applied to solve the large scale fluid-structure interac-
tion problems [Schneider (2008); Fischer and Gaul (2005)].

There are actually two FMM forms for Helmholtz equation. One is the original
FMM and the other is the diagonal form. It is well known that both of them fail
in some way outside their preferred frequency ranges. However wideband FMM
formed by combining the original FMM and the diagonal form FMM can overcome
the above problems [Cheng, Crutchfield, Gimbutas, Greengard, Ethridge, Huang,
Rokhlin, Yarvin, and Zhao (2006); Gumerov and Duraiswami (2009); Wolf and
Lele (2011); Zheng, Matsumoto, Takahashi, and Chen (2012)]. In this paper the
coupling algorithm FEM/Wideband FMBEM is proposed to solve the large scale
fluid-structure interaction problems.

Passive noise control by modification of structure geometry moves more and more
into the field of vision for designers. This structural-acoustic optimization shows
high potential in minimization of radiated noise especially for thin shell geome-
tries [Kim and Dong (2006); Zheng, Matsumoto, Takahashi, and Chen (2011);
Matsumoto, Yamada, Takahashi, Zheng, and Harada (2011); Zheng, Chen, Mat-
sumoto, and Takahashi (2011); Chen, Zheng, and Chen (2013)]. Acoustic design
sensitivity analysis can provide information on how the geometry change affects
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the acoustic performance of the given structure, so it is an important step of the
acoustic design and optimization processes. But the sensitivity analysis of the
structural-acoustic interaction based on FEM/Conventional BEM algorithm rep-
resents the bottleneck in computation efforts. In this paper, the coupling algorithm
FEM/Wideband FMBEM is applied to the structural-acoustic sensitivity analysis
based on direct differentiation method.

This work promotes the applications of coupling FEM/Wideband FMBEM in the
fluid-structure interaction problems. The original FMM, diagonal form FMM and
wideband FMM are presented in this paper. Examples of scattering from underwa-
ter cylindrical shell are presented to demonstrate the accuracy and efficiency of this
method.

2 Structural-acoustic analysis

2.1 FEM modeling

It is assumed that a harmonic load with the excitation frequency ω is applied to
the structure, the steady-state response of the structure can be calculated from the
frequency-response analysis. The linear system of equations to compute the nodal
displacements u is derived by

(K+ iωC−ω
2M)u(ω) = Au = f, (1)

where i =
√
−1, M the mass matrix, K the stiffness matrix, C the damping matrix

and u the nodal displacement vector. Note that the steady-state response has the
same frequency as the applied load but may have a different phase angle due to the
existence of damping. If the applied load is not harmonic, Eq. 1 can still be applied
by decomposing the time-dependent forces into the frequency domain. Taking into
account the effect of the acoustic pressure at the structural surfaces, we apply an
acoustic load Csfp along with the structural load fs, and then the excitation can be
expressed as:

f = fs +Csfp, (2)

where the coupling matrix Csf transforms the degrees of freedom of the fluid to the
structural degrees of freedom, and it can be expressed as:

Csf =
∫

Γint

NT
s nNfdΓint , (3)

where Γint denotes the interaction surface, Ns and Nf are the global interpolation
functions for the structure and fluid domains, respectively, n is the surface normal
vector. By substituting Eq. 2 into Eq. 1, we can obtain the following formula

u = A−1fs +A−1Csfp. (4)
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2.2 BEM modeling

Consider the following Helmholtz equation governing a time-harmonic acoustic
wave field:

∇
2 p(x)+ k2 p(x) = 0, ∀x ∈Ω, (5)

where P is the acoustic pressure, k = ω/c the wave number, ω the angular fre-
quency, and c the wave speed in the acoustic medium Ω. The boundary conditions
can be expressed as

p(x) = p(x) x ∈ Sp, (6)

q(x) =
∂ p(x)
∂n(x)

= iρωv(x) x ∈ Sq, (7)

p(x) = zv(x) x ∈ Sz, (8)

where n(x) denotes the outward unit normal vector to the boundary S at point x,
ρ the medium density, v(x) the normal velocity, z the acoustic impedance. The
quantities with upper bars are assumed to be known functions prescribed on the
boundary.

The Helmholtz equation can be reformulated into a boundary integral equation
(BIE) defined on the structure boundary S as follows:

c(x)p(x)+
∫

S
F(x,y)p(y)dS(y) =

∫
S

G(x,y)q(y)dS(y)+ pi(x), (9)

where the coefficient c(x) is 1/2 if S is smooth around the source point x, pi(x) the
incident wave, q(y) and F(x,y) the normal derivatives of p(y) and G(x,y), y the
field point, and G(x,y) the Green’s function. As for two dimensional acoustic wave
problems, G(x,y) is given as

G(x,y) =
i
4

H(1)
0 (kr). (10)

On the other hand, the implementation of a single Helmholtz boundary integral
equation may have the difficulty of nonuniqueness for exterior boundary-value
problems. But Burton-Miller method which consists of a linear combination of
the conventional boundary integral equation and its normal derivative equation can
be applied to overcome the nonuniqueness problem efficiently [Burton and Miller
(1971)].

If the boundary S is divided into N elements (e.g. using piecewise constant dis-
cretization in this study). Then, after collecting the equations for all collocation
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points (nodes) located at the centre of each element and expressing them in matrix
forms, one can obtain the following system of linear algebraic equations

Hp = Gq+pi. (11)

2.3 FEM/BEM modeling

The governing equations shown above are linked up via the continuity condition
q =−iωρv across the interaction surface. The normal velocity v can be expressed
as a function of the displacement u, as follows

v = iωS−1Cfsu, (12)

where S =
∫

Γint
NT

f NfdΓint and Cfs = CT
sf. By substituting Eq. 12 into Eq. 11, we

can obtain the following formulation

Hp = ω
2
ρGS−1Cfsu+pi. (13)

Eq. 1 and Eq. 13 can be combined to a coupled system of equations, as follows[
A −Csf

−ω2ρGS−1Cfs H

]{
u
p

}
=

{
fs
pi

}
. (14)

In fact, direct iterations on the combined equation shown above converge very
slowly, and solving directly the system equation will take much more computing
time and storage requirement. In addition, it is difficult to obtain the numerical
solutions with high accuracy. Instead of solving the above non-symmetric of linear
equation using an iterative solver, we propose the following approach. By substi-
tuting Eq. 4 into Eq. 13, one can obtain the following coupled boundary element
equation

Hp−GWCsfp = GWfs +pi, (15)

where matrix W = ω2ρS−1CfsA−1. FMM and the iterative solver GMRES were
applied to accelerate the solution of the coupled boundary element system equation.
It is worth noting that matrix A is frequency-dependent. And for solving A−1, an
adapted modal reduction method that can be used instead of a direct solution can
be found in [Dazel, Sgard, and Lamarque (2003)]. However, in order to obtain
the solution of A−1y, in this paper we will use a sparse direct solver to solve the
symmetric and frequency-dependent system of linear equation Ax = y.
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3 Shape design sensitivity analysis

The goal of the shape optimization is to find the best design parameters defining
the desired shape of the given structure under certain constraints. Shape design
sensitivity analysis is a procedure to calculate gradients of cost functions defined.
The obtained gradients can then be used to determine the direction to search the
optimum values of the design variables. Accordingly, acoustic shape sensitivity
analysis is usually the first and most important step in acoustic shape design and
optimization processes.

The direct method in the sensitivity formulation is to first calculate the sensitivity
of the state variable and then to use the chain rule of differentiation to calculate
the sensitivity of the performance function. This method is popular because it is
closely related to the analysis procedure.

3.1 Shape design sensitivity analysis based on FEM

First, by differentiating Eq. 1 with respect to the shape design variable, we can
obtain the following formulation

(
.
K+ iω

.
C−ω

2 .
M)u+(K+ iωC−ω

2M)
.
u =

.
Au+A

.
u =

.
f, (16)

where the upper dot
.
( ) denotes the differentiation with respect to the design vari-

able. In fact, the expressions of matrices
.
K,

.
C,

.
M and

.
A, can be complicated

especially when the structure domain is approximated using shell finite elements.
And so it is very difficult to solve them directly. But the semi-analytical derivative
method , in which the variation of the coefficient matrices can be calculated using
the finite difference method, can be applied to conquer the difficulty. For example,
the matrix

.
C can be calculated using a small perturbation τ when the shape design

variable is denoted by α , as follows

.
C =

C(α + τ)−C(α)

τ
. (17)

3.2 Shape design sensitivity analysis based on BEM

By differentiating Eq. 9 with respect to an arbitrary design variable, one can obtain
the following formulations for acoustic design sensitivity analysis:

C(x)
.
p(x) =

∫
S
[
.
G(x,y)q(y)−

.
F(x,y)p(y)]dS(y)+

∫
S
[G(x,y)

.
q(y)−F(x,y)

.
p(y)]dS(y)

+
∫

S
[G(x,y)q(y)−F(x,y)p(y)]d

.
S(y)+

.
pi(x), (18)
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where
.
G(x,y) and

.
F(x,y) can be expressed in the form of the coordinate sensitivity,

as follows

.
G(x,y) =− ik

4
H(1)

1 (kr)
.
r, (19)

.
F(x,y) =− ik

4
H(1)

1 (kr)[
(
.
y j−

.
x j)n j(y)
r

+ r, j
.
n j(y)]+

ik2

4
H(1)

2 (kr)
.
rr, jn j(y), (20)

where

.
r = r, j(

.
y j−

.
x j), (21)

.
x j and

.
y j will be evaluated when the boundary of the analyzed domain is fully

parameterized with the shape design variable. According to [Haug, Choi, and
Komkov (1986)],

.
nl(y) and d

.
S(y) can be written as

.
nl(y) =−

.
y j,ln j(y)+

.
y j,mn j(y)nm(y)nl(y), (22)

and

d
.
S(y) = [

.
yl,l−

.
yl, jnl(y)n j(y)]dS(y), (23)

where an index after a comma denotes the partial derivative with respect to the
coordinate component and

.
y j,m = ∂

.
y j/∂ym.

3.3 Shape design sensitivity analysis for coupled boundary element equation

First, by differentiating Eq. 15 with respect to the shape design variable, we can
obtain the following formulation

H
.
p−GWCsf

.
p =

.
Ga+Gb−

.
Hp+

.
pi, (24)

where vectors a and b are defined by

a = WCsfp+Wfs, (25)

b =
.

WCsfp+W
.

Csfp+
.

Wfs +W
.
fs, (26)

.
W = ω

2
ρ(

.
S−1CfsA−1 +S−1

.
CfsA−1 +S−1Cfs

.
A−1). (27)

After obtaining all the unknown boundary acoustic pressure values by solving Eq.
15 and subsequently substituting all the boundary acoustic pressure into Eq. 24,
we can get the computational solution of the matrix-vector products on the right
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hand side of Eq. 24. In fact, the expressions of matrices determining vector b, such

as
.

S−1,
.

Cfs and
.

Csf, can be complicated especially when the structural domain is
approximated using shell finite elements. And so it is very difficult to solve them
directly. But the semi-analytical derivative method in Eq. 17 can be applied to
conquer the difficulty.

It is worth noting that solving directly the inverse of matrix A in Eq. 27 will be very
expensive and it is very difficult to get the variation of inverse of matrix A by using

directly the finite difference method. But
.

A−1can be replaced by the following
formulation

.
A−1 = A−1 .

AA−1. (28)

By substituting Eq. 28 into Eq. 27, we can obtain the solution of
.

Wy efficiently by
solving Ax = y . In fact, it needs much computing time to solve directly matrices
H, G,

.
H and

.
G in Eq. 24 by using conventional BEM since the matrices are full

and un-symmetric. But, fast multipole method and the iterative solver GMRES can
be applied to accelerate the matrix-vector products.

4 Fast multipole BEM

4.1 Original FMM formulations for acoustic state analysis

With Graf’s addition theorem, the Green’s function in Eq. 10 can be expanded into
the following series:

G(x,y) =
i
4

+∞

∑
n=−∞

On(
−→ycx)I−n(

−→ycy), (29)

where yc is an expansion point near y, the functions On and In are defined by

On(x) = inH(1)
n (kr)einθ , (30)

and

In(x) = (−i)nJn(kr)einθ , (31)

where Jn denotes the n-th order Bessel function, (r,θ) indicates the polar coordinate
of vector x.

S0 stands for a subset of the boundary S, which is far away from the source point x.
First, the integrals in Eq. 9 can be reformulated by

A2 =
∫

S0

[G(x,y)q(y)−F(x,y)p(y)]dS(y). (32)
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By substituting Eq. 29 into Eq. 32, we can obtain the following formulas:

A2 =
+∞

∑
n=−∞

On(
−→ycx)Mn(yc), (33)

where Mn is the multipole moment defined by

Mn(yc) =
i
4

∫
S0

[I−n(
−→ycy)q(y)−Dn(

−→ycy)p(y)]dS(y), (34)

where yc is located close to S0 and Dn(
−→ycy) is given by

Dn(
−→ycy) =

∂ I−n(
−→ycy)

∂n(y)
. (35)

The M2M, M2L, L2L translation formulas are given by

Mn(y1
c) =

+∞

∑
m=−∞

I−n+m(
−−→
y1

cyc)Mm(yc), (36)

Ln(xl) =
+∞

∑
m=−∞

(−1)nOn−m(
−−→
y1

cxl)M−m(y1
c), (37)

and

Ln(x1
l ) =

+∞

∑
m=−∞

In−m(
−−→
x1

l xl)Lm(xl), (38)

where y1
c is located close to S0, xl and x1

l close to x, as shown in Fig. 1. To the end,
one can obtain the following formulations:

A2 =
+∞

∑
n=−∞

I−n(
−→
x1

l x)Ln(x1
l ). (39)

4.2 Diagonal formulations for acoustic state analysis

The plane wave expansion of the Green’s function in Eq. 10 can be written as

G(x,y) =
i

8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)e−ikk̂·−→ycydθ , (40)

where

k̂(θ) = (cosθ ,sinθ), (41)
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Figure 1: Multipole expansion points and the boundary nodes

and

T (θ ,−→ycxl) =
∞

∑
n=−∞

e−inθ On(
−→ycxl). (42)

By substituting Eq. 40 into Eq. 32, one can obtain the following formulation

A2 =
i

8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)B(θ ,yc)dθ , (43)

where B(θ ,yc) is the high-frequency moments defined by

B(θ ,yc) =
∫

S0

[e−ikk̂·−→ycyq(y)−E(−→ycy)p(y)]dS(y), (44)

and

E(−→ycy) =
∂e−ikk̂·−→ycy

∂n(y)
. (45)

The B2B, B2H and H2H translation formulas are given by

B(θ ,y1
c) = e−ikk̂·

−−→
y1

cycB(θ ,yc), (46)
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H(θ ,xl) = T (θ ,
−−→
y1

cxl)B(θ ,y1
c), (47)

and

H(θ ,x1
l ) = eikk̂·

−−→
xlx1

l H(θ ,xl). (48)

To the end, the boundary integrals can be expressed as

A2 =
i

8π

∮
eikk̂·

−→
x1

l xH(θ ,x1
l )dθ . (49)

4.3 Original FMM formulations for acoustic design sensitivity analysis

By differentiating Eq. 29 with respect to the design variable, one can obtain the
following expression:

.
G(x,y) =

i
4

+∞

∑
n=−∞

.
On(
−→ycx)I−n(

−→ycy)+
i
4

+∞

∑
n=−∞

On(
−→ycx)

.
I−n(
−→ycy), (50)

and then, one can obtain

.
F(x,y) =

i
4

+∞

∑
n=−∞

.
On(
−→ycx)Dn(

−→ycy)+
i
4

+∞

∑
n=−∞

On(
−→ycx)

.
Dn(
−→ycy), (51)

where
.
I−n(
−→ycy) and

.
Dn(
−→ycy) are defined by

.
I−n(
−→ycy) = (−i)n[nJn(kr)(

.
r
r
− i

.
θ)− Jn+1(kr)k

.
r]e−inθ , (52)

and

.
Dn(
−→ycy) =(−i)ne−i(β+nθ)×{Jn−1(kr)[

.
r(n−1)

r
− i(

.
β +n

.
θ)]− k

.
rJn(kr)}

− (−i)nei(β−nθ)×{Jn+1(kr)[
.
r(n+1)

r
+ i(

.
β −n

.
θ)]− k

.
rJn+2(kr)}, (53)

where β denotes the angle between the vector from yc to y and the outward normal
at point y. First, the integrals in Eq. 18 can be reformulated by:

D1 =
∫

S0

[
.
G(x,y)q(y)−

.
F(x,y)p(y)]dS(y), (54)

D2 =
∫

S0

[G(x,y)
.
q(y)−F(x,y)

.
p(y)]dS(y), (55)
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and

D3 =
∫

S0

[G(x,y)q(y)−F(x,y)p(y)]d
.
S(y). (56)

Then, by substituting Eqs. 29, 50 and 51 into Eqs. 54-56, one can obtain the fol-
lowing formulations:

D1 =
∞

∑
n=−∞

.
On(
−→ycx)Mn(yc)+

∞

∑
n=−∞

On(
−→ycx)M1

n(yc), (57)

D2 =
∞

∑
n=−∞

On(
−→ycx)M2

n(yc), (58)

and

D3 =
∞

∑
n=−∞

On(
−→ycx)M3

n(yc), (59)

where

M1
n(yc) =

i
4

∫
S0

[
.
I−n(
−→ycy)q(y)−

.
Dn(
−→ycy)p(y)]dS(y), (60)

M2
n(yc) =

i
4

∫
S0

[I−n(
−→ycy)

.
q(y)−Dn(

−→ycy)
.
p(y)]dS(y), (61)

and

M3
n(yc) =

i
4

∫
S0

[I−n(
−→ycy)q(y)−Dn(

−→ycy)p(y)]d
.
S(y). (62)

Actually, the M2M, M2L, L2L translation formulas for Eqs. 60-62 are the same as
Eqs. 36-38. Finally D1, D2 and D3 can be expressed in terms of local expansion
coefficients as

D1 =
∞

∑
n=−∞

.
I−n(
−→xlx)Ln(xl)+

∞

∑
n=−∞

I−n(
−→xlx)L1

n(xl), (63)

D2 =
∞

∑
n=−∞

I−n(
−→xlx)L2

n(xl), (64)

and

D3 =
∞

∑
n=−∞

I−n(
−→xlx)L3

n(xl). (65)
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4.4 Diagonal formulations for acoustic sensitivity analysis

By differentiating Eq. 40 with respect to the design variable, one can obtain the
following expression:

.
G(x,y) =

i
8π

∮ .
eikk̂·−→xlxT (θ ,−→ycxl)e−ikk̂·−→ycydθ +

i
8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)

.
e−ikk̂·−→ycydθ ,

(66)

and then, one can obtain

.
F(x,y) =

i
8π

∮ .
eikk̂·−→xlxT (θ ,−→ycxl)E(θ ,−→ycy)dθ +

i
8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)

.
E(θ ,−→ycy)dθ .

(67)

By substituting Eqs. 66 and 67 into Eqs. 54-56, one can obtain the following for-
mulations:

D1 =
i

8π

∮ .
eikk̂·−→xlxT (θ ,−→ycxl)B(θ ,yc)dθ +

i
8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)B1(θ ,yc)dθ , (68)

D2 =
i

8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)B2(θ ,yc)dθ , (69)

and

D3 =
i

8π

∮
eikk̂·−→xlxT (θ ,−→ycxl)B3(θ ,yc)dθ , (70)

where

B1(θ ,yc) =
∫

S0

[

.
e−ikk̂·−→ycyq(y)−

.
E(θ ,−→ycy)p(y)]dS(y), (71)

B2(θ ,yc) =
∫

S0

[e−ikk̂·−→ycy .q(y)−E(θ ,−→ycy)
.
p(y)]dS(y), (72)

and

B3(θ ,yc) =
∫

S0

[e−ikk̂·−→ycyq(y)−E(θ ,−→ycy)p(y)]d
.
S(y). (73)

Actually, the B2B, B2H and H2H translation formulas for Eqs. 71-73 are the same
as Eqs. 46-48. Finally D1, D2 and D3 can be expressed in terms of local expansion
coefficients as

D1 =
i

8π

∮ .
eikk̂·−→xlxH(θ ,xl)dθ +

i
8π

∮
eikk̂·−→xlxH1(θ ,xl)dθ , (74)
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D2 =
i

8π

∮
eikk̂·−→xlxH2(θ ,xl)dθ , (75)

and

D3 =
i

8π

∮
eikk̂·−→xlxH3(θ ,xl)dθ . (76)

4.5 Wideband FMM formulations

The wideband FMBEM obtained by combining the original form and the diagonal
form of the FMBEM is accurate and efficient at any frequency. In the wideband
FMBEM, we use the following M2B formula to convert the moments of the original
form to those of the diagonal form:

B(θ ,yc) =−4i
+∞

∑
n=−∞

einθ Mn(yc). (77)

The local expansion coefficients of the diagonal form can be converted to those of
the original form by using the following H2L formula:

Ln(xl) =
i

8π
(−1)n

∮
einθ H(θ ,xl)dθ . (78)

Actually, the number of terms used in the functions O, I, M and L and the number
of the plane wave samples k̂ along the unit circle have to be truncated. The number
of truncation terms and the plane wave samples depends on the size d of the cell
and the wave number k. It is given in the following form in [Coifman, Rokhlin, and
Wandzura (1993)]:

p = kd + c · log(kd +π). (79)

where c is a constant. Obviously, a larger c relates to a larger truncation number
p and it normally leads to an improvement of accuracy but induces to a longer
computing time and larger memory usage. Thus, it is a key parameter in the FMM
algorithm, which is chosen as 5 in this paper based on our previous research [Chen,
Zheng, and Chen (2013)].

5 Numerical examples

5.1 Scattering from an infinite rigid cylindrical shell

A numerical simulation of acoustic scattering from an infinite rigid cylindrical shell
with Neumann boundary condition is given to demonstrate the accuracy and effi-
ciency of the present algorithm. The computation is done on a desktop PC with an
Pentium 2.59 GHz processor and 3.24 GB memory.
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In this example, we consider the acoustic scattering of a plane incident wave with
unit amplitude on an infinite rigid cylindrical shell with radius a = 1.0m centred
at point (0,0), and the plane incident wave is travelling along the positive x axis
(θ = 0), as shown in Fig. 2. The analytical solution of the sound pressure at point
(r,θ) is given as

p(r,θ) =−
∞

∑
n=0

εnin
J′n(ka)

H(1)′
n (ka)

H(1)
n (kr)cos(nθ), (80)

where εn denotes the Neumann symbols, i.e., ε0 = 1 ; εn = 2 when n is greater than
0. ( )′ stands for the differentiation with respect to ka.

    incident wave

x

y

test pointa

2a

Figure 2: Scattering from an infinite cylindrical shell with radius a

When the design variable is chosen as a, one can obtain the analytical solution
of sound pressure sensitivity by differentiating Eq. 80 with respect to the design
variable, as follows:

∂ p(r,θ)
∂a

=−
∞

∑
n=0

εnin[
J′n(ka)

H(1)′
n (ka)

]′H(1)
n (kr)cos(nθ). (81)

Sample internal points are evenly distributed on a circle of r = 2a and the coordi-
nates of the test point are (2a,0). The boundary of the circle is discretized with
80000 constant elements and the maximum number of boundary elements in per
leaf is set to 60. With this parameter, the number of tree levels in the tree structure
is 10, the number of leaves is 2196 and the number of cells is 3829.
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Figure 3: Real part of pressure at points on circle r = 2a with k = 2
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Figure 4: Imaginary part of pressure at points on circle r = 2a with k = 2
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Figure 5: Relative error of the pressure sensitivity at point (2a,0) with k = 4π

From Figs. 3 and 4, it can be seen that numerical result obtained by using FMBEM
and CBEM both agree very well with the analytical solution which is denoted by
the symble "Rigid-analy", and it demonstrates the accuracy of the algorithm. The
relative error is defined as

error =
|pnumer− panaly|
|panaly|

, (82)

where the pnumer denotes the numerical solution and the panaly denotes the ana-
lytical solution. Actually, in the numerical evaluation of these boundary integral
equations, truncation and numerical integration errors are the main errors. And
estimates for these errors can be found in [Amini and Prot (2000)]. Due to the
complexity of the differential equations, giving a provement of the uniform con-
vergence of the numerical results is very hard and is not the key point for this
work. However, by observing Fig. 5, it can be found that the solution converges
well when refining the boundary mesh and it implicates the accuracy of the pre-
sented algorithm. The CPU time used to calculate the sensitivity values at the test
point is plotted in Fig. 6, which demonstrates the efficiency of FMBEM for two
dimensional acoustic design sensitivity analysis.
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Figure 6: CPU time used to calculate the pressure sensitivity values at point (2a,0)
with k = 4π

5.2 Scattering from an infinite elastic cylindrical shell

In this example, we consider the acoustic scattering of a plane incident wave with
unit amplitude on an elastic cylindrical shell with radius a = 1.0m centred at point
(0,0), as shown in Fig 2. For the cylindrical shell, the thickness is chosen as 0.01m,
Young’s modulus 2×1011Pa, Poisson’s ratio 0.26 and the density 7800kg/m3. For
the fluid, the density is chosen as 1000kg/m3 and the speed of sound 1524m/s. The
benchmark solution to which the numerical results will be compared is the series
solution published by Junger and Feit [Junger and Feit (1985)].

In Figs. 7 and 8, "FEM/WFMBEM" denotes numerical solution obtained by using
coupling FEM and wideband FMBEM, and "Ela-analy" denotes analytical solu-
tion. From the two figures, it can be seen that numerical results obtained by using
FEM/BEM and FEM/WFMBEM both agree very well with the analytical solutions
at the sample internal points, and it demonstrates the accuracy of the presented al-
gorithm. Figures 9 and 10 show a low-frequency comparison between the acoustic
pressure values based on the rigid scattering and the elastic scattering, and it de-
notes that the fluid has a big impact on the vibrating and scattering acoustic field
from the underwater thin shell structure. From the two figures, it can also be seen
that the numerical results obtained by using FEM/BEM and FEM/FMBEM both
agree very well with the analytical solutions at the test point. The CPU time used to
calculate the acoustic pressure values is plotted in Fig. 11, which demonstrates the



FEM/Wideband FMBEM Coupling 477

-0.2

0.0

0.2

0.4

0.6

0.8

0

30

60

90

120

150

180

210

240

270

300

330

-0.2

0.0

0.2

0.4

0.6

0.8

 

 Ela-analy
 FEM/WFMBEM

Figure 7: Real part of acoustic pressure at points on circle r = 2a with k = 2
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high efficiency of FEM/Wideband FMBEM algorithm for two dimensional fluid-
structure interaction problems. Figures 12 and 13 show that the acoustic pressure
sensitivity values obtained by using FEM/Wideband FMBEM algorithm agree well
with the analytical solutions at the test point and it implicates the accuracy of the
presented algorithm, where the design variable is chosen as the radius a of the
cylindrical shell.

Figure 9: Real part of acoustic pressure at the test point with different frequencies
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Figure 10: Imaginary part of acoustic pressure at the test point with different fre-
quencies
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Figure 11: CPU time used to calculate the acoustic pressure at the test point with
k = 2

Figure 12: Real part of acoustic pressure sensitivity at the test point with different
frequencies
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Figure 13: Imaginary part of acoustic pressure sensitivity at the test point with
different frequencies

6 Conclusions

A coupling algorithm based on FEM and wideband FMBEM is presented for the
simulation of fluid-structure interaction and structural acoustic sensitivity analysis
using the direct differentiation method. The FEM was used to model the struc-
tural parts of the problem. To avoid the need to mesh the fluid domain, the wide-
band FMBEM formed by combining the original FMBEM and the diagonal form
FMBEM is used to accelerate the matrix-vector products in the boundary element
analysis. The presented algorithm makes it possible to predict the effects of arbi-
trarily shaped vibrating structures on the sound field numerically.

However, the iterative solution of the system of linear equation based on GMRES
method is often the most time-consuming part of the simulation for modeling fluid-
structure interaction problems numerically by using the coupling FEM/wideband
FMBEM algorithm. The development of a more suitable preconditioner is required
and this problem is now being addressed in an ongoing research project. Future
work also includes applying the acoustic design sensitivity analysis to shape opti-
mizations and extending the method to three dimensional practical problems.
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