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Universal Reliability Method for Structural Models with
Both Random and Fuzzy Variables

Zichun Yang1,2,3, Kunfeng Li1,4, Qi Cai1

Abstract: The conventional probabilistic reliability model for structures is based
on the “probability assumption” and “binary-state assumption”. These assumptions
are often offset the reality of practical engineering and lead to a wrong conclusion.
In fact, besides randomness, fuzziness which is different from randomness in nature
is also a prevalent uncertainty factor and plays an important role in structural reli-
ability assessment. In this paper, a novel structural reliability model with random
variables and fuzzy variables is established by using the fuzzy set theory, possi-
bility theory and probability measure for fuzzy events, based on the “mixed prob-
ability and possibility assumption” and “fuzzy state assumption”. The presented
universal structural reliability model can be regarded as the unification of proba-
bility reliability theory and possibility reliability theory. The universal reliability
model can degenerate into probabilistic reliability model or possibility reliability
model spontaneously for pure random basic variables or fuzzy basic variables. The
Monte-Carlo simulation combing with optimization method is applied to calculate
the failure probability of the structures. Numerical examples revealed the feasibil-
ity of the proposed reliability model for structures.

Keywords: structural reliability, random variables, fuzzy variables, membership
function, fuzzy failure domain.

1 Introduction

The conventional reliability theory is based on probability theory. The two fun-
damental assumptions [Cai, Wen and Zhang (1991)] of the probabilistic reliability
theory are:

A1(Probability assumption): The system behavior is fully characterized in the
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context of probability measures. The uncertainties are usually modeled as random
variables.

A2(Binary-state assumption): The system alternates between two states: safety
or failure. That is the system must be perfect functioning or in complete failure.

In the conventional probabilistic reliability theory for structures, as the probabil-
ity assumption and binary-state assumption, the basic uncertain parameters are ex-
pressed as random variables and a limit state function is applied to determine safety
or failure of the structures. But this may be not the reality in practical engineering.
More often than not, uncertainties emerged in the structural reliability problems
are not only randomness but also fuzziness which also plays an important role in
reliability assessment. For examples, the “safety” and “failure” for structures are
often vague concepts which can’t be determined crisply by the limit state func-
tion; in addition, some of the basic uncertain parameters might not be random but
fuzzy in nature, e.g. “large deflection” for a beam. Thus new reliability models for
structures exhibiting both fuzziness and randomness have been developed. Con-
sidering the basic parameters as random variables, the failure criterion is fuzzy,
probabilistic reliability methods with fuzzy safety state [Huang (2012); Wang, Li,
Huang and Liu (2013)] have been discussed, which involve more generalities than
the conventional probabilistic reliability model. In some cases, the loads and the
corresponding responses of the structures have not only randomness but also fuzzi-
ness, several authors [Liu, Qiao and Wang (1997); Mëoller, Graf and Beer (2003);
Holický(2006); Wang, Huang, Li, Pang and Xiao (2012)] investigated the structural
reliability models by considering the basic parameters as fuzzy random variables
based on fuzzy random theory [Shapiro (2009); Liu and Liu (2003)]. In addition,
one of the most familiar cases is that some of the basic parameters are stochastic and
expressed as random variables while the others are fuzzy and expressed as fuzzy
variables. Because the definitions of probability and possibility are fundamentally
deferent, it is a challenge problem to deal with reliability problems with both fuzzy
and random variables. On the whole, two strategies have been developed for struc-
tural reliability problems with both random variables and fuzzy variables in liter-
atures. One is that, relying on equivalent transformations, such as entropy based
transformation and transformation by scaling of fuzzy membership function, the
mixed random and fuzzy variables are transformed into pure random variables or
pure fuzzy variables, then the hybrid reliability problems are tackled by using prob-
abilistic method or possibility method [Haldar and Reddy (1992); Chakraborty and
Sam (2006); Liu, Choi, Youn and Gorsich (2006)]. The other is that, using α-cuts
of the fuzzy variables or fuzzy sets, the hybrid reliability problems are tackled in
the manner of probabilistic method and a probabilistic reliability index associated
with membership function is generated [Adduri and Penmetsa (2008;2009); Kala
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(2007)]. Whereas the existing methods seem to be suitable to perform reliability
evaluation under mixed random and fuzzy variables, there are problems with them.
The equivalent transformation methods always lead to losing some of the infor-
mation [Chakraborty and Sam (2006)]; moreover, since fuzziness and randomness
are different in nature, transformations between them are irrational. While the α-
cuts methods generate a probabilistic reliability index, a fuzzy number, associated
with membership function which is intricate and inconvenient for practical appli-
cation. This paper investigates the structural reliability model with mixed random
and fuzzy variables in a novel point of view.

In this paper, different with the existing reliability methods for mixed random vari-
ables and fuzzy variables, the reliability of structure is evaluated not by the pure
probability or possibility measure but the probability measure for fuzzy events
[Zadeh (1968)] without transforming the basic uncertain variables. In order to
use the probability measure for fuzzy events to evaluate the reliability, the con-
cept of fuzzy failure criterion in the random variables subspace is proposed. Then
the membership functions of the fuzzy fail domain and fuzzy safety domain are de-
duced rigorously from the possibility distribution functions of the fuzzy variables
and failure criterion (both crisp and fuzzy failure criterions are considered) in basic
variables space based on possibility theory and fuzzy set theory.

The organization of this paper is as follows. In Section 2, a brief description on
conventional probabilistic structural reliability model and probabilistic structural
reliability method with fuzzy state are introduced. In Section 3, the fuzzy fail-
ure domain and safety domain defined on random variables subspace are studied
and the pos- probability reliability model for structures with crisp failure criterion
defined in the basic uncertain variables space is proposed; then the relationships
between the proposed model and probabilistic reliability model or fuzzy reliabil-
ity model are discussed. In Section 4, considering the failure criterion in basic
variable space is fuzzy, the proposed pos-probability reliability model is developed
with more generalities. In Section 5, three examples are followed to demonstrate
the proposed model, and Monte-Carlo simulation combing with nonlinear program-
ming (NLP) method is applied to calculate the failure probability of the structures.
A conclusion is arrived in Section 6.

The novelties of the paper are that: (1) the conception of fuzzy failure in random
variables subspace for structural reliability problems with mixed random and fuzzy
variables is proposed; (2) using possibility theory and fuzzy set theory, the mem-
bership functions of the fuzzy failure domain and fuzzy safety domain in random
variables subspace are deduced from the joint possibility distribution of the fuzzy
variables and the failure criterion in basic variables space; (3) the proposed relia-
bility model is compatible with the probabilistic reliability model, POSBIST relia-
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bility model (reliability model based on possibility assumption and binary-state as-
sumption) [Cai, Wen and Zhang (1995); Guo, Lv and Feng (2002)] and POSFUST
reliability model (reliability model based on possibility assumption and fuzzy state
assumption) [Cai, Wen and Zhang (1991)] can degenerate into them spontaneously,
which can be regarded as a universal structural reliability model with random and
fuzzy variables.

2 Probabilistic reliability model for structures with fuzzy failure

In the conventional probabilistic reliability method, failure of the structures can be
determined by a limit state function crisply. Consider a performance function of a
certain structure as G(x), where x=(x1,x2,. . . ,xn)

T ∈ Rn is the basic random vector
associated with its joint probability density function (JPDF) f (x). G(x)=0 is the
limit state function of the structure, which divides the basic variables space Rn into
the failure domain Ωx f ={x:G(x)<0, x∈ Rn} and the safe domain Ωxs={x:G(x)≥0,
x∈ Rn}. The failure probability of the structure Pf can be calculated as follows

Pf =
∫

Ωx f

f (x)dx (1)

The reliability of the structure Ps can be obtained from the following equation

Pf +Ps ≡ 1 (2)

There are many methods that can be used to calculate the probability reliability,
such as, the well known first-order reliability method (FORM) [Chau, Han, Bai,
and Jiang (2012)], Hasofer-Lind approach [Hasofer and Lind (1974); Santos, Ma-
tioli and Beck (2012)] and Monte-Carlo simulation [Radhika, Panda and Manohar
(2008)] etc. In practical application, the responses of the complex structures are
usually obtained by using finite element method (FEM), thus the limit state func-
tions are implicit. Under the circumstance, the Monte-Carlo simulation can’t work
well either because of huge calculation costs. Stochastic finite element method
(SFEM) [Kamiński and Szafran, (2012)] and response surface method (RSM) [Li,
Luo, and Sun (2011); Panda and Manohar (2008)] have been proposed to tackle the
problems with implicit limit state functions.

In practical engineering, the “failure” and “safety” of the structures are often fuzzy
events. Thus the failure domain and safe domain of the structure should be ex-
pressed as Fuzzy (F) sets [Zadeh (1965)] with more generality. The probability
measure for fuzzy events proposed by professor Zadeh (1968) can be used to eval-
uate the reliability of the structure, which is defined by the following Lebesgue-
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Stieltjes integral

P
(
Ã
)
=
∫
Rn

µÃ (x)dP (3)

Where Ã is a F subset in n-dimensional Euclidean space Rn associated with its
membership function (MF) µÃ(x), x∈ Rn.

Then, the failure probability and safety probability of the structure can be calculated
by the following Riemann integrals

PfF =
∫
Rn

µ f (x) f (x)dx = E [µ f (x)] (4)

PsF =
∫
Rn

µs (x) f (x)dx = E [µs (x)] (5)

Where µ f (x) and µs(x) are MFs of the fuzzy failure domain (FFD) Fx f and fuzzy
safety domain (FSD) Fxs. Fx f and Fxs are the F subsets of the universe of discourse
Rn in which the random vector x is defined.

3 Pos-probability reliability model with mixed random and fuzzy variables

In this section, the structural reliability method with mixed random and fuzzy vari-
ables for crisp failure criterion in basic variables space is studied.

3.1 The generalized assumptions for structural reliability problems with mixed
variables

Similar with the probabilistic reliability model, we study the reliability model with
mixed variables based on the following two assumptions:

A1’ (Mixed probability and possibility assumption): The basic uncertain vector
of the structure is z=(xT ,yT )T , where x is a n-dimensional random vector x=(x1, x2,
. . . ,xn)

T characterized by its JPDF f (x), y is a m-dimensional fuzzy vector y=(y1, y2,
. . . ,yn)

T characterized by its joint possibility distribution function (JPoDF) πy(y).
Denote the n-dimensional Euclidean space x defined in by Ωx, the m-dimensional
Euclidean space y defined in by Ωy. Thus the state variables z belongs to a m+n-
dimensional Euclidean space denoted by Ωz=Ωx⊕Ωy.

A2(Binary-state assumption): The limit state function defined in the basic vari-
ables space Ωz deduced from the physics model is denoted by G(z)=0, where the
failure surface G(z)=0 divides the basic variables space Ωz into two parts: the fail-
ure domain Ωz f ={z:G(z)<0,z∈Ωz} and the safety domain Ωzs={z:G(z)≥0,z∈Ωz}.
That is if z=z∈Ωz f , the structure is failed; if z=z∈Ωzs, the structure is safe.
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Since the topic discussed in this paper is the “reliability” of the structures, there
should exist definite failure state z∗=(x∗T , y∗T )T ∈Ωz and definite safety state z∗∗ =
(x∗∗T ,y∗∗T )T ∈Ωz, that is, πy(y∗)=1 and G(z∗)<0 for z=z∗; πy(y∗∗)=1 and G(z∗∗)≥0
for z=z∗∗. As shown in Fig.1.
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Figure 1: The limit state function of the structure in Ωz

3.2 Fuzzy failure of the structure in random variables subspace Ωx

As far as the generalized reliability problem in section 3.1 is concerned, we define
the performance variable of the structure as

M = G(z) = G(x,y) (6)

Where G(z) is the performance function of the structure. Because x is a random
vector and y is a fuzzy vector, thus M can be regarded as a fuzzy random variable
[Liu and Liu (2003)] which is a random variable taking fuzzy variable value.

We discuss the failure criterion of the structure both in the universe of discourse Ωz

and Ωx as follows:

1. The failure criterion of the structure,G(z)=0, is defined in Ωz. In the universe
of discourse Ωz, the state of a certain realization of z=z can be determined
crisply by the value of M = G(z0). That is, if G(z0) <0 ,the structure is
completely failed; G(z0)≥0, the structure is completely safe. In other words,
the failure criterion in Ωz is crisp, and expressed as the limited state function
or crisp failure domain Ωz f and safety domain Ωzs.

2. In the universe of discourse Ωx, the random variables subspace, another fail-
ure criterion can be deduced from the failure criterion in Ωz. But it can’t
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simply be expressed as the limit state function or crisp failure and safety do-
mains. While x, the random component of z, takes the realization x=x0, since
M can be regarded as a fuzzy random variable, M|x=x0 = G(x0,y) turns out
to be a fuzzy variable. Thus M|x=x0 ≥0 or M|x=x0 <0 are fuzzy events, the
structure state x=x0 in universe of discourse Ωx is ambiguous or fuzzy in the
terms of mathematics. Namely, the failure and safety of the structure is a
fuzzy event in the universe of discourse Ωx. Thus the fuzzy failure criterion
in Ωx can be expressed as FFD and FSD denoted by Fx f and Fxs.

In summary, as far as the structural reliability problems with mixed random and
fuzzy variables are concerned, the crisp failure criterion defined in the basic un-
certain variables space could induce a fuzzy failure criterion defined in the random
variables subspace. The fuzzy failure criterion can be expressed as F sets (FFD and
FSD).

A standard procedure is developed to determine the MFs of Fx f and Fxs based on
the fuzzy set theory and possibility theory in the following section.

3.3 The FFD and FSD in random variables subspace Ωx

According to possibility theory [Zadeh (1978)], a possibility measure Posy(·) and a
necessity measure Necy(·) defined on the σ -algbra p(Ωy), p(·) denotes power set,
can be induced by the JPoDF πy(y). That is

Posy (A) = sup
y∈A

πy (y) (7)

Necy (A) = 1−Posy (Ac) = 1− sup
y∈Ac

πy (y) (8)

Where A is a subset of Ωy, Ac is the complimentary set of A. If the component
yi, i=1,2,. . . ,m, are independent fuzzy variables characterized by their possibility
distribution functions (PoDFs) π i(yi), the upper two equations can be written as
follows:

Posy (A) = sup
y=(y1,y2,··· ,ym)

T∈A
π1 (y1)∧π2 (y2)∧·· ·∧πm (ym) (9)

Necy (A) = 1− sup
y=(y1,y2,··· ,ym)

T∈Ac

π1 (y1)∧π2 (y2)∧·· ·∧πm (ym) (10)

Where “∧” is Zadeh operator, which denotes min.

Thus the triplet (Ωy, p(Ωy), Posy) is referred to as a possibility space. Posy(A) is
interpreted as possibility of the event A in universe of discourse Ωy; and Necy(A) is
interpreted as necessity of the event A.
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Then let random variables subspace Ωx, in which the random component x=(x1, x2,
. . . , xn)

T of z is defined, be the universe of discourse. A possibility measure Posx(·)
defined on σ -algebra p(Ωx) can be induced by the possibility measure Posy(·) and
the limit state function defined in Ωz. Posx(·) is defined as follows

Posx (B) = Posy

(
∪

x∈B
{y : G(x,y)< 0,y ∈Ωy}

)
= sup

x∈B
Posy {y : G(x,y)< 0,y ∈Ωy}

(11)

Where B is a subset of Ωx.

It can be proved that Posx(·) obeys the possibility axioms:

Axiom 1: Posx (φ) = 0.

Where φ denotes the empty set.

Proof:

Posx (φ) = sup
x∈φ

Posy {y : G(x,y)< 0}= Posy (φ) = 0 (12)

Axiom 2: Posx (Ωx) = 1.

Proof: Using Eqs. (7) and (11) we can obtain

Posx (Ωx) = sup
x∈Ωx

Posy {y : G(x,y)< 0,y ∈Ωy}

= sup
x∈Ωx

 sup
y∈{y:G(x,y)<0,y∈Ωy}

µy (y)

 (13)

Because there exists state z=z∗ ∈Ωz, as discussed in section 3.1, satisfying πy(y∗)=1
and G(z∗)<0. Thus we can conclude that

Posx ({z = z∗}) = 1 (14)

And according to the properties of possibility measure, we can easily obtain Posx(Ωx)≤1.
Combining with Eqs.(13) Axiom 2 results.

Axiom 3: For any arbitrary collection of sets {C j}⊂ p(Ωx)

Posx

(
∪
j
C j

)
=sup

j
Posx (C j) (15)
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Proof: From Eqs.(11),

Posx

(
∪
j
C j

)
= Posy

 ∪
x∈∪

j
C j
{y : G(x,y)< 0,y ∈Ωy}


= Posy

(
∪
j
∪

x∈C j
{y : G(x,y)< 0,y ∈Ωy}

)
= sup

j
Posy ∪

x∈C j
{y : G(x,y)< 0,y ∈Ωy}

= sup
j

Posx
{

C j
}

(16)

In summary, Posx(·) is a possibility measure defined on p(Ωx), and the triplet (Ωx,
p(Ωx), Posx) is referred to as a possibility space.

According to possibility theory and fuzzy set theory, the possibility measure Posx(·)
can induce a F set defined in the universe of discourse Ωx characterized by its MF
µx(x)

µx (x) = Posx {ω ∈Ωx : ω = x} (17)

From Eqs.(11), µx(x) can be written as

µx (x) = Posy {y : G(x,y)< 0,y ∈Ωy}= Posy
(
Ωzf
)

(18)

Eqs.(18) reveals the significance of µx(x): in the universe of discourse Ωx, the
failure possibility of the structure for any arbitrary state x is µx(x). Thus it is
convenient to define µx(x) as the MF of the FFD Fx f in universe of discourse Ωx

discussed in section 3.2. That is

µxf (x) = µx (x) = Posy
(
Ωzf
)

(19)

Where µx f (x) is the MF of the FFD Fx f .

According to possibility theory, 1-µx(x) should be also a membership function of
some F set in Ωx. From Eqs.(7) and (11) we can conclude

1−µx (x) = 1−Posy {y : G(x,y)< 0,y ∈Ωy}
= Necy {y : G(x,y)≥ 0,y ∈Ωy}

(20)

Eqs.(20) reveals the significance of 1-µx(x): in the universe of discourse Ωx, the
structure safety necessity for any arbitrary state x is 1-µx(x). Again, it is convenient
to define 1-µx(x) as the MF of the FSD Fxs in universe of discourse Ωx. That is

µxs (x) = 1−µxf (x) = Necy {y : G(x,y)≥ 0,y ∈Ωy}= Necy (Ωzs) (21)
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Finally, from Eqs.(7), (19) and (21), the membership functions µx f (x) and µxs(x)
of Fx f and Fxs can be obtained by the following equations

µxf (x) = sup
y∈{y:G(x,y)<0,y∈Ωy}

πy (y) (22)

µxs (x) = 1− sup
y∈{y:G(x,y)<0,y∈Ωy}

πy (y) (23)

Especially, if the component yi, i=1,2,. . . ,m, are independent fuzzy variables char-
acterized by the PoDFs π i(yi), the upper two equations can be written as follows

µxf (x) = sup
y∈{y:G(x,y)<0,y∈Ωy}

π1 (y1)∧π2 (y2)∧·· ·∧πm (ym) (24)

µxs (x) = 1− sup
y∈{y:G(x,y)<0,y∈Ωy}

π1 (y1)∧π2 (y2)∧·· ·∧πm (ym) (25)

In summary, as far as the generalized assumptions with mixed variables mentioned
in section 3.1 are concerned, the crisp failure criterion in basic variables space
Ωz, G(z)=0, can be transformed into a fuzzy failure criterion in the random vari-
ables subspace Ωx, expressed as the FFD Fx f and FSD Fxs characterized by their
MFs µx f (x) and µxs(x) as shown in Eqs.(22-25). For any arbitrary state x=x0,
µx f (x=x0)=1 indicates: µxs(x=x0)=0, and the structure is definitely failed at x=x0.
µx f (x=x0)=0 indicates: µxs(x=x0)=1, and the structure is definitely safe at x=x0.
While 0<µx f (x=x0)<1 indicates: 0<µxs(x=x0)<1, the structure is fuzzy safe and
fuzzy failed at x=x0 and compatible with the concept “failure” at degree µx f (x=x0),
with the concept “safety” at degree µxs(x=x0).

x  

1 

1 

Fxs  

μxs 

0 

0 

Fxf  

μxf x  x0  

x0  

μxf(x0) μxs(x0) 

Figure 2: FFD and FSD in the universe of discourse Ωx
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Eqs.(21) indicates that: the FFDFx f and FSD Fxsare complement F sets for each
other, as shown in Fig.2. Mathematically

Fc
xs = Fx f and Fc

x f = Fxs (26)

This is compatible with the contrariety of the concepts “failure” and “safety”.

3.4 The reliability assessment of the structure

Based on the analysis in section 3.3, using Eqs.(4-5) we can calculate the failure
probability and safe probability of the structure as follows

Pf F =
∫
Ωx

µxf (x) f (x)dx (27)

PsF =
∫
Ωx

µxs (x) f (x)dx (28)

Where µx f (x) and µxs(x) are MFs of the FFD Fx f and FSD Fxs and can be obtained
from Eqs.(22-25).

Since the FFD Fx f and FSD Fxs are complement F sets for each other, there must be

µxs (x)+µxf (x)≡ 1 (29)

Combining Eqs.(27-29), we can obtain

PsF +Pf F ≡ 1 (30)

As shown in Eqs.(29-30), we can simply calculate the MF µx f (x) for FFD Fx f and
the failure probability Pf F , while omitting the calculation for the MF µxs(x) of FSD
Fxs and the safe probability PsF in practical application.

3.5 Further discussions

Considering two special cases, we take further study on the pos-probability relia-
bility model proposed in previous sections.

CASE 1: Consider the fuzzy component y takes some definite real value y=y0without
fuzziness, component x is still a random vector associated with its JPDF f (x).

Because y takes definite real value, the performance variable of the structure M =
G(x,y0) is simply a random variable. Thus, the original reliability problem with
mixed variables is transformed into a reliability problem with pure random vari-
ables. We apply the pos-probability reliability model proposed in this paper to
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settle the problem. The real vector y=y0 can be regarded as a fuzzy vector with its
JPoDF as follows

πy (y) =
{

1
0

y = y0
y 6= y0

(31)

Using Eqs.(22-23), the MFs of the FFD and FSD in Ωx result in

µxf (x) =
{

1
0

G(x,y0)< 0
G(x,y0)≥ 0

(32)

µxs (x) =
{

1
0

G(x,y0)≥ 0
G(x,y0)< 0

(33)

Thus the FFD Fx f and FSD Fxs degenerate into crisp failure domain Ωx f ={x: G(x)<0,
x∈Ωx} and crisp safe domain Ωxs={x:G(x)≥0,x∈Ωx}.

Using Eqs.(27-28), we can show that

Pf F =
∫

G(x,y0)<0

f (x)dx (34)

PsF =
∫

G(x,y0)≥0

f (x)dx (35)

Comparing with Eqs.(1-2), the reliability measurement Pf F and PsF degenerate into
Pf and Ps, and the pos-probability reliability model degenerates into the traditional
probabilistic reliability model.

CASE 2: Consider the random component x takes some determined real value x=x0
without randomness, component y is still a fuzzy vector characterized by its JPoDF
πy(y).

Because x0 is a real vector, the performance variable M = G(x0,y) is simply a fuzzy
variable. The original mixed variables reliability problem degenerates into a fuzzy
reliability problem. Again the pos-probability reliability model is applied. The real
vector x0 can be regarded as a random vector with its JPDF as follows

f (x) = δ (x−x0) (36)

Where δ (x-x0) is the δ -function at point x=x0, satisfying the following equations∫
Ωx

δ (x−x0)dx = 1 (37)
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δ (x−x0) =

{
+∞

0
x = x0
x 6= x0

(38)

Combining Eqs.(22-23), (27-28) and (37-38), we can show that

PfF = µxf (x = x0) = sup
y∈Ωy,G(x0,y)<0

πy (y) (39)

PsF = µxs (x = x0) = 1− sup
y∈Ωy,G(x0,y)≥0

πy (y) (40)

Thus, the reliability measurement Pf F and PsF degenerate into possibility of failure
and possibility of safety for the structure. And the pos-probability reliability model
degenerates into the POSBIST reliability model [Cai, Wen and Zhang (1995); Guo,
Lv and Feng (2002)].

In summary, the conventional probabilistic reliability model and POSBIST relia-
bility model for structures can be regarded as the special cases of the proposed
pos-probability reliability model. In other words, the proposed model unifies the
probabilistic and POSBIST reliability models and can be regarded as a universal
method.

4 Universal reliability model with fuzzy and random variables for fuzzy fail-
ure criterion

In the binary-state assumption (A2) shown in section 3.1, the failure criterion in ba-
sic variables space Ωz is crisp and characterized by the limit state function G(z)=0.
But often the reality in practical application is that, the failure criterion in Ωz might
be fuzzy because of a variety of causes. In this section, with more generalities, we
develop the pos-probability reliability model by replacing the binary-state assump-
tion with the following fuzzy state assumption (A2’).

A2’(fuzzy state assumption): The failure criterion defined in Ωz is fuzzy and
expressed as FFD Fz f and FSD Fzs characterized by their MFs µz f (x,y) and µzs(x,y),
where

µzs (x,y)+µzf (x,y)≡ 1 (41)

While assumption A1’ is reserved.

As shown in Eqs.(22-23), the MFs µx f (x) and µxs(x) rely on the JPoDF πy(y) of
fuzzy component vector y and the failure domain Ωz f and safe domain Ωzs in Ωz.
The failure domain Ωz f ={z:G(z)<0,z∈Ωz} can be written in the form of character-
istic function as follows

Ωzf⇒ ϕzf (x,y) =
{

1
0

G(x,y)< 0
G(x,y)≥ 0

(42)
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Where ϕz f (x,y) is the characteristic function of the crisp set Ωz f .

Thus Eqs.(22) can be written as

µx f (x) = sup
Ωy

[πy (y)∧ϕz f (x,y)] (43)

If the failure domain in Ωz is a F set, we can replace the characteristic function
ϕ(x,y) with the MF µz f (x,y) conveniently, and obtain the MF of FFD Fx f in Ωx.

µx f (x) = sup
Ωy

[πy (y)∧µz f (x,y)] (44)

As a matter of fact, the upper equation can be also obtained by generalizing Eqs.(19)
to F sets. That is

µx f (x) = Posy
(
Fzf
)
⇒ µx f (x) = sup

Ωy

[πy (y)∧µz f (x,y)] (45)

The FFD and FSD in Ωz should be the complement F sets for each other. That is

Fc
zs = Fzf and Fc

zf = Fzs (46)

Similarly, we can obtain the MF µxs(x) of FSD Fxs in Ωx by generalizing the
Eqs.(21) to F sets. That is

µxs (x) = Necy (Fzs)⇒ µxs (x) = 1− sup
Ωy

[πy (y)∧µz f (x,y)] = 1−µx f (x) (47)

Thus Eqs.(29) is reserved.

Finally, the failure probability and safe probability can be calculated by using
Eqs.(27-28). Combining Eqs. (27-28), (44) and (47), Eqs.(30) is reserved too.

Similar with the discussions in section 3.5, the proposed pos-probability reliability
model with fuzzy criterion can degenerate into the probabilistic model with crisp
or fuzzy states, POSBIST reliability model and POSFUST reliability model, which
can be regarded as a universal structural reliability model with random and fuzzy
variables.

5 Examples

5.1 A simple example

Considering the typical stress-strength reliability problem, the stress S is a uniform
random variable associated with the range [-1,1] and its probability density function
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(PDF) f (S), the strength R is fuzzy variable which follows a triangular distribution.
Its PoDF πR(R) is shown in Fig.3 and the following equation.

πR (R) =


0
R

2−R

R < 0 or R > 2
0≤ R < 1
1≤ R≤ 2

(48)

The Euclidean space R1 in which S defined is denoted by ΩS, while the Euclidean
space R2 vector (R,S)T defined in is denoted by Ωz.

0 -1 1 

0.5 

1 f(S) 
πR(R) 

R or S 

Figure 3: The PDF of S and PoDF of R

5.1.1 Reliability problems

We calculate the reliability of the structure with the following two cases:

Case 1: The failure criterion in Ωz is crisp and characterized by the limit function
as follows

R−S = 0 (49)

Certainly, R−S <0 denotes failure.

Case 2: The failure criterion in Ωz is fuzzy and the MF of the FFD is

µzf (R,S) =


0

S−R
1

S < R
0≤ S−R≤ 1

S−R > 1
(50)

5.1.2 Solutions

Case 1: Since R is fuzzy variable, the failure criterion of the structure in ΩS is
fuzzy. Using Eqs.(22), the MF of the FFD in ΩS is

µ
(Case 1)
S f (S) = sup

R−S<0
πR (R) = sup

R−S<0
max{min{R,2−R} ,0}

= min{max{S,0} ,1}
(51)
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Using Eqs.(27), the failure probability can be obtain

P(Case 1)
f F =

∫ +∞

−∞

µSf (S) f (S)dS

=
∫ +∞

−∞

0.5∗min{max{S,0} ,1}dS

=
∫ 1

0
0.5SdS = 0.25

(52)

Case 2: Using Eqs.(4), we can obtain the MF µS f (S) of the FFD in ΩS

µ
(Case 2)
S f (S) = sup

(R,S)T∈R2
πR (R)∧µzf (R,S)

= sup
(R,S)T∈R2

max{min{R,2−R} ,0}∧min{max{S−R,0} ,1}

= min{max{0.5S,0} ,1}

(53)

Using Eqs.(27), the failure probability can be obtained

P(Case 2)
f F =

∫ +∞

−∞

µS f (S) f (S)dS

=
∫ +∞

−∞

min{max{0.5S,0} ,1}dS

=
∫ 1

0
0.25SdS = 0.125

(54)

1 

1 

μSf
(Case 1)(S) 

μSf
(Case 2)(S) 

S 

μSf 

0 2 

Figure 4: The FFDs in ΩS of the two cases

The FFDs in ΩS of the two cases are shown in Fig.4.
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b 

h 

l 

q 

Figure 5: Cantilever under uniformly distributed load

5.2 Cantilever under uniformly distributed load

A cantilever under uniformly distributed load is shown in Fig.5. The length of the
cantilever is l=2000mm. The width of the section b/mm, the depth of the section
h/mm , the Young’s modulus E/MPa and the uniformly distributed load q are as-
sumed to follow the normal random distribution. The distribution parameters of the
basic random variables are shown in Tab.1. Large deflection leads to the failure of
the cantilever, where large deflection can be regarded as a fuzzy variable denoted
by ∆∗/mm. ∆∗ follows a rising half-trapezoidal distribution, its PoDF is as follows

π∆∗ (∆
∗)=


0

0.2(∆∗−30)+1
1

∆∗ < 25
25≤ ∆∗ ≤ 30

∆∗ > 30
(55)

Table 1: Parameters of the normal random variables
b/mm h/mm q/(N/mm) E/Mpa

Mean value 120 240 260 2.0×105

Standard deviation 5.2 9 10.2 6.1×103

5.2.1 The failure criterion

Large deflection leads to the failure of the cantilever. The failure criterion can be
expressed as the limit state function as follows

∆
∗−∆(x) = 0 (56)

Where ∆ is the deflection of the cantilever, and x=(b,h,q,E)T is the basic random
vector of the structure. ∆∗-∆<0 denotes failure.
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According to the engineering mechanic principles, we can obtain the deflection of
the cantilever

∆(x) =
3
2

ql4

Ebh3 (57)

Thus the limit state function can be written as

∆
∗− 3

2
ql4

Ebh3 = 0 (58)

5.2.2 FFD in the random variables subspace

According to Eqs.(24) and (58), the MF of FFD in the random variables subspace
in which x=(b,h,q,E)T defined is

µxf (x) = sup
∆∗−∆(x)<0

π∆∗ (∆
∗) (59)

That is

µxf (x) =


0

0.2 [∆(x)−30]+1
1

∆(x)< 25
25≤ ∆(x)≤ 30

∆(x)> 30
(60)

5.2.3 Failure probability of the cantilever

Using Eqs.(27) we can obtain the failure probability of the structure Pf F

Pf F =
∫ 30

25
{0.2 [∆(x)−30]+1} f∆ (∆)d∆(x)+

∫ +∞

30
f∆ (∆)d∆(x)

=
∫

x=(b,h,E,q)T∈R4

min{max{{0.2 [∆(x)−30]+1} ,0} ,1} fb (b) fh (h) fE (E) fq (q)dx

(61)

Where f∆(∆) is the PDF of random variable ∆, fb(b), fh(h), fE(E) and fq(q) are
PDFs of the normal random variables b,h,E and q.

According to Eqs.(61), the failure probability Pf F can be calculated by using the
Monte-Carlo simulation, with number of simulations N=106, Pf F ≈0.0536.

The relationship between the failure probability Pf F and the distribution parameters
of q is shown in Tab.2 and Fig.6.

From Tab.2 and Fig.6 we can conclude that:
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Table 2: The relationship of Pf F and the distribution parameters of q

Standard Mean value of q/(N/mm)
deviation of q 245 250 255 260 265 270 275 280

8.7 9.3*10−4 0.00227 0.00440 0.00782 0.0124 0.0196 0.0299 0.0448
10.2 0.0457 0.0478 0.0500 0.0536 0.0598 0.0678 0.0776 0.0916
11.7 0.0926 0.0944 0.0969 0.1011 0.1067 0.1154 0.1270 0.1429
13.2 0.1444 0.1466 0.1493 0.1540 0.1605 0.1688 0.1804 0.1965

Mean value of q Standard deviation of q 
240 250 260 270 280 

8 
10 

12 
14 0 

0.05 
0.1 

0.15 
0.2 

P f
F 

Figure 6: Relationship of Pf F and distribution parameters of q

1. The failure probability Pf F increases with increasing mean value or standard
deviation of q, which shows the rationality of the pos-probability reliability
model in a certain extent.

2. For fixed mean value of q, the relationship of Pf F and deviation of q approxi-
mates linear; but for fixed standard deviation of q Pf F increases more quickly
for larger mean value of q.

Assuming the PoDF of ∆∗ vary with the parameter t, t >0, as shown in Eqs.(62)
and Fig.7. We analyze the reliability of the structure.

π∆∗ (∆
∗)=


0 ∆

∗ < 30− t
1
t
(∆∗−30)+1 30− t ≤ ∆

∗ ≤ 30

1 ∆
∗ > 30

(62)
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0 
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Δ* 

πΔ* 

30 t 
Figure 7: The PoDF of ∆∗ with parameter t

The failure probability can be obtained as follows

PfF =
∫

x=(b,h,E,q)T∈R4

min
{

max
{{

1
t
[∆(x)−30]+1

}
,0
}
,1
}

fb (b) fh (h) fE (E) fq (q)dx

(63)

The failure probability Pf F is calculated for vary t by using Monte-Carlo simula-
tion. And the relationship between Pf F and t is shown in Tab.3 and Fig.8.

Table 3: Pf F for varying t

t 4 5 6 7 8 9 10
Pf F 0.0020 0.0048 0.0117 0.0234 0.0437 0.0774 0.1334

4 5 6 7 8 9 10 
0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.14 

t 

P f
F 

Figure 8: The failure probability versus t
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As shown in Tab.3 and Fig.8, the failure probability increases with increasing t.
∆∗can be regarded as the generalized strength of the structure. From Eqs.(56) and
Fig.7 we can conclude that larger t indicates “smaller” ∆∗and of course leads to
decreasing reliability. Thus the pos-probability reliability model proposed in this
paper reasonably shows the influence of PoDF of ∆∗ on the reliability of the struc-
ture.

5.3 Reliability for ring-stiffened cylindrical shell

The ring-stiffened cylindrical shell is a prevalent structural form in the pressure
structure design, e.g. the pressure hull of the submarine. High-strength steel is
often adopted in the ring-stiffened cylindrical shell structure. Thus the structure
might fail if buckling under a high static pressure.

Hull 

l h 

Bulkhead 
Rib 

2r
 

p 

Figure 9: Ring-stiffened cylindrical shell

A certain ring-stiffened cylindrical shell is shown in Fig.9. The Poisson ratio of the
material is ν=0.3. The thickness h/mm of the shell and Young’s modulus E/MPa
are normal random variables, their distribution parameters are shown in Tab.4. The
static pressure p/MPa, rib spacing l/mm and inner radius r/mm, are fuzzy variables
associated with their PoDFs as follows

πp (p) =


0

1−100(p−4.1)2

1

p > 4.2
4.1≤ p≤ 4.2

p < 4.1
(64)

πl (l) =


0

1− (650− l)2
/

400

1

l > 650
630≤ l ≤ 650

l < 630
(65)

πr (r) =


0

1− (r−3450)2
/

2500

1

l > 3500
21≤ l ≤ 23

l < 3450
(66)
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Table 4: Distribution parameters for the normal random variables

Thickness h/mm Young’s modulus E/Mpa
Mean value 23.5 2.0×105

Standard deviation 0.3 6.0×103

Analyze the reliability of the structure for buckling.

5.3.1 The limit state function

The critical pressure pcr of the shell can be obtained by the following equation

pcr =CgCs pE (67)

Where Cg is the geometrical correction factor, Cs is the residual stress correction
factor, and Cg=0.93, Cs=0.93; PE is the Euler pressure, for ν=0.3 that is

pE = E
(

h
r

)2 0.6
u−0.37

(68)

Where u is a non-dimensional factor

u =
0.642l√

rh
(69)

Combining Eqs.(67-69), we can obtain the limit state function as follows

Gshell (X,Y) =CgCsE
(

h
r

)2 0.6
√

rh
0.642l−0.37

√
rh
− p = 0 (70)

Where Gshell <0 denotes failure, X=(h,E)T , Y=(p,l,r)T , X is random vector and Y
is fuzzy vector.

5.3.2 Reliability problems

We analyze the reliability of the shell for the following four cases:

Case 1: p, l and r take definite values p=4.1MPa, l=630mm, r=3450mm; the failure
criterion is crisp as Gshell=0.

Case 2: p, l and r take definite values p=4.2MPa, l=650mm, r=3500mm; the failure
criterion is crisp as Gshell=0.

Case 3: p, l and r take fuzzy values as shown in Eqs.(64-66); the failure criterion
is crisp as Gshell=0.
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Case 4: p, l and r take fuzzy values as shown in Eqs.(64-66); the failure criterion
in basic variables space is also fuzzy and the MF of the FFD is

µM f (M) =

{
e−100M2

1
M ≥ 0
M < 0

(71)

Where

M =CgCsE
(

h
r

)2 0.6
√

rh
0.642l−0.37

√
rh
− p (72)

5.3.3 Calculation

Because the limit state function is nonlinear and complicated, it is difficult to ob-
tain the analytical expressions for MF µX f (X) of FFD in the random variables sub-
space. To overcome the technical difficulty, numerical methods are adopted, and
MATLAB procedure is used in implementing the computation of the MF µX f (X)
and failure probability.

According to Eqs.(27), the failure probability can be obtained using the Monte-
Carlo simulation

P≈fFP̄=
fF

1
N

N

∑
t=1

µXf (X
∗
t ) (73)

Where X∗t is the tth sampling value of random vector X, N is the number of simu-
lations. According to the Monte-Carlo simulation theory, N can be determined as
follows

N >
1−PfF
ε2PfF

(74)

Where, ε is the coefficient of variation of P̄f F .

µX f (X∗t ) can be obtained by solving the following nonlinear optimization problem
for Case 3{

µXf (X
∗
t ) = max πp (p)∧πl (l)∧πr (r)

s.t. Gshell (X∗t ,Y)< 0
(75)

µX f (X∗t ) can be obtained by solving the nonlinear optimization problem as shown
in the following equation for Case 4{

µXf (X
∗
t ) = max πp (p)∧πl (l)∧πr (r)∧µMf (M)

s.t. Y ∈ R3,X = X∗t
(76)
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Figure 10: FFD in random variables subspace for Case 3
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Figure 11: FFD in random variables subspace for Case 4

There are many existing methods that can be used to tackle the upper optimization
problems, such as NLP method [Santos, Matioli and Beck (2012)], particle swarm
optimization (PSO) [Yang and Sun (2013)] and genetic algorithm. Especially, ac-
cording to the NLP theory, if πy(y) (where πy(y)=π p(p)∧π l(l)∧πr(r)), µM f (M)



Universal Reliability Method 167

and Gshell are convex functions, Eqs.(75-76) degenerate into convex programming
problems which are easier to solve.

Using MATLAB procedure of NLP method, µX f (X) for E/MPa∈[1.76 ×105, 2.24
×105], h/mm∈ [22.3,23.7] is calculated as shown in Fig.10 and 11, where f (X) is
the JPDF of X.

With number of simulations N=105, we can obtain the failure probability Pf F of
the structure for the four cases shown in Tab.5.

Table 5: Pf F for the four cases

Case 1 Case 2 Case 3 Case 4
Pf F < 10−3 0.083 0.026 0.115

From Tab.5 we can conclude that:

1. If the fuzziness of p, l and r are omitted, there would be significant difference
with Pf F .

2. Denote the failure domain of the four cases by FCase1, FCase2, FCase3 and
FCase4. It is easy to find out that FCase1, FCase2 FCase3 andFCase4 are related
as follows

FCase1 ⊂ FCase3 ⊂ FCase2 (77)

FCase3 ⊂ FCase4 (78)

Results in Tab.5 reveal the orderliness shown in Eqs.(77-78), which prove the ra-
tionality of the universal reliability model proposed in this paper.

Monte-Carlo simulation in section 5.3 for the proposed universal reliability model
might be costly, because the optimization problem as shown in Eqs.(75 or 76)
should be solved for every X point viable and the computational cost increases
with increasing complexity of the limit state function and the dimensional size of
fuzzy vector Y . In addition, it is invalid for problems with implicit limit state func-
tion (e.g. the responses of the structure are obtained by FEM). Thus, the calculation
procedures with high efficiency and for problems with implicit limit state function
should be investigated further for realistic application.
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6 Conclusion

Both randomness and fuzziness play important roles in practical reliability assess-
ment for structures. The probabilistic reliability theory and possibility reliability
theory have been established separately to deal with randomness and fuzziness.
The fundamental assumptions, probability assumption and binary-state assump-
tion, of the conventional probabilistic reliability theory are generalized into the
“mixed probability and possibility assumption” and “fuzzy state assumption”, then
a universal structural reliability model for mixed fuzzy and random variables is
proposed in this paper. The new model can deal with the reliability problem in-
volving pure random or fuzzy variables and both of them. It unifies the probability
reliability theory and possibility reliability theory.

As far as the proposed universal reliability model is concerned, the conventional
computational procedures for reliability analysis, such as FORM, Hasofer-Lind
method are invalid. The Monte-Carlo method can be used to calculate the fail-
ure probability for problems with explicit limit state function but not the best, be-
cause the computational cost increases with the increasing complexity of the limit
state function and the dimensional size of the basic fuzzy vector y. In addition,
the Monte-Carlo method can’t tackle problems with implicit limit state functions.
Thus, the calculation procedures with high efficiency and for problems with im-
plicit limit state function should be investigated in further for realistic application.
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Appendix A: Acronyms

FORM First-order reliability method
F Fuzzy
FEM Finite element method
FFD Fuzzy failure domain
FSD Fuzzy safety domain
JPDF Joint probability density function
JPoDF Joint possibility distribution function
MF Membership function
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NLP Nonlinear programming
PDF Probability density function
PoDF Possibility distribution function
PSO Particle swarm optimization
RSM Response surface method
SFEM Stochastic finite element method




