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Modeling and Simulation of Non-Newtonian Fluid Mold
Filling Process with Phase Change

F. Wang1, J.L. Li1, B.X. Yang1 and N.A. Hill2

Abstract: A gas-liquid two-phase model for the simulation of a power-law fluid
mold filling process with the consideration of phase change is proposed, in which
the governing equations for the melt and air in the cavity, including the mass con-
servation, momentum conservation and energy conservation equations, are unified
into one system of equation. A revised Enthalpy method, which can be used for
both the melt and air in the mold cavity, is proposed to describe the phase change
during the mold filling. Finite volume method on non-staggered grid is used to
solve the system. The level set method is used to capture the interface evolution
during the mold filling process. The interface evolution and the distributions of
physical quantities such as velocity, pressure and temperature and so on are given.
The “frozen skin” layers under different temperature and velocities conditions are
discussed in detail. Numerical results show that increasing the temperatures of the
melt and cavity is a better way to get rid of the “frozen skin” layer than increasing
the injection velocity.

Keywords: Mold filling, non-isothermal, non-Newtonian flow, phase change,
Enthalpy method.

1 Introduction

In mold filling process, plastic material in the form of granules is melted until soft
enough to be injected under pressure to fill a mold. Some researchers have studied
the mold filling process numerically from Hele-Shaw model to Navier-Stokes equa-
tions without the consideration of the interface motion [Wang, Hieber, and Wang
(1986); Chiang, Hieber, and Wang (1991); Kabanemi, Vaillancourt, Wang, and Sal-
loum (1998); Smith, Tortorelli, and Tucker (1998); Hetu, Gao, Garcia-Rejon, and
Salloum (1998); Pichelin and Coupez (1998); Kim and Turng (2006); Zhou, Geng,
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and Li (2005); Chang and Yang (2001); Zhou and Turng (2007)]. Some papers
studying mold filling process coupled with interface tracking techniques or com-
puter aided design can be found [Khayat, Elsin, and Kim (2000); Holm and Lang-
tangen (1999); Luoma and Voller (2000); Soukane and Trochu (2006); Ayad and
Rigolot (2002); Geng, Li, and Zhou (2006); Kim, Park, and Lee (2003); Zhou, Yan,
and Zhang (2008); Au (2005); Khor, Ariff, Ani, Mujeebu, Abdullah, Abdullah, and
Joseph (2010); Yang, Ouyang, Liu, and Li (2010); Yang, Ouyang, Jiang, and Liu
(2010); Li, Ouyang, Li, Wu, and Yang (2011); Wang, Andres, Simacek, and Ad-
vani (2012)]. However, these papers studied the mold filling problem by ignoring
the temperature variation. As a matter of fact, the temperature on the side walls
of the mold cavity is much lower than that of the melt. As a result, near the mold
walls, the viscosity is higher due to the decreased temperature. The polymer tends
to solidify as the viscosity increases, which is known as phase change or “frozen
skin” layer. Meanwhile, great amount of heat, known as latent heat, will be released
at the moment that the melt begins to solidify. The latent heat will stop the melt
from solidifying. Since “frozen skin” layer is not desirable because it contributes
to the “molded in” strains in the molded article, the phase change and the temper-
ature variation should be studied carefully. However, to the knowledge of all the
authors, no such paper considering the phase change and latent heat in the mold
filling process has ever been published.

In this paper, a model for the simulation of a power-law fluid mold filling process
with the consideration of phase change is proposed. To avoid dealing with the com-
plex boundary conditions at the melt interface, we consider simultaneously both
the melt phase and the gas phase in the cavity as has been done by Yang, Ouyang,
Liu, and Li (2010). The governing equations for the melt and air in the cavity, in-
cluding the mass conservation, momentum conservation and energy conservation
equations, are unified into one system of equation. A finite volume method on non-
staggered grid is used to solve the system. The level set method is used to capture
the interface evolution during the mold filling process. In order to describe the
phase change during the mold filling process, a revised Enthalpy method, which
can be used for both the melt and air in the mold cavity, is proposed to describe
the phase change during the mold filling. The “frozen skin” layers under different
temperature and velocities conditions are discussed in detail.

2 Governing equations

2.1 Level set function and its reinitialization [Yang, Ouyang, Liu, and Li (2010)]

The basic idea of the level set method is to indicate the interface implicitly by a
level set function ϕ(x,y, t), which is defined by the algebraic distance between any
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point of the domain and the melt flow front. The melt flow front is thus described
by the zero level sets of the level set function ϕ . In this paper, the level set equation
is chosen as the follows [Osher and Fedkiw (2001)].

∂ϕ

∂ t
+u ·∇ϕ = 0 (1)

where u is the velocity vector.

Moreover, a reinitialization algorithm must be applied to keep ϕ as the algebraic
distance to the interface. The algorithm is based on the iterative solution of the
following initial value problem [Osher and Fedkiw (2001)]{

∂ϕ

∂ tr
= signϕ0(1−|∇ϕ|)

ϕ(x,0) = ϕ0(x)
(2)

where tr is a pseudo time and sign(ϕ0) is the sign function of which is defined as

sign(ϕ0) =
ϕ0√

ϕ2
0 +[min(∆x,∆y)]2

(3)

where ∆x and ∆y are the grid widths along the x and y direction respectively.
[min(∆x,∆y)]2 is used here to avoid denominator being dividing by zero.

Eq. (2)does not change the position of the zero level set of ϕ . Unfortunately in
numerical computation this may not be true [Sussman, Fatemi, Smereka, and Osher
(1998)]. We use the method presented by Sussman, Fatemi, Smereka, and Osher
(1998) to improve the accuracy of solving the reinitialization equation. A local
correction item, θδε(ϕ)|∆ϕ|, is added to the reinitialization equation (2), thus the
revised equation is

∂ϕ

∂ tr
+ sign(ϕ0)(|∆ϕ|−1) = θδε(ϕ)|∆ϕ| (4)

where θ is a local correction coefficient and the smoothed Dirac delta function
δε(ϕ) is defined as

δε(ϕ) =

{ 1
2ε

(
1+ cos

(
πϕ

ε

))
, |ϕ|< ε

0, otherwise
(5)

Here, ε is the thickness of the interface that is proportional to the spatial mesh. See
Sussman, Fatemi, Smereka, and Osher (1998) for more details.
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2.2 Governing equations for the fluid

Both the gas phase and the liquid melt are regarded as incompressible and two
phases are treated in a single Eulerian grid by the level set method.

The governing equations for the melt in the cavity are

∇ ·u = 0 (6)

∂

∂ t
(ρmu)+∇ · (ρmuu) =−∇p+∇ · (2ηmD) (7)

∂

∂ t
(ρmCmT )+∇ · (ρmCmuT ) = ∇ · (km∇T )+σσσ : D (8)

where u = (u,v)T is the velocity vector, T is the temperature, p is the pressure, ρ is
the density, η is the viscosity, k is the thermal conductivity, C is the specific heat,
σσσ is the Cauchy stress tensor, σσσ = −pI+ηD, I is the unit tensor, D is the strain
tensor, and the subscript m represents the melt phase.

The continuity equation for the gas is the same as (6), and the momentum and
energy equations for the gas in the cavity are

∂

∂ t
(ρgu)+∇ · (ρguu) =−∇p+∇ · (2ηgD) (9)

∂

∂ t
(ρgCgT )+∇ · (ρgCguT ) = ∇ · (kg∇T )+σσσ : D (10)

where the subscript g represents the gas phase in the cavity.

The boundary conditions at the interface between the phases are

2n(ηmD−ηgD) = (pm− pg)n (11a)

um = ug and Tm = Tg (11b)

where n is the unit normal to the interface drawn outwards from the liquid to the
gas.

Define the Heaviside function as

Hε(ϕ) =


0, ϕ <−ε

1
2

[
1+ ϕ

ε
+

sin( πϕ

ε )
π

]
, |ϕ| ≤ ε

1, ϕ > ε

(12)
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Let

ρ(ϕ) = ρg +(ρm−ρg)Hε(ϕ) (13)

η(ϕ) = ηg +(ηm−ηg)Hε(ϕ) (14)

C(ϕ) =Cg +(Cm−Cg)Hε(ϕ) (15)

k(ϕ) = kg +(km− kg)Hε(ϕ) (16)

Then the governing equations for the two-phase flow, along with the boundary
conditions (11) can be written as a united generalized Navier-Stokes system, the
continuity equation, momentum equation and energy equation are given as below:

∂ρ

∂ t
+∇ · (ρu) = 0 (17)

∂

∂ t
(ρu)+∇ · (ρuu) =−∇p+∇ · (2ηD) (18)

∂

∂ t
(ρCT )+∇ · (pCuT ) = ∇ · (k∇T )+σσσ : D (19)

Notice that in Eq. (17), the density ρ cannot be omitted because the values of ρ

may be different on the two sides of the interface.

Eqs. (17)-(19) can be written in the dimensionless form by introducing the dimen-
sionless variables x = Lx′, y = Ly′, u = Uu′, v = Uv′, t = (L/U)t ′, p = pmU2 p′,
ρ = ρmρ ′, η = ηmη ′, C = CmC

′
, k = kmk′, T = T0T ′, where the primes denote

dimensionless variables.

Substituting these dimensionless variables into Eqs. (17)-(19) and dropping the
primes, we have

∂ρ

∂ t
+∇ · (ρu) = 0 (20)

∂

∂ t
(ρu)+∇ · (ρuu) =−∇p+

1
Re

∇ · (2ηD) (21)

Pe
(

∂

∂ t
(ρCT )+∇ · (ρCuT )

)
−∇ · (k∇T ) = Br(σσσ : D) (22)

where Reynolds number Re= ρmLU/ηm, Peclet number Pe= ρmCmLU/km, Brinkman
number Br = ηmU2/(kmT0) and

ρ(ϕ) = ρg/ρm +(1−ρg/ρm)Hε(ϕ) (23)

η(ϕ) = ηg/ηm +(1−ηg/ηm)Hε(ϕ) (24)

C(ϕ) =Cg/Cm +(1−Cg/Cm)Hε(ϕ) (25)

k(ϕ) = kg/km +(1− kg/km)Hε(ϕ) (26)
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2.3 Phase change model

Since the temperature on the side walls of the mold cavity is much lower than that
of the melt, the polymer tends to solidify near the solid walls of the cavity, which
is known as the phase change or “frozen skin” layer. Latent heat must be con-
sidered in the phase change because great amount of heat will be released at the
moment that the melt begins to solidify. Different models or methods have been
proposed to describe phase change, such as the Stefan Model [Rubinstein (1994);
Carslaw and Jaeger (1959)], the Enthalpy method [Yang, Fu, Yang, Huang, Yang,
and Feng (2008); Krabbenhoft, Damkilde, and Nazem (2007); Kim, Kim, and Chun
(2001); Caldwell and Date (2003); Luoma and Voller (2000); Cao, Faghri, and
Chang (1989)] and the phase-field method [Cahn and Hilliard (1958)]. One reason
for the establishment of the Enthalpy method is to avoid capturing the interface be-
tween the solid and liquid during solidification and the Enthalpy can be calculated
on fixed grids. The other contribution of the Enthalpy method is the introduction
of a narrow mush area between the solid and liquid areas, which takes the position
of the mutation interface so that singularities at the interface are removed. In this
paper, we set up the model with the consideration of latent heat using the Enthalpy
Method. Since we consider simultaneously the polymer melt and the air in the
cavity, the Enthalpy model must include the relationship between Enthalpy H and
temperature T for both melt phase and air phase. A modified Enthalpy model is
proposed in this paper as follows based on the work of Yang et al. [Yang, Fu, Yang,
Huang, Yang, and Feng (2008)]

Define C(T ) = ∂H
∂T , and the transformation relationship between Enthalpy H and

temperature T is given as follows.

T (H) =


Ts +

H
Cs
, H ≤ 0

Ts +
H(Tl−Ts)

LH+C f (Tl−Ts)
, 0 < H < LH +C f (Tl−Ts)

Ts +
H
Cl
− LH+(C f−Cl)(Tl−Ts

Cl
, H ≥ LH +C f (Tl−Ts)

(27)

Here, LH is the latent heat, we have

Ts = Tg +(Tm,s−Tg)Hε(ϕ) (28)

Tl = Tg +(Tm,l−Tg)Hε(ϕ) (29)

LH = Lg +(Lm−Lg)Hε(ϕ) (30)

Cs =Cg +(Cm,s−Cg)Hε(ϕ) (31)

C f =Cg +(Cm, f −Cg)Hε(ϕ) (32)

Cl =Cg +(Cm,l−Cg)Hε(ϕ) (33)

The subscripts m and g represent the melt phase and the gas phase in the cavity
respectively. The subscripts s, f and l represent the solid, mush and liquid states
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of the polymer melt respectively. Thus, symbol Tm,s is the solid state temperature
threshold for the melt phase. The meanings of other symbols are similar. Note
that the gas phase will always the gas state in the cavity, so the same value of Tg

is used in Eqs. (28) and (29), and the same value of Cg is used in Eqs. (31)-(33).
Thus, these expressions will be the relationship between H and T for the melt when
Hε(ϕ) = 1, while for the air in the cavity when Hε(ϕ) = 0.

Introduce the Kirchhoff Temperature Tkir = Γ(H)H + S(H), the expression of the
Enthalpy model can be given as follows.

Pe
(

∂ρH
∂ t

+∇ · (ρuH)

)
= ∇

2(Γ(H)H +S(H))+Br(σ : D) (34)

In which,

Γ(H) =


ks
Cs
, H ≤ 0
k f (Tl−Ts)

LH+C f (Tl−Ts
, 0 < H < LH +C f (Tl−Ts)

kl
Cl

H ≥ LH +Cp, f (Tl−Ts)

(35)

S(H) =


0, H ≤ 0
0, H < LH +C f (Tl−Ts)

−kl
LH+(C f−Cl)(Tl−Ts)

Cl
, H ≥ LH +C f (Tl−Ts)

(36)

and

ks = kg +(km,s− kg)Hε(ϕ) (37)

k f = kg +(km, f − kg)Hε(ϕ) (38)

kl = kg +(km,l− kg)Hε(ϕ) (39)

2.4 Cross-WLF model

The Cross-WLF model, which is the most appropriate model for studying both
filling and packing phases, has been chosen to assess the total viscosity η of the
polymer melt and adjust better the temperature and pressure sensitivities of zero-
shear-rate viscosity [Boronat, Segui, Peydro, and Reig (2009)]. It specifies that

ηl(T, γ̇, p) =
η0(T, p)

1+(η0γ̇/τ∗)1−n , (40)

where η0(T, p) is the melt viscosity under zero-shear-rate condition, τ∗ is a constant
that gives the shear stress rate from which the pseudoplastic behavior of the melt
starts. n is the non-Newtonian index chosen so that the pseudoplastic behavior
gradient is 1−n, γ̇ is the shear rate.
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The WLF expression determines the viscosity of the melt under zero-shear-rate
conditions

η0 = D1 exp((−A1(T −T ∗))/(A2 +(T −T ∗)) (41)

where T ∗ = D2 +D3 p, A2 = Ã2 +D3 p, the constant A1 is the temperature depen-
dence of melt glass transition temperature under zero-shear-rate conditions. The
constant D1 is the melt viscosity, under zero-shear-rate conditions, at melt glass
transition temperature and at atmospheric pressure. T ∗ is the glass transition tem-
perature of the melt, depending on the pressure. D2 is the glass transition tem-
perature. D3 is the variation of the glass transition temperature of the melt with
pressure. The value of parameter Ã2 depends on the type of polymer melt that has
been considered.

Equations (1), (4), (20), (21), (34), (40) and (41) compose the model for the non-
isothermal non-Newtonian fluid mold filling process with phase change.

3 Numerical methods

3.1 Numerical methods for governing equations of the non-Newtonian flow

The finite volume SIMPLE method on a non-staggered grid is used to solve the
governing equations (20), (21) and (34). A non-staggered grid arrangement, which
stores all the variables at the same physical location and employs only one set of
control volumes, is shown in Fig. 1, where the dashed lines are the faces of control
volumes or cells and the intersection points of the solid lines are the nodes on which
all the physical quantities are located [Tao (2001)]

3.1.1 Continuity equation

The continuity equation (20) can be discretized into the following form by integrat-
ing over the control volume.

((ρu)e− (ρu)w)∆y+((ρυ)n− (ρυ)s)∆x = 0 (42)

3.1.2 Momentum equations

The discretization of the momentum equation (21) can be written in the following
form for a generalized quantity ψ .

aPψP = aEψE +aW ψW +aNψN +aSψS +Sψ , (43)

where Sψ is the source term in the momentum equation. The coefficients aE , aW ,
aN , aS, aP can be expressed as the combination of the convection term and the
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Figure 1: Sketch map of the non-staggered meshes

diffusion term, i.e.

aE = DeA(|Pe|)+max(−Fe,0), aW = DW A(|Pw|)+max(FW ,0),

aN = DnA(|Pn|)+max(−Fn,0), aS = DSA(|Ps|)+max(FS,0), (44)

aP = aE +aW +aN +aS +∆x∆yρ/∆t.

Here Pe, Pw, Pn, Ps are the Peclet numbers on the cell faces, Fe, Fw, Fn, Fs are the cell
faces flux, and De, Dw, Dn, Ds denote diffuse derivatives on cell faces. The form of
A(|Pe|) can be different under different discretization schemes for the convection
term. For example, A(|P∆|) equals 1 for the upwind scheme while 1− 0.5|P∆| is
used for a central scheme. We take A(|Pe|) = 1 in this paper. All the coefficients
are formulated as follows.

Fe = (ρu)e∆y, De =
ηe∆y

(xE−xP)Re , Pe =
Fe
De

Fw = (ρu)w∆y, Dw = ηw∆y
(xP−xW )Re , Pw = Fw

Dw

Fn = (ρυ)n∆x, Dn =
ηn∆x

(yN−yP)Re , Pn =
Fn
Dn

Fs = (ρυ)s∆x, Ds =
ηs∆x

(yP−yS)Re , Ps =
Fs
Ds

(45)

3.1.3 Energy equations

The Energy equation can be as

aPTP = aETE +aW TW +aNTN +aSTS +ST (46)
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Similarly, the coefficients aE , aW , aN , aS, aP can be expressed as the combination
of the convection term and the diffusion term, i.e.

aE = DeA(|Pe|)+max(−Fe,0), aW = DwA(|Pw|)+max(Fw,0),
aN = DnA(|Pn|)+max(−Fn,0), aS = DsA(|Ps|)+max(Fs,0),
aP = aE +aW +aN +aS +Pe∆x∆yρ/∆t

(47)

Fe = Pe(ρu)e∆y, De = Γ(H) ∆y
(xE−xP)

, Pe =
Fe
De
,

Fw = Pe(ρu)w∆y, Dw = Γ(H) ∆y
(xP−xW ) , Pw = Fw

Dw
,

Fn = Pe(ρu)n∆y, Dn = Γ(H) ∆x
(yN−yP)

, Pn =
Fn
Dn
,

Fs = Pe(ρu)s∆y, Ds = Γ(H) ∆x
(yP−yS)

, Ps =
Fs
Ds
.

(48)

3.2 Numerical methods for level set and the reinitialization equation

The level set evolution equation (1) and the reinitialization equation (4) are solved
by the finite difference method on a rectangular grid. The spatial derivatives are dis-
cretized by the 5th-order Weighted Essentially Non-Oscillatory (WENO) scheme
[Jiang and Peng (2000); Osher and Shu (1991)] and the temporal derivatives are
discretized by the 3rd-order Total Variation Diminishing Runge-Kutta (TVD-R-K)
scheme [Shu and Osher (1989)].

3.2.1 WENO scheme

Define ϕi, j = ϕ(xi,y j), ∆+
x ϕi, j = ϕi+1, j −ϕi, j, ∆+

y ϕi, j = ϕi, j+1−ϕi, j, then the 5-
order WENO scheme for the numerical approximations of the partial derivatives
ϕx, ϕy is

ϕ
±
x,i, j =

1
12

(
−

∆+
x ϕi−2, j

∆x
+7

∆+
x ϕi−1, j

∆x
+7

∆+
x ϕi, j

∆x
−

∆+
x ϕi+1, j

∆x

)
±Ψ

WENO
(

∆−x ∆+
x ϕi±2, j

∆x
,
∆−x ∆+

x ϕi±1, j

∆x
,
∆−x ∆+

x ϕi, j

∆x
,
∆−x ∆+

x ϕi∓1, j

∆x

)
, (49a)

ϕ
±
y,i, j =

1
12

(
−

∆+
y ϕi, j−2

∆y
+7

∆+
y ϕi, j−1

∆y
+7

∆+
y ϕi, j

∆y
−

∆+
y ϕi, j+1

∆y

)
±Ψ

WENO
(

∆−y ∆+
y ϕi, j±2

∆y
,
∆−y ∆+

y ϕi, j±1

∆y
,
∆−y ∆+

y ϕi, j

∆y
,
∆−y ∆+

y ϕi, j∓1

∆y

)
, (49b)

where the function ΨWENO is expressed as

Ψ
WENO(a,b,c,d) =−1

3
ω0(a−2b+ c)+

1
6
(ω2−

1
2
)(b−2c+d). (50)
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The expressions for ω0, ω2 are

ω0 =
α0

α0 +α1 +α2
, ω2 =

α2

α0 +α1 +α2
, (51)

where

α0 =
1

(ε ′+S0)2 ,α1 =
6

(ε ′+S1)2 ,α2 =
3

(ε ′+S2)2 , (52)

S0 = 13(a−b)2 +3(a−3b)2,
S1 = 13(b− c)2 +3(b+ c)2,
S2 = 13(c−d)2 +3(3c−d)2,

(53)

and ε ′ is a very small number used for avoiding division by zero.

3.2.2 TVD-R-K scheme

The 3-order TVD-R-K scheme can be expressed as

ϕ
(1) = ϕ

(0)+∆tL(ϕ(0)),

ϕ
(2) = ϕ

(1)+
∆t
4
(−3L(ϕ(0))+L(ϕ(1))), (54)

ϕ
(3) = ϕ

(2)+
∆t
12

(−L(ϕ(0))−L(ϕ(1))+8L(ϕ(2))),

where ϕ(0) = ϕn, ϕ(3) = ϕn+1, and L(ϕ) =−uϕx−υϕy for the level set function,
while L(ϕ) = sign(ϕ0)(1−|∇ϕ|) for the reinitialization equation.

3.3 Boundary conditions and determination of time step

Proper boundary conditions must be posed on the solid walls of the cavity. We
used the boundary conditions proposed by Yang, Ouyang, Liu, and Li (2010) for
two-phase flow. When Eqs. (20)-(21) are solved, no-slip boundary conditions are
used for the velocities, that is, u = 0. As for the pressure boundary conditions, for
the air in the cavity, we use p = 0, while for the melt in the cavity, no-penetration
boundary conditions are used, i.e. ∂ p/∂n = 0.

The time step ∆t is determined by restrictions due to the CFL condition and viscos-
ity [Sussman, Fatemi, Smereka, and Osher (1998)]. Define

∆tc = min
(

∆x
|u|

)
and ∆tη = min

(
3

14
ρRe∆x2

η

)
,

then the overall restriction on the time step is ∆t = 1
2 min(∆tc,∆tη).
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4 Numerical test for benchmark problems

4.1 Non-isothermal Flow through a 4:1 planar contraction

The benchmark problem of non-isothermal flow through a 4:1 planar contraction
is considered, the isothermal case of which has been verified by Yang, Ouyang, Li,
Zhao, and Liu (2010). Fluid passes from one channel into another of smaller cross-
sectional width and in the process generates a complex flow exhibiting regions
of strong shearing near the walls and planar extension along the centerline. The
lengths of upstream and downstream are 10L and 20L, respectively. The velocities
at the inlet are given as u = 3/8(1.0− y2/16) and υ = 0. At the outlet Neumann
boundary conditions are given under the assumption of fully-developed conditions.
No-slip boundary conditions are imposed along the stationary walls. Symmetry
boundary conditions are imposed along the central line. The temperature on the
solid walls is given as 273K, while that at the entrance is 323K.

Figure 2 gives the temperature distributions at different Pe numbers. We see from
Fig. 2(a) that when Pe is very small, there will be a district with special high temper-
ature near the contraction part of the computational area. This has two causes. On
one hand, since Pe number is very small, the effect of heat convection can almost
be ignored compared with that of heat dissipation. On the other hand, the velocities
vary sharply near the contraction district so that the heat dissipation in this area is
much larger than that in other areas and the temperature in this area increases as a
result. Things become different as Pe number increases, which means the effect of
heat convection has the dominant position gradually. The high temperature can be
transported deep into the whole computational area by velocities and the ’local hot
point’ caused by heat dissipation disappears gradually.

4.2 Zalesak’s Sphere problem

We now use a slotted sphere to test our scheme for level set equations. The sphere
has a radius of 15. The domain size is 100× 100× 100. The slot has a width of
6 and a depth of 24. The sphere is initially placed at (50,75,50) and undergoes a
rotation about the point (50,50,50) in the plane z = 50 [Ville, Silva, and Coupez
(2010); Yang, Ouyang, Li, Zhao, and Liu (2010)]. We initialize u as follows

u0 = (π/314)(50− y),υ0 = (π/314)(x−50),w0 = 0.

ϕ0 is set to be the signed distance from object. We compute for t = 0 ∼ 628. The
time step is set to be equal to ∆x. The results at different time are shown in Fig. 3.
The solution has lost only 4.6% of the initial volume after one revolution.
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(a).

(b). Pe=100. 0 

(c). Pe=1000. 0 

(d). Pe=10000. 0 

(e). Pe=100000. 0 
Figure 2: Temperature distributions at different Peclet numbers

       
Figure 3: Zalesak’s sphere problem
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5 Numerical simulation and results

5.1 Computational domain and parameters setting

A sketch of the injection mold is shown in Fig. 4(a), in which the shaded area, i.e.
the vertical middle plane of the mold, is the computational domain (Fig. 4(b)). Sup-
pose the length and width of the computational area are 10.0 and 1.0 respectively
The initial interface is set to be a semicircle with a radius of 0.5 which is shown in
Fig. 4(b).

(a) Sketch map and the computational area (shaded area) of the mold 

(b) Computational area with initial interface (shaded) 
Figure 4: Mold and computational area

High density polyethylene (HDPE) is used as the polymer melt, the material prop-
erties parameters and thermal property parameters of which are given in Table 1
and Table 2 respectively. The solidification temperature of HDPE is 377K. The
thermal property parameters of the air in the cavity are given in Table 3. It is worth
mentioning that the parameters values in Table 3 guarantee that the air is always in
the gaseous state.

Table 1: Material properties of HDPE [Liu (2003)]

n τ∗/Pa D1/Pa ·S D2/K D3/(Pa/K) A1 Ã2/K
0.3794 105985 5.769×1013 233.15 0.1 32.344 51.6
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Table 2: Thermal property parameters of HDPE [Liu (2003)]

km,s km,l Cm,s Cm,l Lm Tm,s Tm,l
(W/mK) (W/mK) (J/kgK) (J/kgK) (J/kg) (K) (K)

0.316 0.238 2042.0 2990.0 1.8×105 377.0 381.0

Table 3: Thermal property parameters of air in the cavity [Liu (2003)]

kg Cg Lg Tg

(W/mK) (J/kgK) (J/kg) (K)

0.023 1000.0 2260.0 0.0

5.2 Interface evolution

Figure 5 shows the interface evolution at different times in the cavity, when the
temperatures of the solid walls and the melt are set to be Twall = 343K and Tmelt =
533K respectively, and the injection velocity is set to be u=−20×(y−0.5)2+5.0,
y ∈ [0,1]. Since the velocity is not very high, the melt will extend as arcs instead of
a jet, in accordance with the experimental result given in Fig. 5(b).

5.3 Pressure

The pressure contours at various time are presented in Fig. 6, from which we see
that the pressure values decrease from the inlet to the end of the cavity, and with
the maximum pressure value always at the inlet.

5.4 Fountain flow

Figure 7 clearly shows the fountain flow effect at t = 1200∆t, i.e., polymer material
approaches the flow front from the center and diverts towards the wall.

5.5 Temperature

The temperature contours at selected times are given in Fig. 8.

Figure 9 shows the distribution of the temperatures which are below the solidifica-
tion temperature when the cavity is filled with melt. Both the temperatures of the
melt and the solid wall are high enough that no “frozen skin” layer is found in this
case.
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(a) Numerical results(shaded area is the melt) 

(b) Experimental result [Han (2007)]. 

Figure 5: Interface evolution with Twall = 343K and Tmelt = 533K

5.6 Discussion about the “frozen skin” layers at different cases

In order to discuss the “frozen skin” layer, we given different simulation results at
different solid wall and melt temperatures.

Firstly, an extreme case is given, in which we set Twall = 283K and Tmelt = 433K.
The temperature distribution when the cavity is filled with melt is given in Fig. 10,
from which we see that the temperatures near the solid walls are very low. Tem-
perature values decrease from the inlet to the end of the cavity. Figure 11 shows
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Figure 6: Pressure contours with Twall = 343K and Tmelt = 533K

Figure 7: Fountain flow effect at t = 1200∆t

the “frozen skin” layer distribution, which a very thick “frozen skin” layer can be
found near the solid walls of the cavity, especially at the end of the cavity.
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Figure 8: Temperature contours with Twall = 343K and Tmelt = 533K

Figure 9: Distribution of the temperatures which are below the solidification tem-
perature

Figure 10: Temperature distribution with Twall = 283K and Tmelt = 433K
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Figure 11: “frozen skin” layer with Twall = 283K and Tmelt = 433K

As described by Kumar, Ghoshdastida, and Muju (2002), the “frozen skin” layer is
not desirable because it contributes to the “molded in” strains in the molded article.
The “frozen skin” layer can be effectively reduced or eliminated by higher injection
pressure (resulting in higher flow rate), higher melt temperature, and to a lesser but
appreciable degree by increasing mold temperature. We now test the influence of
Twall , Tmelt and the injection velocity on the “frozen skin” layer.

5.6.1 Influence of the solid wall temperature Twall on “frozen skin” layer

We keep the melt temperature at Tmelt = 433K and increase the temperature on the
solid walls of the cavity to Twall = 320K. The distributions of temperature and
“frozen skin” layer after the cavity is filled with melt are given in Figs. 12 and 13
respectively.

Figure 12: Temperature distribution with Twall = 320K and Tmelt = 433K

Figure 13: “frozen skin” layer with Twall = 320K and Tmelt = 433K

The case when Twall = 321K and Tmelt = 433K is given by Fig. 14 and Fig. 15. A
thinner “frozen skin” layer can be found.
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Figure 14: Temperature distribution with Twall = 321K and Tmelt = 433K

Figure 15: “frozen skin” layer with Twall = 321K and Tmelt = 433K

When we set Twall = 323K the “frozen skin” layer will completely disappear, which
is shown in Fig. 16 and Fig. 17.

Figure 16: Temperature distribution with Twall = 323K and Tmelt = 433K

Figure 17: “frozen skin” layer with Twall = 323K and Tmelt = 433K

All the cases in this section verify that “frozen skin” layer can be eliminated by
increasing the temperature of the cavity.
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5.6.2 Influence of the solid wall temperature Tmelt on “frozen skin” layer

We now change the value of Tmelt = 533K, while Twall remains 283K. The results
are given in Fig. 18 and Fig. 19, in which no “frozen skin” layer can be found. This
case verifies that increasing the temperature of the melt can eliminate the “frozen
skin” layer effectively.

Figure 18: Temperature distribution with Twall = 283K and Tmelt = 533K

Figure 19: “frozen skin” layer with Twall = 283K and Tmelt = 533K

5.6.3 Influence of injection velocity on “frozen skin” layer

In all the above cases, the injection velocity is set to be u =−20× (y−0.5)2+5.0,
y ∈ [0,1]. Now we change the injection velocity to be u = −4× (y− 0.5)2 + 1.0,
y ∈ [0,1], which is slower than that in the above cases. The temperatures are set to
be Twall = 321K and Tmelt = 433K.

The distributions of temperature and “frozen skin” layer after the cavity is filled
with melt are given in Figs. 20 and 21 respectively. A local comparison of the
“frozen skin” layers between the two injection velocities is shown in Fig. 22, from
which we see that a slower injection velocity leads to a thicker “frozen skin” layer.

6 Conclusion

In this paper, a 2D non-isothermal injection molding process for a non-Newtonian
viscous pseudoplastic fluid is simulated with phase change. A conservative level
set method is used to capture the evolution of the interface and the finite volume
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Figure 20: Temperature distribution with Twall = 321K and Tmelt = 433K and u =
−4× (y−0.5)2 +1.0, y ∈ [0,1]

Figure 21: “frozen skin” layer with Twall = 321K and Tmelt = 433K and u =−4×
(y−0.5)2 +1.0, y ∈ [0,1]

Figure 22: A local comparison of the “frozen skin” layers between the two injection
velocities

method is used to get the information of the flow field. A modified Enthalpy model
for two-phase flow is proposed to describe the phase change in the mold filling
process. The information including the melt interface and the physical quantities
such as temperature, pressure and velocity are all obtained.

The decrease of temperature near cavity walls leads to high viscosity values and
the reduction of the velocities in this zone, where a “frozen skin” layer will appear.
The influences of the solid wall temperature, the melt temperature and injection
velocity on “frozen skin” layer are discussed in detail. The “frozen skin” layer
can be effectively reduced or eliminated by higher injection pressure (resulting in
higher flow rate), higher melt temperature, and to a lesser but appreciable degree
by increasing mold temperature.

The results of this work are helpful for the mold design and the model and proposed
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method can be extended to the 3D case.
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