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A Meshless Simulations for 2D Nonlinear
Reaction-diffusion Brusselator System

Ahmad Shirzadi1, Vladimir Sladek 2, Jan Sladek 3

Abstract: This paper is concerned with the development of a numerical ap-
proach based on the Meshless Local Petrov-Galerkin (MLPG) method for the ap-
proximate solutions of the two dimensional nonlinear reaction-diffusion Brussela-
tor systems. The method uses finite differences for discretizing the time variable
and the moving least squares (MLS) approximation for field variables. The applica-
tion of the weak formulation with the Heaviside type test functions supported on lo-
cal subdomains (around the nodes used in MLS approximation) to semi-discretized
partial differential equations yields the finite-volume local weak formulation. A
predictor-corrector scheme is used to handle the nonlinearity of the problem within
each time step. Numerical test problems are given to verify the accuracy of the pro-
posed method. Under particular conditions, this system exhibits Turing instability
which results in a pattern forming instability. This concept is studied and a test
problem is given.

Keywords: Meshless Local Petrov-Galerkin method; Moving least squares; Fi-
nite differences; Nonlinear problems; Brusselator equations; Turing instability;
Pattern formation.

1 Introduction

In 1952 Turing showed [Turing (1952)] that a simple mathematical model de-
scribing self-diffusing and reacting chemicals could give rise to stationary spatial
concentration patterns of fixed characteristic length from a random initial config-
uration and proposed that reaction-diffusion models might have relevance in de-
scribing morphogenesis, the growth of biological form. In the late 1960s, IIya
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Prigogine among others at the University of Brussels developed the Brusselator
model [Prigogine and Lefever (1968);Nicolis and Prigogine (1997)] which is one
of the simplest reaction-diffusion models exhibiting Turing instability. From the
mathematical point of view, the Brusselator is a system of two coupled nonlinear
partial differential equations. The linear stability analysis can be used for pre-
dicting the parameter values that result in the Turing instability in a particular
reaction-diffusion system. Based on the linear approximation one can also effec-
tively predict the characteristic length of the resulting pattern. Linear analysis can-
not, however, predict the spatial characteristics of the resulting patterns, since the
pattern selection is governed by complex nonlinear dynamics. Thus some nonlin-
ear analysis is needed. Since analytical solutions are unavailable, finding efficient
numerical methods for solving these kind of problems has been an active area of
research. Meshless methods as a tool for numerical simulations of linear or non-
linear problems, especially partial differential equations have become popular in
recent years. This paper aims to present a new meshless method for the numeri-
cal simulations of the Brusselator equations. The proposed method is based on the
MLPG formulation [Atluri and Zhu (1998a);Atluri and Zhu (1998b);Atluri, Kim,
and Cho (1999);Atluri (2004);Atluri and Shen (2002)] which uses the local weak
form equations and the MLS approximation to transform the model equations to
the final system of algebraic equations. An application of the MLPG method for
numerically solving coupled pair of nonlinear diffusion equations can be found
in [Abbasbandy, Sladek, Shirzadi, and Sladek (2011)]. For a review of applica-
tions of the MLPG method in engineering and sciences the readers are referred to
[Sladek, Stanak, Han, Sladek, and Atluri (2013)]. Analysis of the convergence of
the MLPG method is well studied in [Shirzadi and Ling (2013)]. The non-linear
reaction-diffusion Brusselator system is given by:

∂u
∂ t

= A+u2v− (B+1)u+Du

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (1)

∂v
∂ t

= Bu−u2v+Dv

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
,

in the two-dimensional region Ω = [a,b]2, with initial condition

u(x,y,0) = f (x,y), (2)

v(x,y,0) = g(x,y),

and Dirichlet boundary condition:

u(x, t) = q1(x, t), x ∈ ∂Ω× t, t > 0,

v(x, t) = q2(x, t),



Meshless Simulations for Brusselator System 261

or subject to Neumann’s boundary conditions on the boundary ∂Ω. Recall that
A denotes the value of the source term and B is the bifurcation parameter setting
the distance to the onset of instability. The chemical u is the activator concen-
tration and v is the inhibitor. Du and Dv are diffusion coefficients, f , g, q1 and
q2 are known functions. Some existing papers on the study of this problem were
concerned with theoretical concepts such as symmetry-breaking and bifurcations
[Nicolis and Prigogine (1997);Walgraef, Dewel, and Borckmans (1980)]. The the-
ory by Turing [Turing (1952)] predicts that a spatially uniform stationary state that
is stable against perturbations in the absence of diffusion might become unstable
against perturbations in the presence of diffusion resulting in a pattern forming
instability. Some papers on numerical studies of this model employed the compu-
tational approach and addressed the problem of pattern selection as a function of
system parameters in two-dimensional and three-dimensional systems [Verdasca,
Wit, Dewel, and Borckmans (1992);Borckmans, Wit, and Dewel (1992);Leppä-
nen (2004)]. For papers which deal with the numerical solution of the reaction-
diffusion Brusselator system see Twizell et al. [Twizell, Gumel, and Cao (1999)]
for a second order finite difference method, Adomian [Adomian (1995)] for de-
composition method, Whye-Teong [Ang (2003)] for the dual-reciprocity boundary
element method, S-u. Islam et al. [Siraj-ul, Arshed, and Sirajul (2010)] for a nu-
merical scheme based on RBF collocation method, Mittal and Jiwari [Mittal and
Jiwari (2011)] for polynomial based differential quadrature method, Kamranian et
al. [Kamranian, Tatari, and Dehghan (2011)] for the finite point method and so on.
The remaining content of the paper is organized as follows. Section 2 describes
the basics of the MLS approximation used in this study. The time discretization
approach is presented in Section 3. Construction of local weak equations are illus-
trated in Section 4 and the obtained local weak equations are discretized in Section
5. The predictor-corrector scheme which is proposed to handle the nonlinear terms
is also illustrated in Section 5. To simplify the evaluation of local integrals, certain
techniques are described in Section 6. Two test problems are given in Section 7 to
verify the accuracy of the method. To address the problem of pattern selection as a
function of system parameters, another test problem is given at the end of Section
7. Our conclusions are summarized in the last section.

2 The MLS approximation

Consider a sub-domain Ωx, the neighborhood of a point x which is located in the
problem domain Ω. To approximate the distribution of function u in Ωx over a
number of randomly located nodes xi, i = 1,2, ...n, the MLS approximant uh(x) of
u, ∀x ∈Ωx, is defined by

uh(x) = pT (x) a(x) ∀x ∈Ωx, (3)
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where pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m,
and a(x) is a vector containing coefficients a j(x), j = 1,2, ...m which are functions
of the space coordinates x. For example, for a 2-D problem, pT (x) = [1,x,y] and
pT (x) = [1,x,y,x2,xy,y2], for linear basis (m = 3) and quadratic basis (m = 6),
respectively. The coefficient vector a(x) is determined by minimizing a weighted
discrete L2 norm, defined as

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)− ûi]
2 (4)

= [P.a(x)− û]T .W.[P.a(x)− û],

where wi(x) is the weight function associated with the node i, with wi(x) > 0 for
all x in the support of wi(x), xi denotes the value of x at node i, n is the number of
nodes in Ωx for which the weight functions wi(x) > 0, the matrices P and W are
defined as

P =


pT (x1)
pT (x2)
...

pT (xn)


n×m

, W =

w1(x) ... 0
... ... ...
0 ... wn(x)

 ,

and ûT = [û1, û2, ..., ûn] where ûi, i = 1,2, ...,n in (4) are the fictitious nodal values,
and not the nodal values of the unknown trial function uh(x) in general. In this
work the Gaussian weight function is used:

wi(x) =


exp[−( di

ci
)2]−exp[−( ri

ci
)2]

1−exp[−( ri
ci
)2]

, 0≤ di ≤ ri,

0, di ≥ ri,

where di =‖ x−xi ‖, ci is a constant controlling the shape of the weight function
wi and ri is the size of the support domain. The stationarity of J in (4) with respect
to a(x) leads to the following linear relation between a(x) and û

A(x)a(x) = B(x)û, (5)

where the matrices A(x) and B(x) are defined by

A(x) = PT WP = B(x)P =
n

∑
i=1

wi(x)p(xi)pT (xi),

B(x) = PT W = [w1(x)p(x1),w2(x)p(x2), ...,wn(x)p(xn)].
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The MLS approximation is well defined if and only if the rank of P equals m. A
necessary condition for a well-defined MLS approximation is that at least m weight
functions are non-zero (i.e. n > m) for each sample point x ∈Ω and that the nodes
in Ωx will not be arranged in a special pattern such as on a straight line. Solving
for a(x) from (5) and substituting it into (3) gives a relation which may be written
as the form of an interpolation function similar to that used in FEM, as

uh(x) = Φ
T (x).û =

n

∑
i=1

φi(x)ûi; uh(xi)≡ ui; x ∈Ωx, (6)

and essentially ui 6= ûi, where

Φ
T (x) = pT (x)A−1(x)B(x),

or

φi(x) =
m

∑
j=1

p j(x)[A−1(x)B(x)] ji.

φi(x) is called the shape function of the MLS approximation corresponding to nodal
point yi. The support of the nodal point yi is usually taken to be a circle of radius
ri, centered at yi. The fact that φi(x) = 0, for x not in the support of nodal point
yi preserves the local character of the Moving Least Squares approximation. The
partial derivatives of φi(x) are obtained as

φi,k =
m

∑
j=1

[p j,k(A−1B) ji + p j(A−1B,k +A−1
,k B) ji], (7)

in which A−1
,k = (A−1),k represents the derivative of the inverse of A with respect to

xk, kth coordinate of x, which is given by A−1
,k =−A−1A,kA−1, where ( ),i denotes

∂ ( )/∂xi.

3 The finite difference approximation

The finite-difference approximation of the time derivatives in the θ method is given
as follows

θ u̇k+1 +(1−θ)u̇k =
uk+1−uk

∆t
, 0≤ θ ≤ 1. (8)

Considering Eq. (1) at the time instants k∆t and (k+1)∆t, one obtains, respectively

θ u̇k+1 = θDu∇
2uk+1 +θA+θ(uk+1)

2vk+1−θ(B+1)uk+1

(1−θ)u̇k = (1−θ)Du∇
2uk +(1−θ)A+(1−θ)(uk)

2vk− (1−θ)(B+1)uk
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Hence and from (8), we have

uk+1−uk

∆t
= Du∇

2uk +θDu

(
∇

2uk+1−∇
2uk

)
+A+θ(uk+1)

2vk+1 (9)

+ (1−θ)(uk)
2vk− (B+1)

(
θuk+1 +(1−θ)uk

)
Using Crank-Nicholson scheme (θ = 1

2 ) Eq. (9) becomes:

uk+1−uk

∆t
= Du

1
2

∇
2
(

uk +uk+1

)
+A+

1
2

(
(uk+1)

2vk+1 +(uk)
2vk

)
− 1

2
(B+1)

(
uk+1 +uk

)
or[

1+
∆t
2
(B+1)−Du

∆t
2

∇
2
]
uk+1−

∆t
2
(uk+1)

2vk+1

=
[
1− ∆t

2
(B+1)+Du

∆t
2

∇
2
]
uk +

∆t
2
(uk)

2vk +∆tA.
(10)

Similarly, we have[
1−Dv

∆t
2

∇
2
]
vk+1−

∆t
2

Buk+1 +
∆t
2
(uk+1)

2vk+1

=
[
1+Dv

∆t
2

∇
2
]
vk +

∆t
2

Buk−
∆t
2
(uk)

2vk

(11)

Therefore, the time dependent PDEs are transformed to the semi-discrete PDEs
of the elliptic type for the field variables uk+1 and vk+1, assuming the fields uk
and vk being known from the computation in the previous time step. To treat the
nonlinearity, a predictor-corrector scheme is proposed in this paper.

4 The local weak form

In this paper, we construct the weak form over local sub-domains such as Ωsi ,
located entirely inside Ω which is a circle of radius r0 and centered at node xi. The
local weak form of the equations (10) and (11) for xi = (xi,yi) ∈Ωsi can be written
as∫

Ωsi

[[
1+

∆t
2
(B+1)−Du

∆t
2

∇
2
]
uk+1−

∆t
2
(uk+1)

2vk+1

]
u∗dx =∫

Ωsi

[[
1− ∆t

2
(B+1)+Du

∆t
2

∇
2
]
uk +

∆t
2
(uk)

2vk +∆tA
]
u∗dx,

(12)
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∫
Ωsi

[[
1−Dv

∆t
2

∇
2
]
vk+1−

∆t
2

Buk+1 +
∆t
2
(uk+1)

2vk+1

]
u∗dx =∫

Ωsi

[[
1+Dv

∆t
2

∇
2
]
vk +

∆t
2

Buk−
∆t
2
(uk)

2vk

]
u∗dx

(13)

where u and v are trial functions and u∗ is a test function. If the Heaviside step
function

u∗(x) =


1, x ∈Ωsi ,

0, x /∈Ωsi ,

is chosen as the test function in each sub-domain, then ∇u∗ = 0 and the local weak
forms (12) and (13) are transformed into the following equations(

1+4t
(B+1)

2

)∫
Ωsi

uk+1dx− Du4t
2

∫
∂Ωsi

∂uk+1

∂n
ds

−4t
2

∫
Ωsi

(uk+1)
2vk+1dx =

(
1−4t

(B+1)
2

)∫
Ωsi

ukdx

+
Du4t

2

∫
∂Ωsi

∂uk

∂n
ds+4t

∫
Ωsi

(1
2
(uk)

2vk +A
)

dx,

(14)

∫
Ωsi

vk+1dx− Dv4t
2

∫
∂Ωsi

∂vk+1

∂n
ds

+
4t
2

∫
Ωsi

(
(uk+1)

2vk+1−Buk+1

)
dx =

∫
Ωsi

vkdx+
Dv4t

2

∫
∂Ωsi

∂vk

∂n
ds

−4t
2

∫
Ωsi

(
(uk)

2vk−Buk

)
dx

(15)

5 Discretized equations and the predictor-corrector scheme

We consider N nodal points, some of them located on the boundaries and some in
the domain. Let uk(x) = u(x,k4t) be approximated according to (6) with denoting
the nodal unknowns as ûk,i. In each time step, our aim is to compute ûk+1,i, i =
1,2, ...,N assuming ûk,i, i = 1,2, ...,N being known from the previous time step.
Since there are nonlinear terms in the equations, we propose a predictor-corrector
scheme in each time step to obtain a desired accuracy. So we assume that û(l)k+1 is an
approximation of ûk+1 after l correction step and ûk+1 is identified with the value
û( f )

k+1 obtained in the final correction. We will begin from û(0)k+1 = ûk in nonlinear
term. For internal nodes, from (14), (15) and using the MLS approximation (6), we
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have the following linear equations:

(
1+4t

(B+1)
2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

û(l+1)
k+1, j−

Du4t
2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

û(l+1)
k+1, j

−4t
2

∫
Ωsi

(ũ(l)k+1(x))
2ṽ(l)k+1(x)dx =

(
1−4t

(B+1)
2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

ûk, j

+
Du4t

2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

ûk, j +4t
∫

Ωsi

(1
2
(ũk(x))2ṽk(x)+A

)
dx,

(16)

N

∑
j=1

(∫
Ωsi

φ jdx
)

v̂(l+1)
k+1, j−

Dv4t
2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

v̂(l+1)
k+1, j

+
4t
2

∫
Ωsi

(
(ũ(l)k+1(x))

2ṽ(l)k+1(x)
)

dx−B
4t
2

N

∑
j=1

(∫
Ωsi

φ j(x)dx
)

û(l+1)
k+1, j

=
N

∑
j=1

(∫
Ωsi

φ jdx
)

v̂k, j +
Dv4t

2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

v̂k, j

−4t
2

∫
Ωsi

(
(ũk(x))2ṽk(x)−Bũk(x)

)
dx,

(17)

where

ũk(x) =
N

∑
j=1

φ j(x)ûk, j =
N

∑
j=1

φ j(x)û
( f )
k, j , ṽk(x) =

N

∑
j=1

φ j(x)v̂k, j =
N

∑
j=1

φ j(x)v̂
( f )
k, j ,

ũ(l)k+1 =
N

∑
j=1

φ j(x)û
(l)
k+1, j, ṽ(l)k+1 =

N

∑
j=1

φ j(x)v̂
(l)
k+1, j.

The Dirichlet boundary conditions are imposed directly using the equations of the
boundary conditions and the MLS approximation (6). To impose the Neumann’s
boundary conditions, we adopt a method proposed in Abbasbandy and Shirzadi
(2011).

6 Computational techniques

The MLS approximation with Gaussian weight function and quadratic basis (m =
6) are used in all test problems. We have to deal with two kinds of integrals in the
discretized local integral equations (16) and (17). Basically, both the integrations
over the circular sub-domain Ωsi and/or its boundary ∂Ωsi can be performed analyt-
icallySladek and Sladek (2010); Sladek, Sladek, and Zhang (2010) with saving the
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computational time substantially because of eliminating the evaluation of the shape
functions and/or its derivatives at the integration points. Then, we could write

∫
Ωsi

g(x)dx = πr2
0g(xi)+

π

8
r4

0g,kk(xi)+O(r6
0),∫

∂Ωsi

g(x)ds = 2πr0g(xi)+
π

2
r3

0g,kk(xi)+O(r5
0),∫

∂Ωsi

∂g
∂n

(x)ds = πr2
0g,kk(xi)+O(r4

0).

In order to avoid the inaccuracy of the second and higher-order derivatives of the
shape functions in meshless approximations, we prefer a numerical integration over
∂Ωsi . Since the number of the integration points in the domain integrals is much
higher than in the contour integrals, the analytical integration in case of domain
integrals yields more substantial savings in the computational time. Therefore we
apply the analytical integrations over Ωsi with omitting the terms O(r4

0) involving
the derivatives of the shape functions. Thus summarizing, the required integrals
over∂Ωsi are computed by using the regular Gauss-Legendre quadrature rule with
seven integration points as

∫
∂Ωsi

φ j(x)ds

=
∫ 2π

0
φ j(xi + r0cos(θ),yi + r0sin(θ))r0dθ

= πr0

∫ 1

−1
φ j(xi + r0cos(πθ +π),yi + r0sin(πθ +π))dθ

≈ πr0

7

∑
p=1

wpφ j(xi + r0cos(πθp +π),yi + r0sin(πθp +π))

where wp and θp are the Gauss quadrature integration rule weights and points on
[-1, 1]. The same technique can be used for evaluation of contour integrals of the
normal derivatives of the shape functions nk(x)φi,k(x) with utilizing Eq. (7) for the
gradients of the shape functions. Finally, the required integrals over sub-domains
Ωsi are approximated as follows:

∫
Ωsi

φ j(x)dx≈ πφ j(xi)r2
0.
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and similarly, the domain integrals involving the nonlinear terms are approximated
as:∫

Ωsi

(ũ(l)k+1)
2ṽ(l)k+1dx≈ π(ũ(l)k+1(x

i))2ṽ(l)k+1(x
i)r2

0,∫
Ωsi

(1
2
(ũk)

2ṽk +A
)

dx≈ π

(1
2
(ũk(xi))2ṽk(xi)+A

)
r2

0,∫
Ωsi

(
(ũ(l)k+1(x))

2ṽ(l)k+1(x)
)

dx−B
N

∑
j=1

(∫
Ωsi

φ j(x)dx
)

û(l+1)
k+1, j

≈ π

(
(ũ(l)k+1(x

i))2ṽ(l)k+1(x
i)−B

N

∑
j=1

φ j(xi)û(l+1)
k+1, j

)
r2

0∫
Ωsi

(
(ũk)

2ṽk−Bũk

)
dx≈ π

(
(ũk(xi))2ṽk(xi)−Bũk(xi)

)
r2

0.

Recall that the assumed approximations for the domain integrals are meaningful
provided that the radius of the sub-domains is sufficiently small.

7 Test problems

The domain and boundary integrals are evaluated as demonstrated in the previous
section. Because of the computational techniques described in the previous section,
the radius of each local sub-domains, r0, should be small enough. A very small r0
also causes much cancelation error and therefore, it is chosen as 0.05h≤ r0 ≤ 0.1h.
The shape parameter of the Gaussian weight function is chosen as ci≈ 0.6h, and the
radius of the support of the weight function corresponding to node i, ri, is chosen as
ri≈ 7h where h is the minimum distance between nodes. For the predictor corrector
scheme, 3 or 4 corrections are calculated in each time step.

7.1 Example 1.

For the first test problem consider the reaction diffusion Brusselator System (1)
with Du =Dv =

1
4 , B= 1 and A= 0 in the region Ω= {(x,y) : 0≤ x≤ 1, 0≤ y≤ 1}

and the boundary condition extracted from the exact solution given by:

u(x,y, t) = exp(− t
2
− x− y),

v(x,y, t) = exp(
t
2
+ x+ y).

In this example, the relative error which will be reported is defined as:

‖ eu ‖R=

√
∑

N
i=1(ui− ūi)2

∑
N
i=1(ui)2

,
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and the infinity-norm are defined as:

‖ eu ‖∞= Max{| ui− ūi |, i = 1,2, ...,N},

ui and ūi are the exact and approximate value of u at point xi, respectively, and N
is the number of nodes. In order to show the convergence of the proposed method
with respect to the spatial variables, Table 1 presents the results obtained with dif-
ferent number of nodal points and fixed time step 4t = 0.01 at time instant t = 2.
By going through each column of Table 1, one can see increasing accuracy with
increasing the number of nodal points.

Table 1: The results obtained with different number of nodal points, 4t = 0.01 at
t = 2.

N ‖ eu ‖∞ ‖ ev ‖∞ ‖ eu ‖R ‖ ev ‖R

64 1.276869×10−4 1.285399×10−3 3.895784×10−4 4.415529×10−5

100 1.235532×10−4 7.079024×10−4 3.870789×10−4 2.481163×10−5

256 1.206197×10−4 1.950160×10−4 3.838014×10−4 6.842202×10−6

400 1.20025×10−4 1.265732×10−4 3.784170×10−4 3.863627×10−6

The results obtained at time instant t = 4 with using N = 441 nodal points and
different size of time step 4t are presented in Table 2. By going through each
column of Table 2, one can see increasing accuracy with decreasing the size of the
time step 4t. Table 3 presents the results obtained at different time instants with

Table 2: Results obtained at t = 4 with using N = 441 nodal points and various
time steps4t

4t ‖ eu ‖∞ ‖ ev ‖∞ ‖ eu ‖R ‖ ev ‖R

0.1 4.445481×10−4 5.516135×10−4 3.901414×10−3 1.2192290×10−5

0.05 2.212092×10−4 3.358346×10−4 1.94276×10−3 4.8399237×10−6

0.01 4.414410×10−5 3.127980×10−4 3.884246×10−4 3.9160857×10−6

0.005 2.211150×10−5 3.122602×10−4 1.949392×10−4 3.897547×10−6

0.001 4.548992×10−6 3.122046×10−4 4.0414576×10−5 3.887129×10−6

using N = 441 nodal points and the time step 4t = 0.01. By going through each
column of Table 3, we can see increasing accuracy of u and decreasing accuracy of
v. By the finite differences applied to discretize the time variable, the behavior of
v is natural. The reason of increasing the accuracy of u by increasing time variable
t is cancelation error; by increasing t, u→ 0 and very small values of u causes
cancelation error.
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Table 3: Results obtained with using time step4t = 0.01, N = 441 nodal points at
different time instants

t ‖ eu ‖∞ ‖ ev ‖∞ ‖ eu ‖R ‖ ev ‖R

2 1.198174×10−4 1.139365×10−4 3.879027×10−4 4.265328×10−6

4 4.414410×10−5 3.12798×10−4 3.884246×10−4 3.916085×10−6

6 1.624269×10−5 8.51417×10−4 3.884891×10−4 3.902435×10−6

8 5.975504×10−6 2.314813×10−3 3.884978×10−4 3.901254×10−6

10 2.198272×10−6 6.292470×10−3 3.884990×10−4 3.901106×10−6

Error profiles of u and v at t=4 obtained by using N = 441 number of nodal points
and4t = 0.01 are presented in Figures 1 and 2.
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Figure 1: Error profiles of u with N = 441 and4t = 0.01 at t = 4.

7.2 Example 2.

For the second test problem, we consider the reaction diffusion Brusselator System
(1) with Du = Dv = 0.002, B = 1

2 and A = 1 in the region Ω = {(x,y) : 0 ≤ x ≤
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Figure 2: Error profiles of v withN = 441 and4t = 0.01 at t = 4

1, 0≤ y≤ 1} with the initial and Neumann’s boundary conditions given by:

u(x,y,0) =
1
2

x2− 1
3

x3,

v(x,y,0) =
1
2

y2− 1
3

y3,

∂u(x,y, t)
∂x

∣∣∣
x=0

=
∂u(x,y, t)

∂x

∣∣∣
x=1

=
∂u(x,y, t)

∂y

∣∣∣
y=0

=
∂u(x,y, t)

∂y

∣∣∣
y=1

= 0,

∂v(x,y, t)
∂x

∣∣∣
x=0

=
∂v(x,y, t)

∂x

∣∣∣
x=1

=
∂v(x,y, t)

∂y

∣∣∣
y=0

=
∂v(x,y, t)

∂y

∣∣∣
y=1

= 0,

for which the exact solution is unknown. For small values of the diffusion coeffi-
cients Du and Dv, if 1−B+A2 > 0 then the steady state solution of the Brusselator
system (2) converges to equilibrium point (A,B/A). This is valid for Example 2
and is confirmed by the numerical solutions. Here, the relative error which will be
reported is defined as:

‖ eu ‖R=

√
∑

N1
i=1(ū

N2
i − ūN1

i )2

∑
N1
i=1(ū

N2
i )2

,
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and the infinity-norm are defined as:

‖ eu ‖∞= Max{| ūN2
i − ūN1

i |, i = 1,2, ...,N1},
where ūN

i is the approximation of u at node xi obtained with using N nodal points
and {xi, i = 1,2, ...,N1} ⊂ {xi, i = 1,2, ...,N2}. The numerical solution obtained
at some points with using N = 441 nodal points and 4t = 0.01 at different time
instants are presented in Table 4. This table confirms that (u,v)→ (A,B/A) when
t→∞. The results obtained at time instant t = 4 with using N2 = 441 and N1 = 121

Table 4: The solution obtained at some points.

(0.2,0.2) (0.4,0.6) (0.5,0.5) (0.8,0.9)
t u v u v u v u v
1 0.5532 0.2341 0.5549 0.2415 0.55529 0.24012 0.55747 0.24694
2 0.7258 0.4193 0.7260 0.4197 0.72603 0.41968 0.72623 0.42006
3 0.8419 0.5171 0.8420 0.5171 0.84200 0.51712 0.84202 0.51712
4 0.9302 0.5399 0.9302 0.5399 0.93023 0.53993 0.93023 0.53992
5 0.9830 0.5271 0.9830 0.5271 0.98309 0.52719 0.98308 0.52719
6 1.0037 0.5109 1.0037 0.5109 1.00373 0.51096 1.00372 0.51095
7 1.0066 0.5019 1.0066 0.5019 1.00665 0.50198 1.00665 0.50197
8 1.0040 0.4990 1.0040 0.4990 1.00409 0.49903 1.00409 0.49903
9 1.0015 0.4988 1.0015 0.4988 1.00156 0.49884 1.00155 0.49884

10 1.0002 0.4993 1.0002 0.4993 1.00025 0.49935 1.00024 0.49935
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

∞ 1 0.5 1 0.5 1 0.5 1 0.5

nodal points and different time step 4t are presented in Table 5. From this table,
it can be seen that by decreasing the size of the time step 4t, the accuracy of the
numerical solution increases.

Table 5: Results obtained at t = 4, with different time step 4t, N2 = 441 and
N1 = 121 points.

4t ‖ eu ‖∞ ‖ ev ‖∞ ‖ eu ‖R ‖ ev ‖R

0.1 2.903307 ×10−6 9.11515×10−7 1.788346 ×10−6 6.068615 ×10−7

0.05 2.7798 ×10−6 8.73329 ×10−7 1.756504 ×10−6 5.5350 ×10−7

0.01 2.772280 ×10−6 8.433490 ×10−7 1.733112×10−6 5.227214 ×10−7

0.005 2.771383 ×10−6 8.396910 ×10−7 1.730165×10−6 5.190052 ×10−7

0.001 2.770672 ×10−6 8.367800 ×10−7 1.727803×10−6 5.160543 ×10−7

Initial profiles of u and v are presented in Figures 3 and 4. Plots of the numerical
solutions obtained for u and v at t = 10 by using N = 441 nodal points and 4t =
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0.01 are presented in Figures 5 and 6. Figures 7 and 8 presents the numerical
solution at point (0.5,0.5) versus time t. From these figures we can see that at
every point of the domain the solution (u,v) tends to (A,B/A).
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Figure 3: Initial concentration profile of u.
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Figure 4: Initial concentration profile of v.
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Figure 5: The solution u at t = 10, N = 441,4t = 0.01.
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Figure 6: The solution v solutions at t = 10, N = 441,4t = 0.01.
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Figure 7: Plot of u(0.5,0.5, t) versus time t with N = 441,4t = 0.01.
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Figure 8: Plot of v(0.5,0.5, t) versus time t with N = 441,4t = 0.01.

7.3 Example 3. Pattern formation in Brusselator system

Consider the Brusselator equation (1) with no flux boundary conditions. The thresh-
old for the Turing instability is BT

c = [1+A
√

Du/Dv]
2. The wave number cor-
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Figure 9: u and v at t=2

responding to the most unstable Turing mode is given by k2
c = A/

√
DuDv. The

corresponding characteristic length of the pattern is defined by λc =
2π

kc
. This test

problem considers (1) with A = 4.5 and Dv
Du

= 8 resulting in BT
c ≈ 6.71. The pa-
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Figure 10: u and v at t=5

rameter B is chosen as B = 6.75 resulting in spot patterns as shown in Leppänen
(2004). The domain of the problem is chosen as [−1,1]2 and the diffusion coef-
ficients are fixed with Dv = 0.2 Du = 0.025 resulting in λc ≈ 0.79. The initial
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Figure 11: u and v at t=10

configuration was random perturbations around the uniform stationary state. Fig-
ures 9-12 presents the process of the pattern formation for the considered model.
In all contour graphs, coloration is determined by a constant threshold value, us for
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Figure 12: u and v at t=40

u and vs for v, such that in the regions with white color, u < us and v < vs while
the regions which experience the concentration u > us and v > vs are colored with
green. The results confirm that the profiles of the function v are always 180◦ out of
phase to those of u.
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8 Conclusions

A numerical method for solving the two dimensional nonlinear reaction-diffusion
Brusselator system was presented. The time variable was discretized by using one-
step θ method. Then the resultant elliptic type PDEs were considered in weak
forms on the local subdomains and the MLS approximation was used to approx-
imate the field variables. The Heaviside step function was used as test function
in each local subdomain. The nonlinear terms were treated by using the predictor
corrector scheme. Test problems reveal that the method is of high accuracy and
stability. A model system exhibiting Turing instability was given as a test problem
and the resulting patterns were presented.
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