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Application of a Hybrid Mesh-free Method Based on
Generalized Finite Difference (GFD) Method for Natural

Frequency Analysis of Functionally Graded
Nanocomposite Cylinders Reinforced by Carbon

Nanotubes

Seyed Mahmoud Hosseini1

Abstract: In this article, the effects of carbon nanotubes distributions on nat-
ural frequency are studied for a functionally graded nanocomposite thick hollow
cylinder reinforced by single-walled carbon nanotubes using a hybrid mesh-free
method. The FG nanocomposite cylinder is excited by a shock loading, which is
applied on the inner surface of cylinder. The first natural frequency is obtained
for various nonlinear grading patterns of distributions of the aligned carbon nan-
otubes. The effects of various nonlinear grading patterns on natural frequency are
obtained and discussed in details. The presented hybrid mesh-free method is based
on the generalized finite difference (GFD) method for spatial coordinates and New-
mark finite difference (NFD) for time domain. To obtain the dynamic behavior and
also first natural frequency, time histories of displacements are transferred to fre-
quency domain by fast Fourier transformation (FFT) technique. Numerical results
demonstrate the efficiency of the proposed method in frequency domain analysis for
functionally graded nanocomposites reinforced by carbon nanotube (FGNRCN).

Keywords: Nanocomposites; Carbon nanotube; Functionally graded materials;
Natural frequency; Mesh-free method; Shock loading.

1 Introduction

Functionally graded nanocomposites reinforced with carbon nanotubes (FGNRCN)
are new kinds of composite materials, which are reinforced by carbon nanotubes
with linear and nonlinear grading patterns in distribution through a certain direc-
tion. One of the most important points in designing procedure of structures made
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of FGNRCN is the analysis of structures under dynamic, in particular, shock load-
ings. When the structures are employed under dynamic and shock loading, the first
natural frequency then takes place. As author known, the applications of carbon
nanotubes for reinforcement of the structure and also various grading patterns in
FGM have significant effect on the first natural frequency and vibration of struc-
tures. In this regards, the natural frequency analysis has a very important effect in
designing procedure.

The mechanical properties of FGNRCN were presented in some researches [Esawi
and Farag (2007), Thostenson, Ren and Chou (2001), Dai (2002), Lau, Gu and Hui
(2006)] based on some experiments and micro mechanical models, which can be
used in dynamic and vibration analysis of FGNRCN and/or single or multi wall
carbon nanotubes (SWCNT or MWCNT). Zhao et al. [Zhao, Ando, Qin, Kataura,
Maniwa and Saito (2002)] experimentally found radial breathing mode frequen-
cies of multi-walled carbon nanotubes. Uchida et al. [Uchida, Tazawa, Sakai,
Yamazaki and Kobayashi (2008)] experimentally deliberated on radial breathing
modes of single-walled carbon nanotubes in resonance Raman spectra at high tem-
perature and their chiral index assignment. Okada [Okada (2007)] calculated radial
breathing mode frequencies of armchair nanotubes encapsulating C60 molecules
(peapods). Hosseini et al. [Hosseini, Akhlaghi and Shakeri (2007)] studied the
dynamic analysis of functionally graded cylinders subjected to mechanical shock
loading. The mean velocity of radial stress wave propagation; natural frequency
and dynamic behavior of FG cylinder were presented in their work using the
Galerkin finite element (GFE) formulation with linear functionally graded elements
for spatial variables and Newmark time integration scheme for time domain. For
performing predefined simultaneous modification of natural frequencies and buck-
ling loads of composite cylindrical panels, Shahab et al. [Shahab, Mirzaeifar and
Bahai (2009)] proposed a new method based on the fact that both natural frequen-
cies and buckling loads are eigenvalues of an algebraic system of simultaneous
equations. An exact closed-form frequency equation is presented for free vibration
analysis of circular and annular moderately thick FG plates based on the Mindlin’s
first-order shear deformation plate theory by Hosseini-Hashemi et al. [Hosseini-
Hashemi, Fadaee and Es’haghi (2010)]. Recently, some researches were carried
out by Talebian et al. [Talebian, Tahani, Hosseini and Abolbashari (2010), Talebian,
Tahani, Abolbashari and Hosseini (2011), Talebian, Tahani, Abolbashari and Hos-
seini (2012)] in which analytical and numerical methods with high accuracy were
presented to study on dynamic and natural frequency analysis in MWCNTs. A
rotating CNT embedded polymer composite beam based on Euler – Bernoulli as-
sumption with maximum centrifugal force is studied using a spectral finite element
formulation by Deepak et al. [Deepak, Ganguli and Gopalakrishnan S. (2012)].
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In the recent years, some meshless or mesh-free methods have been developed to
solve the dynamic problems in engineering. A very short review of some recent
literatures in this area that forms a background for the present study is provided as
follows. A local boundary integral equation formulation in Laplace-transform do-
main with a meshless approximation, based on the meshless local Petrov-Galerkin
(MLPG) method, was successfully implemented by Sladek et al. [Sladek, Sladek
and Zhang (2003)] to solve transient elastodynamic initial-boundary value prob-
lems in continuously non-homogeneous solids. In their work, the moving least
squares (MLS) method is used for interpolation and the modified fundamental so-
lution as the test function. Daia et al. [Daia, Liua, Lima and Chen (2004)] presented
a mesh-free method to analyze the static deflection and natural frequencies of thin
and thick laminated composite plates using high order shear deformation theory.
Two MLPG formulations based on Heaviside step functions and Gaussian weight
functions were presented to analyze the dynamic behavior of elastic and elasto-
plastic solids by Soares Jr. et al. [Soares Jr., Sladek and Sladek (2009)]. For both
their formulations, a MLS interpolation scheme was adopted, rendering a matricial
time-domain system of second order ordinary differential equations. In another re-
search, they [Soares Jr., Sladek and Sladek (2010)] used their presented method for
analysis of the dynamic behavior of elastic and elastoplastic solids. Also, the prop-
agation of thermoelastic waves in a FG thick hollow cylinder and coupled thermoe-
lasticity analysis considering without and with Gaussian uncertainty in mechanical
properties were studied by Hosseini et al. [Hosseini, Sladek, Sladek (2011), Hos-
seini, Shahabian, Sladek and Sladek (2011)] using meshless local Petrov-Galerkin
(MLPG) method. Recently, a meshless method was developed by Moradi-dastjerdi
et al. ...[Moradi-Dastjerdi, Foroutan and Pourasghar (2013)] for dynamic analysis
of nanocomposite cylinders with infinite length (1D) reinforced by single-walled
carbon nanotubes subjected to a mechanical loading. There are some applications
for FGNRCN such as reinforced cylindrical pressure vessels, thick cylindrical pan-
els and cylindrical structures, which are under dynamic, impact and shock loadings.

In this study, a hybrid mesh-free method based on generalized finite difference
(GFD) and Newmark finite difference methods is exploited to study on the effects
of various nonlinear grading patterns of carbon nanotubes distributions on natu-
ral frequency of FGNRCN. The presented hybrid mesh-free method is applied for
a thick hollow cylinder, which is reinforced by carbon nanotubes and excited by
various mechanical shock loadings. The values of first natural frequency of cylin-
der are studied in details for various nonlinear grading patterns of distribution of
nanotubes in FGNRCN.
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2 Mathematical formulations

2.1 Mechanical properties:

The mechanical properties of the FGNRCN can be obtained for a cylinder with in-
ner radius rin and outer radius rout and nonlinear distributions of carbon nanotubes
(CNTs) through radial direction based on a micromechanical model as follows [21]:

E1 = η1VCN ECN
1 + Vm Em (1)

η2

E2
=

VCN

ECN
2

+
Vm

Em (2)

η3

G12
=

VCN

GCN
12

+
Vm

Gm (3)

νi j = VCN ν
CN
i j +Vm ν

m i, j = 1,2,3 i 6= j (4)

ρ = VCN ρ
CN +Vm ρ

m (5)

VCN +Vm = 1 (6)

where ECN
1 , ECN

2 , GCN
12 , νCN and ρCN are elasticity modulus, shear modulus, Pois-

son’s ratio and density of the carbon nanotubes, respectively. Em, Gm, νm and ρm

are corresponding properties for the matrix. The terms VC N and Vm are volume
fractions of carbon nanotube and matrix, respectively. The subscripts CN and m
stand for carbon nanotube and matrix. Three kinds of nonlinear grading patterns
are assumed for carbon nanotube volume fraction as follows

Nonlinear type V : VCN = 2 V ∗C N

(
r− r in

rout − r in

)n

(7)

Nonlinear type Λ : VCN = 2 V ∗C N

(
rout − r

rout − r in

)n

(8)

Nonlinear type X : VCN = 4η V ∗C N

(
r− rm

rout − r in

)n

, rm =
rout + r in

2
,

η =
rout − r in

(rout − r in)
n

(9)

where

V ∗C N =
ρm

wCN +
(

ρCN
/
wCN

)
−ρCN

(10)

The term wCN is the mass fraction of nanotube. The various nonlinear grading
patterns can be found for r in = 0.5mand rout = 1m in Figure 1.
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(a)

(b)

(c)

Figure 1: The distribution of volume fraction of carbon nanotube for various types
of grading patterns a) n = 0.5, b) n = 1, c) n = 2



6 Copyright © 2013 Tech Science Press CMES, vol.95, no.1, pp.1-29, 2013

2.2 Governing equations:

The governing equations are given as

σi j , j + fi = ρ üi (11)

where fi, ρand ui are the body force, mass density and displacement, respectively.
The constitutive equations can be found as

σ = C (r) ε , σi j = Ci j k l (r) εk l (12)

where σi j and εi jare the stress and strain. The matrix Ci j k lis defined as follows:

C (r) =


C11 (r) C12 (r) C13 (r) 0
C12 (r) C22 (r) C23 (r) 0
C13 (r) C23 (r) C33 (r) 0

0 0 0 C55 (r)

 (13)

where

C11 (r) =
1−ν23 (r)ν32 (r)

E2 (r)E3 (r)∆
, C22 =

1−ν31 (r)ν13 (r)
E1 (r)E3 (r)∆

C33 =
1−ν21 (r)ν12 (r)

E1 (r)E2 (r)∆
, C55 (r) = G12 (r)

C12 (r) =
ν21 (r)+ν31 (r)ν23 (r)

E2 (r)E3 (r)∆
, C23 (r) =

ν32 (r)+ν12 (r)ν31 (r)
E1 (r)E3 (r)∆

C33 (r) =
ν31 (r)+ν21 (r)ν32 (r)

E2 (r)E3 (r)∆

∆ =
1−ν32 (r)ν23 (r)−ν21 (r)ν12 (r)−ν13 (r)ν31 (r)−2ν32 (r)ν21 (r)ν13 (r)

E1 (r)E2 (r)E3 (r)
(14)

The terms ν i j(r) and E i(r) are Poisson’s ratio and elasticity modulus, respectively.
In this work, the body force is neglected, thus, we have

σi j , j = ρ (r) üi (15)

or

σi j , j (r, t) = ρ (r) üi (r, t) . (16)
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The elasticity tensor becomes

Ci j k l (r) =
2ν (r) G(r)
1−2ν (r)

δi j δk l + G(r) δi k δ j l + G(r)δi l δ j k. (17)

The matrix Ci j k l considering axisymmetry and plane strain conditions and isotropic
functionally graded materials can be derived as follows.

C (r) =
[

C11 (r) C12 (r)
C12 (r) C22 (r)

]
(18)

where

c11(r) = c22(r) =
E(r) (1−ν(r))

(1+ν(r)) (1−2ν(r))
,

c12(r) = c21(r) =
E(r)ν(r)

(1+ν(r)) (1−2ν(r))

(19)

The following mathematical simulations are considered for mechanical properties
based on micromechanical models [Shen (2009)]

ρ(r) = ρCN ∗VCN +ρm ∗Vm = (ρCN − ρm)∗VCN +ρm (20)

E(r) = ECN ∗VCN +Em ∗Vm = (ECN − Em)∗VCN +Em (21)

ν(r) = νCN ∗VCN +νm ∗Vm = (νCN −νm)∗VCN +νm (22)

VCN +Vm = 1 (23)

The governing equation of motion can be rewritten in non-dimensional form using
the following dimensionless parameters:

r̄ = r
/

rout , t̄ = t V
/

rout , ū = u
/

rout , Ē = E
/

Em

ρ̄ = ρ
/

ρm , σ̄r = σr
/

Em , σ̄θ = σθ

/
Em

(24)

where V is the velocity of elastic wave propagation in matrix. Consequently, all
equations in dimensionless form are obtained as

σ̄r , r̄ + (σ̄r − σ̄θ )
/

r̄ = ρ̄ (r̄) ū , t̄ t̄ = ρ̄ (r̄) ¨̄u (25)

σ̄r = c̄11(r̄)εr + c̄12(r̄)εθ (26)

σ̄θ = c̄22(r̄) εθ + c̄12(r̄) εr (27)

and

εr = ū , r̄ , εθ = ū/r̄ (28)
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where ū , r̄ = ∂ ū
/

∂ r̄ and

Ē(r) = E(r)
/

Em = αE VCN +1 (29)

ρ̄(r) = ρ(r)
/

ρm = αρ VCN +1 (30)

The ratios αE and αρ are defined as follows

αE = ECN
/

Em−1 , αρ = ρCN
/

ρm−1 (31)

The terms c̄11 (r) and c̄12 (r) are

α
∗
1(r̄) =

(1−ν(r))
(1+ν(r)) (1−2ν(r))

c̄11(r̄) = α
∗
1(r̄) {αE VCN +1}

(32)

α
∗
2(r̄) =

ν(r)
(1+ν(r)) (1−2ν(r))

c̄12(r̄) = α
∗
2(r̄) {αE VCN +1}

(33)

The stresses can be rewritten in the following form

σ̄r = {αE VCN +1} (α∗1 (r̄) ū , r̄ + α
∗
2 (r̄) ū/r̄) (34)

σ̄θ = {αE VCN +1} (α∗2 (r̄) ū , r̄ + α
∗
1 (r̄) ū/r̄) (35)

By substituting equations (34) and (35) into (25), the dynamic governing equation
in displacement form is obtained as{

αE (VCN) , r̄

}
(α∗1 (r̄) ū , r̄ + α∗2 (r̄) ū/r̄) +

α∗1 (r̄) {αE VCN +1}
(
ū , r̄ r̄ +

(
1
/

r̄
)

ū , r̄ − ū
/

r̄2
)
+

{αE VCN +1}
(
(α∗1 (r̄)) , r̄ ū , r̄ + (α∗2 (r̄)) , r̄ ū/r̄

)
=
{

αρ VCN +1
}

ū , t̄ t̄ =
{

αρ VCN +1
}

¨̄u

(36)

3 Solution technique

3.1 Mesh-free generalized finite difference (GFD) method

In order to reduce the labor of creating the finite element mesh and reduce the com-
putational cost various mesh reduction techniques were researched and developed.
In the last years, some meshless and mesh-free methods were developed to solve
some engineering problems. The application of meshless methods has been de-
veloped in various fields of engineering such as elastodynamic [Hosseini (2012)],
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Figure 2: The sketch of center and surrounding nodes with regular distribution
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Figure 3: The sketch of center and surrounding nodes with random distribution

thermoelasticity [Hosseini, Sladek and Sladek (2011), Sladek, Sladek, Solek, Tan
and Zhang (2009)], diffision [Wu, Chang, Lu, Tao and Shen (2012)] and coupled
diffisuin-elasticity [Hosseini, Sladek, Sladek (2013)] and other topics. Recently,
a good review was presented for analysis of problems in engineering & the sci-
ences, with the use of the meshless methods [Sladek, Stanak, Han, Sladek and
Atluri (2013)]. The success of the meshless methods lie in the local nature, as
well as higher order continuity, of the trial function approximations, high adaptiv-
ity and a low cost to prepare input data for numerical analyses, since the creation
of a finite element mesh is not required [Sladek, Stanak, Han, Sladek and Atluri
(2009)]. Recently, the mesh-free generalized finite difference (GFD) method was
developed to study on the dynamic behaviors of displacement and time history anal-
ysis in functionally graded nanocomposite cylinder reinforced by single-walled car-
bon nanotubes [Hosseini (2014)]. Here, the GFD method is employed to continue
the presented study by author [Hosseini (2014)] for frequency domain and natural
frequency analysis. The partial derivatives of displacements are linearly approxi-
mated by Taylor’s series expansion on some nodes (interior nodes) in the domain.
Consequently, partial derivatives are obtained at each center node i.e. the group of
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nodes with a center node and surrounding other nodes is called a star in this method
(see Figures 2 and 3). The nodes can be distributed on analyzed domain by regular
or random distributions.

The terms ū0 and ū i stand for the non-dimensional radial displacement at a center
node and surrounding nodes, respectively. The function values ū i can be approxi-
mated using Taylor’s expansion as

ū i = ū0 + h i (ū0) , r̄ +
1
2

[
h2

i (ū0) , r̄ r̄

]
+ ... (37)

where i denotes number of surrounding nodes. The analyzed domain in the problem
is linear and through radial direction on thickness of FG cylinder. Consequently,
the term h i can be calculated as

h i = r̄i − r̄o (38)

The third and higher orders are ignored in equation (37). The norm function of
non-dimensional radial displacement is minimized to decrease the error. The norm
of the function for non-dimensional radial displacement is

Norm(ū) =
N

∑
i=1

[(
ū0 − ūi + h i (ū0) , r̄ +

1
2

[
h2

i (ū0) , r̄ r̄

])
w(hi)

]2

(39)

where w(hi) is a weight function. The following weight function is employed for
the problem in this article:

w(hi) = 1
/
(dist)3 = 1

/
h3

i (40)

If the norm (39) is minimized with respect to ū0, a set of linear equations system is
obtained as follows:

ψ2 Q2 = ξ2 (41)

where the term ψ2 stands for 2×2 matrices in displacement field. The components
of matrices ψ2 and vector ξ2 are obtained in Appendix. The vectors Q2 is given,
respectively, by

Q2 =
{
(ū0), r̄ , (ū0), r̄ r̄

}T
(42)

There are some methods to solve the system of differential equations that one of
them is Cholesky method [Benito, Urena and Gavete (2007)]. In Cholesky method,
the symmetric matric ψ2 is decomposed to upper and lower triangular matrices.

ψ2 = L2 LT
2 (43)
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The components of the matric L2 are denoted by l (i, j) with i, j = 1, ...,P, where
P = 2in this case, and

Q2 (k) =
1

l(k,k)

(
Y (k)−

P−k

∑
i=1

l(k+ i,k)Q2 (k+ i)

)
(k = 1, ...,P) (44)

Y (k) =

(
−ū0

P

∑
i=1

M(k, i)ci +
N

∑
j=1

ū j

(
P

∑
i=1

M(k, i)d ji

))
(k = 1, ...,P) (45)

M(i, j) = (−1)i+ j 1
l(i, j)

i−1

∑
k= j

l(i, j)M(k, j) with j ≺ i (i, j = 1, ...,P) (46)

M(i, j) =
1

l(i, j)
with j = i (i, j = 1, ...,P) (47)

M(i, j) = 0 with j � i (i, j = 1, ...,P) (48)

For this problem, it becomes

ci =
N

∑
j=1

d ji , d j1 = h j W 2 , d j2 =
(
h2

i
/

2
)

W 2 (49)

where

W 2 = (w(hi))
2 (50)

Also, the first and second derivatives of non-dimensional radial displacement can
be calculated as

(ū0), r̄ = Au
1

{
N

∑
i=1

(−ū0 + ūi)hi w2 (hi)

}
− Au

2

{
N

∑
i=1

(−ū0 + ūi)
(
h2

i
/

2
)

w2 (hi)

}
(51)

(ū0), r̄ r̄ = Bu
1

{
N

∑
i=1

(−ū0 + ūi)hi w2 (hi)

}
− Bu

2

{
N

∑
i=1

(−ū0 + ūi)
(
h2

i
/

2
)

w2 (hi)

}
(52)

where the coefficients Au
1, Au

2, Bu
1 and Bu

2 are obtained in details in Appendix. The
derivatives of radial displacement can be also rewritten in star forms as follow

(ū0), r̄ = −α0 ū0 +
N

∑
i=1

αi ūi (53)
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where

αi = Au
1 h2

i w2 (hi) − Au
2
(
h2

i
/

2
)

w2 (hi)

α0 =
N

∑
i=1

αi
(54)

The second derivative of radial displacement can be written as

(ū0), r̄ r̄ = −β0 ū0 +
N

∑
i=1

βi ūi (55)

where

βi = Bu
1 h2

i w2 (hi) − Bu
2
(
h2

i
/

2
)

w2 (hi)

β0 =
N

∑
i=1

βi
(56)

The first and second derivatives of non-dimensional radial displacement are re-
placed by obtained relations in star forms in equation (26), which is defined for
a center node. The governing equation should be valid at every center node on
analyzed domain such as r̄0:{

αE (VCN) , r̄

} (
α
∗
1 (r̄) (ū0) , r̄ + α

∗
2 (r̄) ū0

/
r̄0

)
+

α
∗
1 (r̄) {αE VCN +1}

(
(ū0) , r̄ r̄ +

(
1
/

r̄0
)
(ū0) , r̄ − ū0

/
r̄2

0

)
+

{αE VCN +1}
(
(α∗1 (r̄)) , r̄ (ū0) , r̄ + (α∗2 (r̄)) , r̄ ū0

/
r̄0

)
=
{

αρ VCN +1
}

¨̄u0

(57)

{
αE (VCN) , r̄

} (
α
∗
1 (r̄0)

(
−α0 ū0 +

N

∑
i=1

αi ūi

)
+ α

∗
2 (r̄0) ū0

/
r̄0

)
+

α
∗
1 (r̄0){αEVCN +1}

[(
−β0 ū0+

N

∑
i=1

βi ūi

)
+
(
1
/

r̄0
) (
−α0 ū0 +

N

∑
i=1

αi ūi

)
− ū0

/
r̄2

0

]
+

{αE VCN +1}
[
(α∗1 (r̄0)) , r̄

(
−α0 ū0 +

N

∑
i=1

αi ūi

)
+ (α∗2 (r̄0)) , r̄ ū0

/
r̄0

]
=
{

αρ VCN +1
}

¨̄u0

(58)

where

ū0 = ū(r̄0) (59)
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Also, the above equation can be rewritten as[{
αE (VCN) , r̄

} (
α
∗
2 (r̄0)

/
r̄0−α

∗
1 (r̄0)α0

)
−

α
∗
1 (r̄0) {αE VCN +1}

(
β0 +α0

/
r̄0 +1

/
r̄2

0
)
+

{αE VCN +1}
(
(α∗2 (r̄0)) , r̄ 1

/
r̄0− (α∗1 (r̄0)) , r̄ α0

)]
ū0+

N

∑
i=1

[{
αE (VCN) , r̄

}
α
∗
1 (r̄0)α i +α

∗
1 (r̄0) {αE VCN +1}

(
β i +α i

/
r̄0
)
+

{αE VCN +1}(α∗1 (r̄0)) , r̄ α i

]
ūi =

{
αρ VCN +1

}
¨̄u0

(60)

The following system of linear equations is obtained for the distributed nodes on
the analyzed domain.

[M](N+1)∗(N+1) {ϕ̈}(N+1)∗1 +[K](N+1)∗(N+1) {ϕ}(N+1)∗1 = [ f ](N+1)∗1 (61)

where

{ϕ}T =
{

ū0 ū1 . . . . ūN
}T (62)

and

{ϕ̈}T =
{

¨̄u0 ¨̄u1 . . . . ¨̄uN
}T (63)

3.2 Newmark finite difference (NFD) method

In this article, the Newmark time approximation scheme with suitable time step
is used, and the time-dependent displacement field is obtained for the cylinder.
Consider the system to be expressed in terms of non-dimensional time t̄ = tp in
which the governing equation of system takes the form

[M]
{

ϕ̈
tp
}
+[K]

{
ϕ

tp
}
=
[

f tp
]

(64)

Using the initial conditions
{

f 0
}

and
{

ϕ0
}

, the following equation can be obtained

[M]
{

ϕ̈
0} =

{
f 0}− [K]

{
ϕ

0} (65)

The matrices [Km]and
{

f tp
m

}
are defined as follows:

[Km] = [K]+
1

λ1 ∆t2 [M] (66)
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{
f tp
m

}
=
{

f tp
}
+

1
λ1 ∆t2 [M]

({
ϕ

tp−1
}
+∆t

{
ϕ̇

tp−1
}
+(0.5−λ1)∆t2{

ϕ̈
tp−1
})

(67)

The matrices of [ϕ tp ], [ϕ̇ tp ], and [ϕ̈ tp ] can be computed using following equations:

{
ϕ

tp
}
= [Km]

−1
{

f tp
m

}
(68)

{
ϕ̈

tp
}
=

1
λ1 ∆t2

({
ϕ

tp
}
−
{

ϕ
tp−1
}
−∆t

{
ϕ̇

tp−1
}
−∆t2 (0.5−λ1)

{
ϕ̈

tp−1
})

(69)

{
ϕ̇

tp
}
=
{

ϕ̇
tp−1
}
+∆t

[
(1−λ2)

{
ϕ̈

tp−1
}
+λ2

{
ϕ̈

tp
}]

(70)

Using aforementioned equations, the matrices of [ϕ tp ], [ϕ̇ tp ], and [ϕ̈ tp ] can be ob-
tained for an arbitrary time. The best convergence rate can be achieved in this
method by choosing λ1 =

1
4 and λ2 =

1
2 .

3.3 Fast Fourier transformation (FFT)

To find the natural frequencies, the dynamic response of displacement in time do-
main, which is based on shock loading, should be transferred to frequency domain.
The fast Fourier transformation (FFT) technique is employed for this purpose. The
discrete data can be transferred from time domain into frequency domain using
following equation.

ŪK(r̄, w̄) =
Nt−1

∑
τ =0

ūτ (r̄, t̄) e−
2π i
Nt

τ K K = 0, ...,Nt −1 (71)

where “ŪK”, “Nt” and “w̄” are non-dimensional radial displacement at frequency
domain, number of sample nodes that are transferred from time to frequency do-
main and non-dimensional frequency. The process time of the discrete Fourier
transformation (71) can be decreased by dividing the vector “ūτ (r̄, t̄)” to two vec-
tors in even and odd counters as follow.

ŪK(r̄, w̄) =
Nt−1

∑
τ =0

ūτ (r̄, t̄) e−
2π i
Nt

τ K

=

Nt/2−1

∑
τ =0

ū2τ (r̄, t̄) e−
2π i
Nt

(2τ)K +

Nt/2−1

∑
τ =0

ū2τ+1 (r̄, t̄) e−
2π i
Nt

(2τ+1)K

(72)
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ŪK(r̄, w̄) =
Nt−1

∑
τ =0

ūn (r̄, t̄) e−
2π i
Nt

τ K

=

Nt/2−1

∑
τ =0

ū2τ (r̄, t̄) e−
2π i
Nt

(2τ)K +

Nt/2−1

∑
τ =0

ū2τ+1 (r̄, t̄) e−
2π i
Nt

(2τ+1)K

=

Nt/2−1

∑
τ =0

ūeven
2τ (r̄, t̄) e

− 2π. i.τ.K
Nt/2 + e−

2π. i.K
Nt

Nt/2−1

∑
τ =0

ūodd
2τ (r̄, t̄) e

− 2π. i.τ.K
Nt/2

(73)

Using aforementioned algorithm, the number of process in Fourier transformation
technique can be decreased from “2N2

t ” to “2Nt logNt
2 ”.

4 Numerical example and discussions

Consider a cylinder with inner radius r̄in and outer radius r̄out made of functionally
graded nanocomposites reinforced by carbon nanotube (FGNRCN). The term H
is defined as H = r̄out − r̄in. Suddenly unloading on inner bounding surface of
cylinder in a certain time can be considered as a mechanical shock loading. So, the
following boundary conditions are considered as first example for the problem to
derive the time histories of non-dimensional radial displacement:

σr (rin, t) = P0 t [1−H (t− t0)] (74)

σr (rout , t) = 0 (75)

where

rin = 1m , rout = 1.5m , t0 = 0.005 sec , P0 =−4Gpa/sec

and the function H (t− t0) is Heaviside unit step function. To validate the pre-
sented solving method, the mechanical properties of FGNRCN are considered to
be equal with full aluminum cylinder (isotropic cylinder by employing n = 0).
So, the dynamic behaviors can be compared to those presented by Hosseini et al.
[Hosseini, Akhlaghi and Shakeri (2007)]. Figure 4 shows a comparison in radial
displacement between obtained results by the presented hybrid mesh-free method
and finite element method. A good agreement can be observed in Figure 4 for the
results obtained by presented method. The time histories of radial displacement
at r = r in + H/

2are illustrated in Figure 5 for various kinds of grading patterns,
V ∗CN = 0.17 and FG type V. The presented time histories in Figure 5 are trans-
ferred to frequency domain employing FFT technique. The dynamic behaviors in
frequency domain can be found in Figure 6 in which the frequencies of each peak
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Figure 4: The comparison between obtained results from presented mesh-free
method and those from finite element method by Hosseini et al. [Hosseini,
Akhlaghi and Shakeri (2007)]

Figure 5: The time histories of radial displacement for various values of n at r =
r in + H/2 for FG type V and V ∗CN = 0.17 in first example
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Figure 6: Frequency domain for various values of n , V ∗CN = 0.17and FG type V in
first example

Figure 7: The time histories of radial displacement for various values of n at r =
r in + H/2 for FG type V and V ∗CN = 0.17 in second example
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Figure 8: Frequency domain for various values of n , V ∗CN = 0.17and FG type V in
second example

Figure 9: Frequency domain for various values of V ∗CN and n = 0.5 in FG type V
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Figure 10: Frequency domain for various values of n and V ∗CN = 0.12 in FG type Λ

Figure 11: Frequency domain for various values of V ∗CN and n = 0.5 in FG type Λ
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Figure 12: Frequency domain for various values of n and V ∗CN = 0.27 in FG type X

Figure 13: Frequency domain for various values of V ∗CN and n = 0.5 in FG type X
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Figure 14: Variation of first natural frequencies versus n for various values of V ∗CN
in FG type V

Figure 15: Variation of first natural frequencies versus n for various values of V ∗CN
in FG type Λ
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Figure 16: Variation of first natural frequencies versus n for various values of V ∗CN
in FG type X

Figure 17: Variation of first natural frequencies versus V ∗CN for various types of
FGNRCN and n = 0.5



Application of a Hybrid Mesh-free Method 23

Figure 18: Variation of first natural frequencies versus V ∗CN for various types of
FGNRCN and n = 1

point depict the first natural frequencies of FGNRCN. As second example, the fol-
lowing boundary conditions are considered for the problem.

σr (rin, t) = P0 sin(
π t
t0
) (76)

σr (rout , t) = 0 (77)

where

rin = 1m , rout = 1.5m , t0 = 0.00015 sec , P0 =−10Mpa

The time histories of radial displacement are given for various grading patterns at
r = r in + H/

2, V ∗CN = 0.17 and FG type V in Figure 7 as the same with Figure
5. Using FFT technique, all of time histories are transferred to frequency domain,
which are shown in Figure 8. The first natural frequencies of FGNRCN, which
are obtained from Figure 8, are the same with those obtained from Figure 6. It
can be considered as another verification of presented method to obtain first natural
frequencies. To find the first natural frequencies, the FGNRCN should be excited
by a mechanical shock loading. The kind of shock loading is not important for the
analysis. It is concluded from Figure 8 when the values of n are increased the first
natural frequency is decreased. The effects of various values of V ∗CN on first natural
frequencies for n = 0.5 and FG type V can be found in Figure 9. The first natural
frequencies are increased when the values of V ∗CN are increased. By considering
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the FG type Λ for FGNRCN, the effects of variation in values of n and V ∗CN on
first natural frequencies can be found in Figures 10 and 11, respectively. The same
behaviors can be observed in Figures 10 and 11 comparing to Figures 8 and 9.
Also, similar effects on first natural frequencies are obtained for FG type X, which
are illustrated in Figures 12 and 13.

The variations of first natural frequencies versus volume fraction exponents n for
various values of V ∗CN are drawn for FG type V, Λ and X in Figures 14, 15 and
16, respectively. In all kinds of FGNRCN and all values of V ∗CN , it is concluded
when the value of n is increased the value of first natural frequency is decreased
as a nonlinear function. Figures 17 and 18 show us the variation of first natural
frequency versus V ∗CN for various kinds of FGNRCN for n = 0.5 and n = 1, re-
spectively. It is concluded from Figures 14 to 18 that in all kinds of FGNRCN the
first natural frequency is increased by increasing the value of V ∗CN . The values of
first natural frequency for some certains values of volume fraction exponents n in-
cluding n = 0.05, n = 0.5, n = 1 and n = 2 and some certain values of V ∗CN such
as V ∗CN = 0.12, V ∗CN = 0.17 and V ∗CN = 0.27 are shown for FG type V, Λ and X in
Table 1. In all kinds of FGNRCN and all values of V ∗CN , it is concluded when the
value of n is increased the value of first natural frequency is decreased as a nonlin-
ear function. By using the presented diagrams in Figures 14 to 18, it is possible to
approximate the values of natural frequency for other values of n and V ∗CN , which
are not presented in Table 1.

Table 1: First natural frequencies (Hz) of FGNRCN
Type V Type Λ Type X

V ∗C N V ∗C N V ∗C N
0.12 0.17 0.27 0.12 0.17 0.27 0.12 0.17 0.27

n = 0.05 2444 2565.85 2692.4 2442.7 2564.8 2691.65 2443.3 2565.3 2692
n = 0.5 2201 2360.45 2537.25 2182 2344.5 2523.7 2187.9 2349.2 2527.6
n = 1 1697.8 1890 2134.7 1652.2 1844.8 2093 1654.8 1846.2 2093.2
n = 2 756 827.4 933.75 719.4 785.5 886.45 734.85 795.6 889.62

5 Conclusions

In this paper, a hybrid mesh-free method based on mesh-free generalized finite dif-
ference (GFD) method and Newmark finite difference (NFD) method is developed
for natural frequency analysis in a functionally graded nanocomposite reinforced by
carbon nanotubes (FGNRCN) subjected to mechanical shock loading. The distribu-
tion of carbon naotubes in FG nanocomposite are considered to vary as nonlinear
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function of radius, which varies with various nonlinear grading patterns continu-
ously through radial direction. The effective material properties of functionally
graded carbon nanotube are estimated using a micro-mechanical model. The main
contributions of this paper can be summarized as follows.

• The mechanical shock analysis of FGNRCN thick hollow cylinder is carried
out and the dynamic behavior of displacement field and the time history of
radial displacement are obtained for two kinds of mechanical shock loading.

• The first natural frequencies of FGNRCN are obtained for various grading
patterns and kinds of FG nanocomposites.

• An effective hybrid mesh-free method based on generalized finite difference
(GFD) and Newmark finite difference (NFD) methods is presented to calcu-
late the first natural frequency of FGNRCN.

• The effects of various grading patterns and various kinds of FG types in FG
nanocomposites on first natural frequency of FGNRCN are studied in details
using presented mesh-free method.

• The first natural frequencies are calculated and reported for three kinds of
FG nanocomposite with various nonlinear grading patterns.

The presented hybrid mesh-free method has a high capability for dynamic analysis
and natural frequency assessment and also for calculating the first natural frequency
in a FGNRCN.

Appendix

The first and second derivations of non-dimensional radial can be calculated as
follows.

N
∑

i=1
h2

i w2 (hi)
N
∑

i=1

h3
i

2 w2 (hi)

N
∑

i=1

h3
i

2 w2 (hi)
N
∑

i=1

h4
i

4 w2 (hi)


{

∂ ū0
∂ r̄

∂ 2 ū0
∂ r̄2

}
=


N
∑

i=1
(−ū0 + ūi)hi w2 (hi)

N
∑

i=1
(−ū0 + ūi)

h2
i

2 w2 (hi)


(A1)

The first and second derivatives are presented by equations (11) and (12), which
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the unknown coefficients can be calculated as follows:

Au
1 =

(
N
∑

i=1

h4
i

4 w2 (hi)

)
(

N
∑

i=1
h2

i w2 (hi)

) (
N
∑

i=1

h4
i

4 w2 (hi)

)
−
(

N
∑

i=1

h3
i

2 w2 (hi)

)2 (A2)

Au
2 =

(
N
∑

i=1

h3
i

2 w2 (hi)

)
(

N
∑

i=1
h2

i w2 (hi)

) (
N
∑

i=1

h4
i

4 w2 (hi)

)
−
(

N
∑

i=1

h3
i

2 w2 (hi)

)2 (A3)

Bu
1 =

−
(

N
∑

i=1

h3
i

2 w2 (hi)

)
(

N
∑

i=1
h2

i w2 (hi)

) (
N
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i=1

h4
i

4 w2 (hi)

)
−
(

N
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h3
i

2 w2 (hi)

)2 (A4)
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)
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h4
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)
−
(

N
∑

i=1

h3
i

2 w2 (hi)

)2 (A5)
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