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Creep of Concrete Core and Time-Dependent Non-Linear
Behaviour and Buckling of Shallow Concrete-Filled Steel

Tubular Arches

K. Luo1, Y. L. Pi1, W. Gao1, and M. A. Bradford1

Abstract: This paper presents a theoretical analysis for the time-dependent non-
linear behaviour and buckling of shallow concrete-filled steel tubular (CFST) arches
under a sustained central concentrated load. The virtual work method is used to es-
tablish the differential equations of equilibrium for the time-dependent behaviour
and buckling analyses of shallow CFST arches, and the age-adjusted effective mod-
ulus method is adopted to model the creep behaviour of the concrete core. Analyti-
cal solutions of time-dependent displacements and internal forces of shallow CFST
arches are derived. It has been found that under a sustained central concentrated
load, the deformations and bending moments in a shallow CFST arch are time-
dependent and they increase with time significantly owing to the creep of the con-
crete core, which lead to the change of equilibrium configurations of the arch with
time. When the time is sufficiently long, the stable equilibrium configuration of the
arch under the sustained load in the short-term continues to change until its buck-
ling configuration corresponding to the sustained load is attained. In this case, the
arch may buckle in a bifurcation mode or a limit point instability mode. The ana-
lytical solution of the prebuckling structural life time is also derived. Comparisons
of the analytical solutions with the finite element results show that the analytical
solutions of the present study are effective and accurate.

Keywords: CFST arch, creep and shrinkage, non-linear, buckling.

1 Introduction

Applications of concrete filled steel tubular (CFST) arches are increasing in en-
gineering structures, particularly in bridge constructions [Chen (2000); Pi, Liu,
Bradford, and Zhang (2012)]. A CFST section is composed of well bonded steel
tube and concrete core as shown in Fig. 1 and is capable to provide the required
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Figure 1: Concrete filled steel tubular arch.

structural stiffness and strength. The steel tube confines the concrete core with
significant improvement of load-carrying capacity and ductility while the concrete
core restraints the steel tube from local buckling. However, the visco-elastic effects
of creep and shrinkage of concrete core are inevitable in the long term for CFST
arches. When a CFST arch is subjected to a sustained load, the creep of the concrete
core will lead to the increase of its deformations with time and the deformations
may be significant, while the shrinkage strain may also develop even when the arch
is not subjected to any load [Gilbert and Ranzi (2011); Bazant and Cedolin (2003)].
Hence, an investigation of significant effects of creep and shrinkage of the concrete
core on the time-dependent structural behaviour of CFST arches is much needed.

Investigations on the visco-elastic effects of creep and shrinkage of the concrete
core have been focused on straight CFST members. Uy (2001) studied the long-
term effects in short concrete-filled steel box columns under sustained loading,
while Han, Yang, and Liu (2004) investigated the behaviour of concrete-filled
steel tubular columns with rectangular section under long-term loading. It has
been shown that the short-term structural behaviour of CFST arches is quite dif-
ferent from that of straight CFST members [Pi, Liu, Bradford, and Zhang (2012)].
Hence, it is anticipated the long-term behaviour of CFST arches defers from that
of straight CFST members. When a CFST arch is subjected to a sustained trans-
verse load, the load will produce axial compressive and bending actions in the arch
and so the creep and shrinkage behaviour of the arch is expected to be much com-
plicated than that of straight CFST members. For example, although a CFST arch
does not buckle in short term when the applied load is lower than the corresponding
buckling load, it may buckle in the long-term under the sustained load because the
visco-elastic effects of creep and shrinkage of the concrete core changes its time-
dependent equilibrium configuration, which may attain the buckling configuration
of the arch [Bradford, Pi, and Qu (2011)] when the time is sufficiently long. Hence,
investigation of the time-dependent behaviour of CFST arches is desirable. How-
ever, in the open literature, studies of the time-dependent structural behaviour and
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buckling of shallow CFST arches due to the creep and shrinkage of the concrete
core seem to be scarce. Bradford, Pi, and Qu (2011) studied the time-dependent
in-plane behaviour and buckling of concrete-filled steel tubular arches by using lin-
ear and eigenvalue analysis, while Pi, Bradford, and Qu (2011) investigated the
long-term non-linear behaviour and buckling of shallow concrete-filled steel tubu-
lar arches under a sustained uniform radial load.

In the construction practice, many CFST arches have rise-to-span ratios in the range
from 1/10 to 1/4 and so they should be considered as shallow arches [Pi, Liu, Brad-
ford, and Zhang (2012)]. Hence, investigation of the time-dependent behaviour of
shallow CFST arches is particularly important. It has been shown that the struc-
tural behaviour of shallow arches is quite non-linear and the non-linear relationship
between the external load and the internal non-uniform bending and axial compres-
sive actions is very much different under different loading cases [Pi, Bradford, and
Uy (2002), Pi, Bradford, and Tin-Loi (2007), Pi and Bradford (2009)]. When an
arch is subjected to a central concentrate load, the bending action is relatively high
and compressive action is relatively low. It is not known how these differences
influence the non-linear time-dependent behaviour and buckling of shallow CFST
arches under a sustained central concentrated load, and whether or not the linear
analysis that is currently used for the time-dependent analysis of straight CFST
members can correctly predict the time-dependent deformations of shallow CFST
arches. It is also not known how the creep of the concrete core under the sustained
central concentrated load induces the time-dependent buckling of shallow CFST
arches.

This paper, therefore, aims to investigate the time-dependent non-linear behaviour
and buckling of shallow CFST arches under a central concentrated load, to de-
rive analytical solutions for their time-dependent non-linear deformations, internal
forces and buckling, and to determine their structural life time prior to the buckling.

To investigate the effects of the creep and shrinkage of concrete core, it is important
to use an efficient and accurate method to describe the the creep and shrinkage of
concrete. It is known that a number of methods have been proposed and used for
the the creep and shrinkage of the concrete [Bazant and Cedolin (2003), Abdul-
razeg, Noorzaei, Khanehzaei, Jaafar, and Mohammed (2010), Ferretti and Di Leo
(2008)]. Among these methods, the age-adjusted effective modulus method recom-
mended by ACI Committee-209 and Australia design code for the concrete struc-
tures AS3600 are commonly considered to be efficient and accurate in evaluating
the time-dependent behaviour of the concrete and it could conveniently be incor-
porated into the structural analysis [Gilbert and Ranzi (2011); Bazant and Cedolin
(2003); Wang, Bradford, and Gilbert (2005); Bazant (1972)]. Algebraic formulas
used in this method can be effective and practicable in modeling creep and shrink-



34 Copyright © 2013 Tech Science Press CMES, vol.95, no.1, pp.31-58, 2013

age of concrete core, so the age-adjusted effective modulus method is used in this
investigation.

2 Time-dependent linear elastic analysis

Before dealing with the non-linear analysis, the time-dependent linear elastic analy-
sis is herein conducted for the subsequent comparisons. The following assumptions
need to be adopted for both the linear and non-linear analysis: (1) deformations of
CFST arch are elastic and satisfy the Euler-Bernoulli hypothesis, i.e. the cross-
section remains plane and perpendicular to the arch axis during deformation; (2)
the dimensions of the cross-section are much smaller than the length and radius
of the arch so that the arches are sufficiently slender; and (3) the cohesion and
adhesion of two different material components are fully bonded.

For the linear analysis, the strain of an arbitrary point of the cross-section can be
expressed as

ε = w̃′− ṽ− y(ṽ′′+ w̃′)
R

, (1)

where ṽ = v/R and w̃ = w/R, v and w are the radial and axial displacements in the
directions of the axes oy and os, y locates the point in the principal axis oy and
while θ sweeps from the left to right in the angular coordinate, and ( )′ and ( )′′

denote d( )/dθ and d2( )/dθ 2.

According to the third assumption, the deformations of each component should be
compatible with each other, so their membrane strains and also the strains at the
interface are identical. However, due to different Young’s moduli and the effects of
creep and shrinkage in concrete core, the stress σs in the steel tube and the stress
σc in the concrete core are different and they are given by

σs = Esε and σc = Eec(ε + εsh) (2)

where Es is Young’s modulus of steel and Eec is the age-adjusted effective modulus
of concrete core defined as [Gilbert and Ranzi (2011); Bazant (1972)]

Eec(t, t0) =
Ec

1+χ(t, t0)φ(t, t0)
, (3)

in which φ(t, t0) is the creep coefficient and χ(t, t0) is the ageing coefficient and
they are given by [Gilbert and Ranzi (2011); Branson (1977)]

φ(t, t0) = [
(t− t0)0.6

10+(t− t0)0.6 ]φu and χ(t, t0) = 1− (1−χ∗)(t− t0)
20+(t− t0)

(4)
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respectively, where φu is the final creep coefficient (the value of φ(t, t0) when t→∞)
and given by

φu = 1.25t−0.118
0 φ∞,7 , χ

∗ =
k1t0

k2 + t0
,

k1 = 0.78+0.4e−1.33φ∞,7 , k2 = 0.16+0.8e−1.33φ∞,7 , (5)

and εsh is the shrinkage strain of the concrete and can be expressed by ACI Committee-
209 and Australian design code for concrete structures AS3600 as

εsh = (
t

t +d
)ε∗sh, (6)

in which t is the time in days. Because of the confinement of the steel tube, egress
of the moisture in the concrete core is prevented and d = 35 days for moist curing
can be used for the concrete core of CFST members. ε∗sh is the final shrinkage strain
that is the value of εsh when t→ ∞.

The empirical values for the final shrinkage strain ε∗sh and the final creep coefficient
φu of CFST columns were proposed from experimental studies [Zhong (1994); Ter-
rey, Bradford, and Gilbert (1994); Uy (2001); Han, Yang, and Liu (2004)]. How-
ever, to some extent, these experimental data cannot be used directly, but they can
be used to derive the empirical values for the final shrinkage strain and the final
creep coefficient through a time-dependent analysis. For example, the empirical
value of the final shrinkage strain ε∗sh = 340×10−6 (the value when t→∞) and the
final creep coefficient φu = 2.29 can be derived from Uy (2001) and these values
are used in this investigation.

The differential equations of the time-dependent equilibrium for the CFST arch
under a central concentrated load can be derived from the virtual work principle,
which can be stated as that

δW =
∫

Vs

σsδε dV +
∫

Vc

σcδε dV −
∫

Θ

−Θ

QR ·Dirac(θ)δ ṽ dθ = 0 (7)

holds for all arbitrary variations of the admissible deformations δ ṽ and δ w̃, where
Vs and Vc are the volume of the steel tube and concrete core respectively, δ ( )
denotes the Lagrange operator of simultaneous variations, and Dirac(θ ) is the Dirac
delta function defined by

Dirac(θ) =
{

+∞, θ = 0
0, θ 6= 0

and
∫

∞

−∞

Dirac(θ)dθ = 1, (8)

and it has the property∫
∞

−∞

Dirac(θ) f (θ)dθ = f (0). (9)
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By substituting Eqs. (1) and (2), the statement of the principle of virtual work given
by Eq. (7) becomes

δW =
∫

Θ

−Θ

{[−NR(δ w̃′−δ ṽ)−M(δ ṽ′′+δ w̃′)]−QR ·Dirac(θ)δ ṽ} dθ = 0, (10)

where the axial compressive force N is given by

N =−
∫

As

σs dA −
∫

Ac

σc dA = − (AsEs +AcEec)(w̃′− ṽ) − AcEecεsh (11)

and the bending moment M is given by

M =
∫

As

σsy dA +
∫

Ac

σcy dA = − (EsIs +EecIc)
ṽ′′+ w̃′

R
, (12)

where Ac and As, and Ic and Is, are the area and second moment of area of the
concrete core and steel tube respectively.

Integrating Eq. (10) by parts leads to the differential equations of equilibrium as

r2
e(ṽ

iv + w̃′′′)−R2(w̃′− ṽ+
AcEecεsh

AsEs +AcEec
)− QR2 ·Dirac(θ)

AsEs +AcEec
= 0 (13)

in the radial direction, and

r2
e(ṽ
′′′+ w̃′′)+R2(w̃′′− ṽ′) = 0 (14)

in the axial direction; and leads to the static boundary conditions for pin-ended
arches as

ṽ′′+ w̃′ = 0 at θ =±Θ , (15)

where the time-dependent radius of gyration of the effective cross-section re about
its major principal axis is defined by

re =

√
EsIs +EecIc

AsEs +AcEec
(16)

The essential kinematic boundary conditions are

ṽ = 0 and w̃ = 0 at θ =±Θ (17)

for pin-ended arches, and

ṽ = 0, ṽ′ = 0 and w̃ = 0 at θ =±Θ (18)
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for fixed arches.

The time-dependent radial and axial displacements ṽ and w̃ for pin-ended arches
can then be obtained by solving Eqs. (13) and (14) simultaneously and using the
boundary conditions given by Eqs. (15) and (17) as

ṽ =Q{(D1 +D4)cosθ +D2θ sinθ −D3 +
H(θ)(r2

e +R2)

4(EsIs +EecIc)
(sinθ −θ cosθ)}

+
AcEecεshΓ1(θ)

(AsEs +AcEec)ΦP
, (19)

and

w̃ =Q{D4 sinθ −D2θ cosθ −D3θ +
H(θ)[2R2(1− cosθ)− (R2 + r2

e)θ sinθ ]

4(EsIs +EecIc)
}

+
AcEecεshΓ2(θ)

(AsEs +AcEec)ΦP
, (20)

with

Γ1(θ) =(cosθ − cosΘ)[(R2− r2
e)sinΘ −2R2

Θ cosΘ ]

+ (R2 + r2
e)(Θ −Θ cosθ cosΘ −θ sinθ sinΘ)

and

Γ2(θ) = (R2 + r2
e)(θ cosθ sinΘ −Θ cosΘ sinθ)+2R2 cosΘ(θ sinΘ −Θ sinθ),

where the step function H(θ) is defined as

H(θ) =

{
−1 when θ < 0
1 when θ ≥ 0

, (21)

and the coefficients D1, D2, D3 and D4 are given by

D1 =
(r2

e −R2)Ξ1

4(EsIs +EecIc)ΦP
, D2 =

(R2 + r2
e)Ξ1

4(EsIs +EecIc)ΦP
, (22)

D3 =
R2[2R2 cosΘ(cosΘ −1)+(R2 + r2

e)Θ sinΘ ]

2(EsIs +EecIc)ΦP
, (23)

and

D4 =
(R2 + r2

e)[Θ
2(3R2 + r2

e)−2R2Θ sinΘ ]

4(EsIs +EecIc)ΦP

+
2R2 cosΘ [(3R2− r2

e)(1− cosΘ)−2R2Θ sinΘ ]

4(EsIs +EecIc)ΦP
, (24)
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with the time-dependent parameters Ξ1 and ΦP being given by

Ξ1 = [2R2 cosΘ(1− cosΘ −Θ sinΘ)+(R2− r2
e)sin2

Θ ] (25)

and

ΦP = R2(Θ −3cosΘ sinΘ +2Θ cos2
Θ)+ r2

e(Θ + cosΘ sinΘ). (26)

The radial and axial displacements for fixed arches can be obtained in the same
way by considering the boundary condition Eq. (18) as

ṽ =Q{(D1 +D4)cosθ +D2θ sinθ +D3 +
H(θ)(r2

e +R2)

4(EsIs +EecIc)
(sinθ −θ cosθ)}

+
AcEecεshΘ(R2 + r2

e)Γ3(θ)

(AsEs +AcEec)ΦF
, (27)

and

w̃ =Q{D4 sinθ −D2θ cosθ +D3θ +
H(θ)[2R2(1− cosθ)− (R2 + r2

e)θ sinθ ]

4(EsIs +EecIc)
}

+
AcEecεshΓ4(θ)

(AsEs +AcEec)ΦF
, (28)

with

Γ3(θ) =Θ −Θ cosθ cosΘ − cosθ sinΘ + cosΘ sinΘ −θ sinθ sinΘ

and

Γ4(θ) =Θ(R2 + r2
e)(θ sinΘ cosθ −Θ sinθ cosΘ)+2R2 sinΘ(θ sinΘ −Θ sinθ),

where the coefficients D1, D2, D3 and D4 are given by

D1 =
(r2

e −R2)Ξ2

4(EsIs +EecIc)ΦF
, D2 =

(R2 + r2
e)Ξ2

4(EsIs +EecIc)ΦF
, (29)

D3 =
R2(R2 + r2

e)(Θ − sinΘ)(cosΘ −1)
2(EsIs +EecIc)ΦF

, (30)

and

D4 =
2R2(cosΘ −1)[Θ(R2 + r2

e)(cosΘ +2)−2R2 sinΘ ]

4(EsIs +EecIc)ΦF
+

Θ 3(R2 + r2
e)

2

4(EsIs +EecIc)ΦF

(31)
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with the time-dependent parameters Ξ2 and ΦF being given by with

Ξ2 = (cosΘ −1)[Θ(R2 + r2
e)(cosΘ +1)−2R2 sin2

Θ ] (32)

and

ΦF =Θ(R2 + r2
e)(cosΘ sinΘ +Θ)−2R2 sin2

Θ . (33)

The time-dependent axial compressive force N and bending moment M can then be
obtained as

N =− (AsEs +AcEec)(w̃′− ṽ)−AcEecεsh

=QcosθΞ3 +
QH(θ)sinθ

2
− 2r2

e cosθ sinΘ

ΦP
AcEecεsh (34)

with

Ξ3 =
[2cosΘ(1−Θ sinΘ − cosΘ)R2 + sin2

Θ(R2− r2
e)]

2ΦP
,

and

M =−(EsIs +EecIc)
ṽ′′+ w̃′

R
= QRΞ4−NR− 2Rr2

e sinΘ cosΘ

ΦP
AcEecεsh (35)

with

Ξ4 =
[2cosΘ(cosΘ −1)R2 +Θ sinΘ(R2 + r2

e)]

2ΦP

for pin-ended arches; and

N =− (AsEs +AcEec)(w̃′− ṽ)−AcEecεsh

=QcosθΞ5 +
QH(θ)sinθ

2
− 2r2

eΘ sinΘ cosθ

ΦF
AcEecεsh (36)

with

Ξ5 =
(cosΘ −1)[(R2 + r2

e)Θ(1+ cosΘ)−2R2 sinΘ ]

2ΦF
,

and

M =−(EsIs +EecIc)
ṽ′′+ w̃′

R
= QRΞ6−NR− 2Rr2

e sin2
Θ

ΦF
AcEecεsh (37)

with

Ξ6 =
(R2 + r2

e)(cosΘ −1)(sinΘ −Θ)

2ΦF

for fixed arches.
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3 Time-dependent non-linear elastic analysis

To account for the non-linearity resulted from creep and shrinkage of the concrete
core, the derivation of the differential equations of equilibrium for shallow CFST
arches needs to consider non-linear longitudinal normal strain-displacement rela-
tionship and the non-linear longitudinal normal strain ε of an arbitrary point in the
cross-section of shallow CFST arches can then be expressed as [Pi, Bradford, and
Uy (2002); Pi and Trahair (1998)]

ε = w̃′− ṽ+
1
2
(ṽ′)2− yṽ′′

R
. (38)

For shallow arches, the effects of the axial deformations on the radial deformations
are so small that they can be ignored in the analysis [Pi, Bradford, and Uy (2002);
Pi and Trahair (1998); Pi, Bradford, Tin-Loi, and Gilbert (2007)].

Substituting Eqs. (2) and (38) into the statement of the principle of virtual work
given by Eq. (7) results in the new form as

δW =
∫

Θ

−Θ

{[−NR(δ w̃′−δ ṽ+ ṽ′δ ṽ′)−Mδ ṽ′′]−QR ·Dirac(θ)δ ṽ} dθ = 0, (39)

where the axial compressive force N is given by

N =−
∫

As

σsdA−
∫

Ac

σcdA =−(AsEs +AcEec)[w̃′− ṽ+
1
2
(ṽ′)2]−AcEecεsh, (40)

and the bending moment M is given by

M =
∫

As

σsydA+
∫

Ac

σcydA =−(EsIs +EecIc)
ṽ′′

R
. (41)

Integrating Eq. (39) by parts leads to the differential equations of equilibrium for
the analysis of the time-dependent behaviour of CFST arches as

N′ = 0 (42)

in the axial direction, and

−M′′+NRṽ′′+NR−QR ·Dirac(θ) = 0 (43)

in the radial direction; and leads to the static boundary conditions for pin-ended
arches as

M = 0 at θ =±Θ . (44)
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From Eq. (42), the axial compressive force N is constant along the length of arch.
Substituting the constant axial compressive force N and the expression for M given
by Eq. (41) into Eq. (43) leads to

ṽiv

µ2
e
+ ṽ′′ =−1+

QR2 ·Dirac(θ)
µ2

e (EsIs +EecIc)
, (45)

where µe is a time-dependent dimensionless axial force parameter defined by

µ
2
e =

NR2

EsIs +EecIc
(46)

By using the kinematic boundary conditions that ṽ = ṽ′′ = 0 at θ = ± Θ for pin-
ended arches, and that ṽ = ṽ′ = 0 at θ =±Θ for fixed arches. The solutions of the
radial displacement can be obtained from Eq. (45) as

ṽ =
1

µ2
e

{
1− cos µeθ

cosβe
+

1
2
[β 2

e − (µeθ)2]

}
+

Q̄
µ2

e βe
{tanβe cos µeθ −βe−H(θ)(sin µeθ −µeθ)} (47)

for pin-ended arches; and

ṽ =
1

µ2
e

{
βe(cosβe− cos µeθ)

sinβe
+

1
2
[β 2

e − (µeθ)2]

}
+

Q̄
µ2

e βe

{
tan(

βe

2
)(cos µeθ +1)−βe−H(θ)(sin µeθ −µeθ)

}
(48)

for fixed arches, where βe = µeΘ , and Q̄ is the dimensionless load defined by

Q̄ =
QR2Θ

2(EecIc +EsIs)
=

π2Q
2ΘNP

=
(1.4303π)2Q

2ΘNF
, (49)

in which NP and NF are the second mode buckling load of a pin-ended and fixed
CFST column about its major axis under uniform axial compression, respectively
and they are given by

NP =
π2(EsIs +EecIc)

(S/2)2 and NF =
(1.4303π)2(EsIs +EecIc)

(S/2)2 . (50)

It can be seen from Eqs. (47) and (48) that the radial displacement ṽ is a non-
linear function of the dimensionless time-dependent axial force parameter µe and
the sustained concentrated load Q̄.
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4 Time-dependent non-linear equilibrium equation between internal and ex-
ternal forces

The constant axial force obtained from Eq. (42) should be equal to the average
value of N over the entire arch calculated from Eq. (40) as

N =
1

2Θ

∫
Θ

−Θ

−{(AsEs +AcEec)[w̃′− ṽ+
1
2
(ṽ′)2]−AcEecεsh}dθ . (51)

Substituting Eqs. (47) and (48) into Eq. (51) with the boundary condition that w̃= 0
at θ = ± Θ leads to a non-linear equation of equilibrium between the axial force
parameter βe and the dimensionless sustained concentrated load Q̄ as

A1Q̄2 +B1Q̄+C1 = 0, (52)

where the coefficients A1, B1, and C1 are given by

A1 =
1

4β 4
e

(
3−3

tanβe

βe
+ tan2

βe

)
, B1 =

1
β 4

e

(
1

cosβe
−1− βe tanβe

2cosβe

)
, (53)

and

C1 =
β 2

e

λ 2
e
+

1
4β 2

e

(
sec2

βe−
tanβe

βe

)
− 1

6
+

AcEecεsh

Θ 2(AsEs +AcEec)
(54)

for pin-ended arches; and

A1 =
1

2β 4
e

[
1+

βe−3sinβe

βe(1+ cosβe)

]
, B1 =

sinβe−βe

2β 3
e (1+ cosβe)

, (55)

and

C1 =
β 2

e

λ 2
e
+

cotβe(βe cotβe−1)
4βe

+
1
12

+
AcEecεsh

Θ 2(AsEs +AcEec)
(56)

for fixed arches, in which λe is the time-dependent modified slenderness of a CFST
arch and is defined by

λe =
Θ

2
S
re
, (57)

which is the product of a quarter of included angle Θ/2 with the slenderness S/re.

The time-dependent non-linear radial displacements given by Eqs. (47) and (48)
are compared with their linear counterparts given by Eqs. (19) and (27) in Figs.
2a and 2b for pin-ended and fixed CFST arches, respectively, where the Young’s
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Figure 2: Comparison of non-linear and linear time-dependent central radial dis-
placements (a. pin-ended arch and b. fixed arch).

moduli of the steel and concrete were assumed as Es = 200 Gpa and Ec = 30 Gpa,
a steel circular tube with outer and inner radii: r0 = 250 mm and ri = 240 mm was
used, the span of the arch is L = 15 m, vc,15 is the central radial displacement at
the first loading time t0 = 15 days, and the final shrinkage strain εsh = 340×10−6

and the final creep coefficient φu = 2.29 were adopted. The constant sustained
concentrated load was assumed as Q = 0.1NP and 0.13NF for pin-ended and fixed
CFST arches respectively.

It can be seen from Figs. 2a and 2b that, as time t increases, creep and shrinkage
effects result in significant increases of the radial displacements of CFST arches.
It can also be seen that the increases of the time-dependent radial displacements
predicted by the non-linear analysis are much greater than those predicted by the
linear analysis. Hence, the linear analysis is not adequate in predicting the time-
dependent radial displacements.

The non-linear time-dependent axial compressive force N is constant along the arch
length and can be obtained from Eq. (52) as

N =−(AsEs +AcEec)Θ
2
{

1
4β 2

e

(
sec2

βe−
tanβe

βe

)
− 1

6
+

AcEecεsh

Θ 2(AsEs +AcEec)

+A1Q̄2 +B1Q̄
}

(58)

for pin-ended arches with A1 and B1 being given by Eq. (53); and

N =−(AsEs +AcEec)Θ
2
{

cotβe(βe cotβe−1)
4βe

+
1

12
+

AcEecεsh

Θ 2(AsEs +AcEec)

+A1Q̄2 +B1Q̄
}

(59)
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Figure 3: Comparison of non-linear and linear time-dependent axial compressive
forces (a. pin-ended arch and b. fixed arch).
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Figure 4: Comparison of non-linear and linear central moments (a. pin-ended arch
and b. fixed arch).

for fixed arches with with A1 and B1 being given by Eq. (55).

The bending moment in the CFST arch can be obtained by substituting Eqs. (47)
and (48) into Eq. (41) as

M =
EsIs +EecIc

R

{(
cos µeθ

cosβe
−1
)
− Q̄

βe
[tanβe cos µeθ −H(θ)sin µeθ ]

}
(60)

for pin-ended arches; and

M =
EsIs +EecIc

R

{
βe

cos µeθ

sinβe
−1− Q̄

βe

[
tan

βe

2
cos µeθ −H(θ)sin µeθ

]}
(61)

for fixed arches.
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The time-dependent non-linear axial force and central bending moment are com-
pared with their linear counterparts in Figs. 3 and 4, where Nc,15 and Mc,15 are the
central axial compressive force and central moment at time t0 = 15 days. It can be
seen that the non-linear analysis predicts about 7.2% and 5% increase of the time-
dependent axial compressive forces N of the pin-ended and fixed CFST arch after
400 days respectively while the linear analysis predicts slight decreases of the axial
force. It can also be seen that the increase of time-dependent bending moment M
evaluated by the non-linear analysis is much higher than that of the linear analysis.
This indicates that the time-dependent linear analysis underestimates the increases
of the internal forces and may lead to an unsafe design of CFST arches.

5 Time-dependent limit point buckling

From viewpoint of mathematics, the limit points of a CFST arch are the local ex-
trema of the non-linear equilibrium path, so that differentiating Eq. (52) with re-
spect to βe leads to the equilibrium equation between the dimensionless load Q̄ and
the axial force parameter βe at the limit points as

A2Q̄2 +B2Q̄+C2 = 0 (62)

where the coefficients A2, B2 and C2 are given by

A2 =
1

8β 4
e

[
(7−2βe tanβe)sec2

βe−
15tanβe

βe
+8
]
, (63)

B2 =
1

4β 4
e

[
(8−5βe tanβe)secβe +β

2
e (1+ sin2

βe)sec3
βe−8

]
, (64)

C2 =
1

8β 2
e

[
(3−2βe tanβe)sec2

βe−3
tanβe

βe

]
− β 2

e

λ 2 (65)

for pin-ended arches; and

A2 = 2A1 +
3(βe− sinβe)

4β 5
e (1+ cosβe)

− sinβe

4β 3
e (1+ cosβe)2 , (66)

B2 =
3B1

2
+

sinβe

4βe(1+ cosβe)2 , (67)

C2 =
βe cosβe

4sin3
βe
− 1

8sin2
βe
− cotβe

8βe
− β 2

e

λ 2
e

(68)

for fixed arches.
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The limit point buckling loads Q̄ and the corresponding axial force parameters βe

for a given CFST arch at a specified time t can then be obtained by solving Eqs. (52)
and (62) simultaneously. The corresponding radial displacement v can also be ob-
tained by substituting the obtained load Q̄ and axial force parameter βe into Eq. (47)
or (48).
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Figure 5: Non-linear time-dependent central displacements for limit point buckling
of CFST arches (a. pin-ended arch and b. fixed arch).
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Figure 6: Non-linear time-dependent axial compressive forces for limit point buck-
ling of CFST arches (a. pin-ended arch and b. fixed arch).

The non-linear equilibrium paths at different times are shown in Fig. 5a for a pin-
ended CFST arch and in Fig. 5b for a fixed CFST arch as variations of the dimen-
sionless central radial displacement vc/ f with the dimensionless radial load Q/Ncr,
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and also shown in Figs. 6a and 6b as variations of the dimensionless axial compres-
sive force N/Ncr with the dimensionless load Q/Ncr, where Ncr is the second buck-
ling load of the corresponding CFST columns (Ncr = NP for pin-ended arches and
Ncr = NF for fixed arches given by Eq. (50)). It can be seen that when time t0 = 15
days and t = 30 days, the equilibrium of both arches are on the stable branches and
the limit buckling loads of both pin-ended and fixed CFST arches are much higher
than the sustained load Qsus = 0.08NP for the pin-ended arch and Qsus = 0.138NF

for the fixed arch. Hence, the arches cannot buckle under the sustained load Qsus at
time t0 = 15 days and t = 30 days. However, when time t = 100 days for pin-ended
arch and t = 150 days for the fixed arch, their limit point buckling loads decrease
and are equal to the sustained loads Qsus. At the same time, owing to creep of the
concrete core, the crown of the arch displaces from the position a at time t0 = 15
days to the position c at time t = 100 days for the pin-ended arch and at time
t = 150 days for the fixed arch as shown by the solid coarse line. In these cases,
the critical equilibrium at the upper limit points is attained and the CFST arches
may fail in a limit point buckling mode. Because in practice, sustained loads do
not change during buckling and so deformations of CFST arches cannot follow the
non-linear equilibrium path (dashed lines), but will suddenly snap-through from
the limit point to an equilibrium point r on the remote equilibrium branch as shown
by the horizontal dotted-dashed line.
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Figure 7: Prebuckling life time for limit point buckling of CFST arches (a. pin-
ended arch and b. fixed arch).

The prebuckling structural life time of CFST arches for the time-dependent limit
point buckling of CFST arches can be determined by using Eqs. (52) and (62). A
typical structural life time prior to limit point buckling is shown in Fig. 7, which
demonstrate that the prebuckling structural life time t increases as the dimension-
less sustained load Q/Ncr decreases. When the sustained load is sufficiently low,



48 Copyright © 2013 Tech Science Press CMES, vol.95, no.1, pp.31-58, 2013

the limit point buckling does not occur, whereas for a higher sustained load, the
prebuckling structural life is rather short. In the first 130 days of structural life,
the decrease of the sustained load for the limit point buckling is quite rapid but be-
comes slow in the following days. Under the same sustained load, the prebuckling
structural life time increases with the increase of the area ratio of the steel tube to
the concrete core (As/Ac).

6 Time-dependent bifurcation buckling

It has been shown [Bradford, Uy, and Pi (2002); Pi, Bradford, and Uy (2002); Pi,
Bradford, and Qu (2011)] that when µeΘ = π or µeΘ ≈ 1.4303π , a circular arch
may buckle in an antisymmetric bifurcation mode. Substituting these into Eq. (52)
leads to the equation for the time-dependent antisymmetric bifurcation buckling
load Qb as

3Q̄b
2−8Q̄b +π

2− 2π4

3
+

4π6

λ 2
e

+
4π4AcEecεsh

Θ 2(AsEs +AcEec)
= 0 (69)

for pin-ended arches; and

6.22Q̄b
2−13.98× (1.4303π)Q̄b +

(1.4303π)4

3
+

4× (1.4303π)6

λ 2
e

+
4π4AcEecεsh

Θ 2(AsEs +AcEec)
= 0 (70)

for fixed arches.

Typical time-dependent non-linear bifurcation buckling behaviour obtained from
Eq. (69) is displayed in Figs. 8a and 8b for a pin-ended CFST arch. The fine solid
line represents the short-term equilibrium path up to a sustained load Qsus/Ncr =
0.184 for the pin-ended arch while the coarse solid line denotes the time-dependent
equilibrium path of the arch due to creep and shrinkage of its concrete core under
the sustained load. The dashed lines describe the non-linear equilibrium path given
by Eqs. (47) and (52) for different times. The corresponding limit point loads are
marked as hollow small circles while the bifurcation buckling loads obtained from
Eqs. (47) and (69) are marked as hollow small squares.

It can be seen from Figs. 8a and 8b that the bifurcation buckling load of the pin-
ended CFST arch decreases with an increase of time. At time t = 15 days and t = 30
days, the sustained load Qsus/Ncr is lower than the bifurcation buckling load and so
the arch is in a stable equilibrium state. The radial displacement increases from the
position a at the time t0 = 15 days to the position c at time t = 200 days, at which
time the sustained load equals the upper bifurcation buckling load. Hence, the
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Figure 8: Non-linear time-dependent equilibrium for bifurcation buckling of CFST
pin-ended arches.
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Figure 9: Non-linear time-dependent equilibrium for bifurcation buckling of CFST
fixed arches.

arch may fail in a time-dependent bifurcation buckling mode at time t = 200 days.
Because the upper limit point buckling load is higher than the upper bifurcation
buckling load, the time-dependent bifurcation buckling will occur first. Similar
to the counterparts of limit point buckling, the sustained load remains constant
after bifurcation buckling, so the CFST arch cannot follow the secondary post-
bifurcation equilibrium path shown by the fine dotted-dashed lines and the lower
bifurcation point cannot be reached. The equilibrium configuration of the arch will
suddenly jump from the bifurcation point to a remote stable equilibrium point.

Although CFST pin-ended arches can buckle in a time-dependent bifurcation mode,
CFST fixed arches cannot buckle in a time-dependent bifurcation mode as shown
in Figs. 9a and 9b. It can be seen from Figs. 9a and 9b that the bifurcation points
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are located on the descending unstable equilibrium branches after the upper limit
points. Hence, the bifurcation point cannot be reached during the time-dependent
deformation. However, the time-dependent limit point can be reached if the sus-
tained load is sufficiently high (Qsus/Ncr = 0.305 for the arch in Figs. 9a and 9b)
and the time is sufficiently long (t = 200 days). It can be concluded that CFST fixed
arches under a sustained central concentrated load can buckle in a time-dependent
limit point instability mode, but not in a time-dependent bifurcation mode.

The structural life time of CFST pin-ended arches prior to time-dependent bifurca-
tion buckling can be obtained from Eq. (69) as shown in Fig. 10. It can be seen that
in the first 100 days of structural life time, the sustained load for the time-dependent
bifurcation buckling decreases rapidly but becomes slow in the following days, and
that the area ratio of the steel tube to the core concrete influences the creep buck-
ling loads significantly. The dimensionless creep bucking load decreases with a
decrease of the ratio As/Ac.
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Figure 10: Prebuckling life for bifurcation buckling of pin-ended CFST arches.

7 Modified slenderness for time-dependent buckling mode switches

Because a CFST pin-ended arch may buckle in an time-dependent limit point in-
stability mode or in an time-dependent bifurcation mode, for a given CFST arch,
it needs to determine whether the limit point instability mode or the bifurcation
mode is dominant. It has been shown [Pi, Bradford, and Qu (2011)] that the mod-
ified slenderness of an arch plays a key role in determining the dominant buckling
mode. The modified slenderness λe,sb defining the switch between the limit point
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and bifurcation buckling modes for pin-ended arches can be obtained by solving
Eqs. (52) and (62) simultaneously when Qs = Qb and µeΘ = π , which leads to
λe,sb ≈ 9.8. For pin-ended CFST arches with λe ≤ λe,sb at time t, limit point buck-
ling is the dominant buckling mode. When λe ≥ λe,sb at time t, bifurcation is the
dominant buckling mode because the corresponding limit point buckling load is
higher. However, for fixed CFST arches, the limit point buckling mode governs
their time-dependent buckling under a central concentrated load [Bradford, Uy,
and Pi (2002)].

It has also been shown [Bradford, Uy, and Pi (2002)] that very shallow CFST arches
do not have typical buckling phenomena. The modified slenderness of a CFST arch
can also be used to define the switch between arches with time-dependent buckling
phenomena and arches without time-dependent buckling phenomena. To determine
the time-dependent arch modified slenderness λe,ns for the switch, the dimension-
less central radial displacement corresponding to the lowest possible buckling load
can be used, which are given by

lim
µeΘ→π/2

ṽc =
S2

π2R2 (1−
2
π
+

π2

8
− π

2
±

√
4

π2 +
8
π
+

π2

6
−3− π4

4λ 2
e
) (71)

for pin-ended arches, and

lim
µeΘ→π

ṽc =
S2

π2R2 (1±

√
1− π2

48
− π4

λ 2
e
) (72)

for fixed arches.

The existence of real solutions of Eqs. (71) and (72) leads to the time-dependent
arch modified slenderness λe,ns for the switch between buckling and no buckling as
[Bradford, Uy, and Pi (2002)]

λe,ns = 3.91 and λe,ns = 11.07 (73)

for CFST pin-ended and fixed arches, respectively.

The typical relationship between the time-dependent arch modified slenderness
with time for a CFST pin-ended arch is illustrated in Fig. 11, which shows that
the modified slenderness λe of the CFST arch decreases as time increases and the
increase is rapid in the first 100 days after concrete core casting. Consequently, for
a CFST arch with a modified slenderness λe ≥ λe,sb at time t1, its modified slen-
derness may become lower than λe,sb (λe ≤ λe,sb) at the later time t2 > t1, which
indicates that the dominant buckling mode of the CFST arch is of bifurcation at
time t1 while its dominant buckling mode is of limit point instability.
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Figure 11: Variations of modified slenderness of a CFST arch with time.

8 Comparison with finite element results

8.1 Finite element model

The analytical solutions for the time-dependent structural behaviour of CFST arches
are herein compared with the finite element (FE) results of the commercial FE
package ANSYS. In the ANSYS FE computation, a CFST arch is modeled by the
beam188 element with a solid section for the concrete core and a tube section for
the steel tube as shown in Fig. 12. In a global cylindrical coordinate system, the FE
model has 161 nodes and 160 elements. It is known that ANSYS treats one element
with two different sections as two component elements bonded together. Hence,
320 component elements are generated by ANSYS. In the ANSYS computation,
the component elements between two nodes are treated to be bonded together as a
single element. The material properties of concrete and steel were assigned to the
solid section and to the tube section, respectively.

Although ANSYS provides 13 implicit creep equations for users to model creep be-
haviour of metal, there is no suitable model that is consistent with the age-adjusted
effective modulus method and that can be used directly to account for creep of the
concrete core. Hence, to account for the creep and shrinkage of the concrete core,
the user-programmable features (UPFs) of ANSYS was used to redefine the user-
defined creep law in the subroutine usercreep.F provided by ANSYS and to add the
time-dependent shrinkage strain in the subroutine, which will compute the time-
dependent creep and shrinkage strain at each time step. In the revised program, the
time domain is defined in days. For the time-dependent linear analysis of a CFST
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Figure 12: Section of finite element model in ANSYS.

arch under a sustain load, the sustain load is assigned and the time-dependent anal-
ysis is turned on, the effect of the creep and shrinkage is computed at each time
step. For the time-dependent non-linear analysis of a CFST arch under a sustained
load, for each time step, the incremental-iterative solutions based on the Newton-
Raphson approach and the arc-length method are carried out with load increments
until the sustained load is attained. In ANSYS, the load steps and convergence
criterion are automatically assigned when the non-linear analysis is turned on.

8.2 Comparison with finite element results for time-dependent displacements

The analytical solutions for the time-dependent linear and non-linear radial dis-
placement of CFST arches given by Eqs. (19) and (47) are compared with its FE
counterparts in Fig. 13 as variations of dimensionless central radial displacement
vc/ f with time t, where the outer and inner radii of the steel tube were r0 = 250
mm and ri = 240 mm, the span of the arch was L = 18 m, the rise-to-span ratio
was f/L = 1/30, and the arch was assumed to be pin-ended. In the computa-
tion, Young’s moduli of the steel and concrete were assumed as Es = 200 Gpa and
Ec = 30 Gpa, respectively, and the sustained concentrated load was assigned as
Q = 0.05NP. It can be seen from Fig. 13 that the analytical solutions almost coin-
cide with the FE results and that the time-dependent non-linear radial displacements
are indeed much larger than their linear counterparts.
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Figure 13: Comparison of analytical and FE solutions of time-dependent central
radial displacements.

8.3 Comparison with finite element results for time-dependent stresses

The time-dependent stresses in both the steel tube and the concrete core predicted
by linear analytical solution are compared with their FE counterparts in Fig. 14 for
a pin-ended CFST arch as variations of the stresses σs at the top of the steel tube
and σc at the top of the concrete with time t, where the outer and inner radii of the
circular steel tube were r0 = 250 mm and ri = 225 mm (or ri = 240 mm ), the span
of the arch was L = 15 m, and the rise-to-span ratio was f/L = 1/6. The constant
sustained concentrated load is assumed as Q = 0.07NP while the Young’s moduli
of the steel and concrete were assumed the same as the previous example.

Fig. 14 shows that the analytical solutions agree with the FE results very well and
that in the long-term, the creep and shrinkage of the concrete core cause an increase
of compressive stress in steel tube and a decrease of compressive stresses in con-
crete core. The increase of the compressive stresses in the steel tube with ri = 240
mm is much more that those with ri = 225 mm.

8.4 Comparison with finite element results for time-dependent non-linear buck-
ling

The FE model was also used for the time-dependent non-linear buckling analysis
of a pin-ended CFST arch. The steel tube of the arch cross-section was assumed
to have the outer and inner radii of r0 = 250 mm and ri = 240 mm. The span of
the arch was L = 11 m and the rise-to-span ratio was f/L = 1/24. A sustained
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Figure 14: Comparison of analytical and numerical solutions of time-dependent
stresses at top fibres of shallow pin-ended CFST arch crown.

radial concentrated load Q = 0.07NP was applied at the crown of the arch. The FE
results are compared with the analytical solutions obtained from Eqs. (47) and (52)
are shown in Fig. 15 as variations of the dimensionless central radial load Q̄ with
the dimensionless central displacement vc/ f , where the dimensionless load Q̄ was
calculated using Eq. (49).

The non-linear analysis was performed at the each time step from time t0 = 15 days
until the sustained load is attained. The equilibrium path under the sustained load
is shown by the red dashed line and the non-linear equilibrium paths at t0 = 15 days
and t = 100 days are shown in the green dashed lined in Fig. 15. The analytical
solutions for the non-linear equilibrium paths was also performed as shown by
the black solid line Fig. 15 and the analytical solution for equilibrium under the
sustained load is shown by the blue solid line. The sustained load was compared
with the possible buckling load at each time step. It was found that the limit point
buckling load at time t = 100 days is equal to the sustained load. Hence, although
the arch cannot buckle when the sustained load Q = 0.07NP is applied at time
t0 = 15 days, it may buckle in the long-term at time t = 100 days. Comparison of
the analytical solutions with the FE results shows that they agree with each other
for the time-dependent equilibrium under the sustained load, for the non-linear
equilibrium paths at each time step, and for the time-dependent limit point buckling
load.
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buckling behaviour of shallow pin-ended CFST arches.

9 Conclusions

This paper investigated the time-dependent linear and non-linear in-plane struc-
tural and buckling behaviour of shallow CFST arches subjected to a sustained
central concentrated radial load. Linear and non-linear analytical solutions for
the time-dependent displacements and internal actions and for the time-dependent
limit point and bifurcation buckling were derived. It has been found that creep and
shrinkage of concrete core have significant effects on the time-dependent non-linear
deformations, internal forces and buckling behaviour of shallow CFST arches.
Comparisons between the linear and non-linear analyses demonstrate that the lin-
ear analysis is not adequate for predicting the time-dependent structural behaviour
of shallow CFST arches. The linear predictions for the displacement and internal
actions are much smaller than the counterparts predicted by the non-linear analysis.

Due to the visco-elastic effects of creep and shrinkage of the concrete core, the
equilibrium state of a shallow CFST arch becomes time-dependent. The stable
equilibrium state of a CFST arch at an early time t1 under a sustained central radial
load may change to a critical equilibrium state when the time is sufficiently long
and the load is sufficiently large, and thus the arch may buckle at a later time t2.
The solutions for the possible structural life time of a shallow CFST arch prior to
buckling were also derived for assessing the influence of various parameters on
the time-dependent non-linear structural and buckling behaviour of shallow CFST
arches. The creep and shrinkage of the concrete core reduces the safety margins
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of the serviceability limit state and even the strength limit state of shallow CFST
arches.

The analytical solutions were compared with the FE results of ANSYS, which
shows that the agreement between them is very good.
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