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Exact Elasticity Solution for Natural Frequencies of
Functionally Graded Simply-supported Structures

S. Brischetto!

Abstract: This paper gives an exact three-dimensional elastic model for the free
vibration analysis of functionally graded one-layered and sandwich simply-supported
plates and shells. An exact elasticity solution is proposed for the differential equa-
tions of equilibrium written in general orthogonal curvilinear coordinates. The
equations consider a geometry for shells without simplifications, and allow the
analysis of the cases of spherical shell panels, cylindrical shell panels, cylindri-
cal closed shells and plates. The main novelty is the possibility of a general for-
mulation for these geometries. The coefficients in equilibrium equations depend
on the thickness coordinate because of the radii of curvature for the shell geome-
tries and/or the use of functionally graded layers. These equations are solved in a
layer-wise form by introducing a number of mathematical layers where the coeffi-
cients are constant. An exhaustive 3D overview of the vibration modes is given for
a number of thickness ratios, imposed wave numbers, geometries and embedded
materials. Results are given for one-layered functionally graded plates and shells
and for sandwich structures with external homogenous skins and an internal core
made of functionally graded material. These results can also be used as reference
solutions for the validation of analytical or numerical two-dimensional models for
functionally graded plates and shells.

Keywords: functionally graded materials, free vibrations, exact solution, three-
dimensional analysis, plates, shells.

1 Introduction

Functionally Graded Materials (FGMs) are a new generation of composite mate-
rials where two or more constituent phases have a continuously variable composi-
tion [Birman and Byrd (2007); Dong and Atluri (2011)]. FGMs present a number
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of advantages such as a potential reduction of in-plane and transverse through-
the-thickness stresses, an improved residual stress distribution, enhanced thermal
properties, higher fracture toughness, and reduced stress intensity factors [Bishay
et al. (2012); Bishay and Atluri (2012)]. In the design of sandwich structures, the
use of FGM cores is a valid alternative to classical cores. Sandwiches with FGM
cores have some properties (e.g., the continuity of in-plane stresses in the thickness
direction) that sandwiches embedding conventional cores do not have [Brischetto
(2009); Carrera and Brischetto (2009)]. The severe temperature loads involved
in many engineering applications, such as thermal barrier coatings, engine com-
ponents or rocket nozzles, require high-temperature resistant materials and high
structural performance. The use of FGM structures embedding ceramic and metal-
lic phases that continuously vary through the thickness could be an optimal solution
for these applications [Brischetto et al. (2008)]. Further FGM applications were
described in Mattei et al. (2012) where these materials were used to reproduce
biological structures characterized by functional spatially distributed gradients in
which each layer has one or more specific functions to perform. FGMs require an
accurate evaluation of displacements, strains, stresses and vibrations. These vari-
ables are fundamental in the design of FGM structures. Several 2D and 3D models
have been developed for the analysis of plate and shell elements embedding func-
tionally graded layers.

Two-dimensional solutions were proposed in the literature for the case of simple
problems for one-layered and multilayered FGM structures. Batra and Jin (2005)
proposed the first-order shear deformation theory (FSDT) coupled with the finite
element method (FEM) to study free vibrations of a functionally graded anisotropic
rectangular plate. The first-order shear deformation theory was derived and solved
in Efraim and Eisenberger (2007) for various combinations of boundary conditions.
The solution was obtained by using the exact element method and the dynamic
stiffness method for the free vibrations of annular FGM plates. Annular sectorial
FGM plates with simply supported radial edges and arbitrary circular edges were
also studied in Nie and Zhong (2008) where the state space method (SSM) and the
differential quadrature method (DQM) were used for free and forced vibration anal-
ysis. Shariyat (2009) analyzed vibration and dynamic buckling of FGM rectangular
plates subjected to thermo-electro-mechanical loading conditions by using a finite
element formulation based on a higher-order shear deformation theory. The first-
order shear deformation plate theory that uses the element-free kp-Ritz method was
presented in Zhao et al. (2009) for the free vibration analysis of metal and ceramic
functionally graded plates. The use of refined or higher order models for the free vi-
bration analysis of FGM plates was proposed in Dozio (2013) where advanced two-
dimensional Ritz-based models are developed. Wu and Chiu (2011) developed the
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meshless collocation (MC) and element-free Galerkin (EFG) method (using the dif-
ferential reproducing kernel (DRK) interpolation) for the quasi-three-dimensional
free vibration analysis. Further results for free vibration analysis of FGM plates
are based on two-dimensional models in closed form solution. Hosseini-Hashemi
etal. (2011) used the Reddy third-order shear deformation plate theory. Matsunaga
(2008) used a two-dimensional (2-D) higher-order theory. Xia and Shen (2008) de-
veloped a higher-order shear deformation plate theory and a general von Karman-
type equation for the inclusion of thermal effects. Zenkour (2005b) showed a si-
nusoidal shear deformation plate theory. Other two-dimensional models for FGM
plates consider the static analysis. Zenkour (2005a) investigated deformations in
FGM plates via either the shear deformation theories or the classical theories. The
extension of Carrera’s Unified Formulation to FGM plates was shown in Carrera et
al. (2008), Brischetto and Carrera (2010), Brischetto (2009) and Brischetto et al.
(2008) where one-layered and sandwich FGM structures were analyzed when sub-
jected to mechanical or thermal loads. Two-dimensional models for the analysis of
FGM shells are less numerous than models for FGM plate analysis. Among these,
Loy et al. (1999) used strains-displacements relations from Love’s shell theory
and the eigenvalue governing equation was obtained using Rayleigh-Ritz method.
Pradyumna and Bandyopadhyay (2008) analyzed free vibration analysis of func-
tionally graded curved panels by using a higher-order finite element formulation.
Matsunaga (2009) extended to shell case the work done in Matsunaga (2008) for
two-dimensional (2-D) higher-order plate theory. Wu and Jiang (2012) proposed
a quasi-3D model for the analysis of FGM cylinders on the basis of the Reissner
Mixed Variational Theorem (RMVT). In another recent model, free vibration anal-
ysis of cylindrical shells with holes was investigated by means of a beam model
[Cao and Wang (2007)].

An important feature in FGM plate and shell analysis is the use of three-dimensional
models. They allow two-dimensional model validations and checks to be made,
and they also give further details about three-dimensional effects and their impor-
tance. In the literature, three-dimensional solutions for FGM structures are given
for specific geometries separately and not in a general framework that is capable
to be reduced to different cases such as plates, cylindrical or spherical shells. In
a recent study for FGM plates, Dong (2008) investigated three-dimensional free
vibrations of functionally graded annular plates with different boundary conditions
using the Chebyshev-Ritz method. Li et al. (2008) analyzed free vibrations of func-
tionally graded material sandwich rectangular plates also using the Chebyshev-Ritz
method. A semi-analytical approach composed of differential quadrature method
(DQM) and series solution was adopted in Malekzadeh (2009) to solve the equa-
tions of motions for the free vibration analysis of thick FGM plates supported on
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two-parameter elastic foundation. Further three-dimensional models for free vibra-
tion analysis of FGM plates used a closed exact solution [Hosseini-Hashemi et al.
(2012); Vel and Batra (2004)]. Other three-dimensional exact models allow static
analysis of FGM plates. Kashtalyan (2004) and Xu and Zhou (2009) showed the
bending of one-layered functionally graded plates. Kashtalyan and Menshykova
(2009) investigated the bending of sandwich plates embedding FGM cores. Zhong
and Shang (2003) developed an exact three-dimensional analysis for a functionally
gradient piezoelectric rectangular plate that was simply supported and grounded
along its four edges. Further works analyze FGM shells. Alibeigloo et al. (2012)
investigated 3D free vibrations of a functionally graded cylindrical shell embed-
ded in piezoelectric layers. An analytical method for simply supported bound-
ary conditions and a semi-analytical method for non-simply supported conditions
were used. Zahedinejad et al. (2010) studied free vibration analysis of function-
ally graded (FG) curved thick panels under various boundary conditions using the
three-dimensional elasticity theory and the differential quadrature method. The
trigonometric functions were used to discretize the governing equations. Chen et
al. (2004) proposed free vibrations of simply supported, fluid-filled cylindrically
orthotropic functionally graded shells with arbitrary thickness. A laminate approxi-
mate model was employed that is suitable for an arbitrary variation of material con-
stants along the radial direction. An exact elasticity solution was presented in Vel
(2010) for the free and forced vibrations of functionally graded cylindrical shells.
Three-dimensional linear elastodynamics equations were used and they were sim-
plified to the case of generalized plane strain deformation in the axial direction. A
meshless method based on the local Petrov-Galerkin approach was presented for
three-dimensional (3-D) axisymmetric linear elastic solids with continuously vary-
ing material properties for the cases of 3D stress analysis of FGM bodies [Sladek
et al. (2005)], 3D heat conduction analysis of FGM bodies [Sladek et al. (2008)],
and 3D static and elastodynamic analysis of FGM bodies [Sladek et al. (2009)].

In the literature, studies about exact three-dimensional solutions for FGM shells
are not so numerous. Moreover, they analyze the various geometries separately and
do not give a general framework that is capable to consider different cases such as
plates or shells. The present paper aims to fill this gap by proposing a general for-
mulation for the equations of motion in orthogonal curvilinear coordinates that is
valid for plates, cylindrical shell panels, spherical shell panels and cylinders embed-
ding layers made of functionally graded material. A general overview is given for
those readers interested in both plate and shell analysis. This paper exactly solves
the equations of motion in general curvilinear orthogonal coordinates including an
exact geometry for shell FGM structures without simplifications. The author used
similar approaches for one-layered orthotropic structures and for multilayered or-
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thotropic plates and shells. To the best of the author’s knowledge, this is the first
time that this solution is proposed by means of the exponential matrix method for
the three-dimensional elastic free vibration analysis of FGM plates and shells. The
system of second order differential equations is reduced to a system of first order
differential equations, and afterwards it is exactly solved by using the exponential
matrix method. This methodology has been used in Messina (2009) for the three-
dimensional analysis of orthotropic plates in rectilinear orthogonal coordinates, and
in Soldatos and Ye (1995) for the exact, three-dimensional, free vibration analysis
of angle-ply laminated cylinders in cylindrical coordinates. The equations of mo-
tion written in orthogonal curvilinear coordinates allow general exact solutions for
plate and shell geometries with constant radii of curvature. The results proposed are
for simply supported square plates, cylinders, cylindrical and spherical shell panels
made of one FGM layer or for sandwich configurations embedding a function-
ally graded core. This investigation considers the effects of different functionally
graded materials, thickness ratios, geometries, imposed wave numbers, orders of
frequencies and vibration modes.

2 Constitutive and geometrical relations

Figure 1: Geometry, notation and reference system for shells.

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear
coordinates (a, B, z) (see Figure 1) are here given for a generic k isotropic layer
[Carrera et al. (2011)]. Coefficients C;; depend on the thickness coordinate z in the
case of functionally graded materials. The stress components (Gya, Opg, Oz, Op;
Oz Ogp) are linked with the strain components (€qa, €34, €z VBz» Yazs Yap) for
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each kK FGM layer as:

Ouak = C11k(2) €xak + Crax(2)€p gk + Cr3x(2) €k 1
oppr = C1ok(2) Eaar + Cook(2) €gpr + Co3x(2) €2k (2)
Ok = C131(2) Eaak + Ca3k (2) €ppx + C33x(2) €2k (3)
0k = Caai(2) VBak » “4)
Oazk = Cssk(2) Yazk » %)
Oupk = Cook(2) Yapi - (6)

The strain-displacement relations of three-dimensional theory of elasticity in or-
thogonal curvilinear coordinates, as also shown in Leissa (1973) and Soedel (2005),
are here written for the generic & layer of the multilayered FGM shell with constant
radii of curvature (see Figure 1):

Eqak = b;agl:; H:;a ; (7
i = ;ﬁgﬁ R ®)
Exzk = 8;;,( ; ©)
Yook = I%Baa”g#a;;—f,;;ﬁ, (10)
ook = - g+ (an
Yaﬁk—l_llagz“‘[_]lﬁglg- (12)
The parametric coefficients for shells with constant radii of curvature are:
Ha_(1+1;)_(1+z;z/2), Hﬁ_(1+I;)_(1+Z—RZ/2), H.=1, (13)

h is the total thickness of the structure. Hy and Hg depend on z or Z coordinate
(see Figure 2). H; = 1 because z coordinate is always rectlinear. Ry and Rg are the
principal radii of curvature along the coordinates o and 3, respectively. Symbol
indicates the partial derivatives. General geometrical relations for spherical shells
in Eqgs.(7)-(12) degenerate into geometrical relations for cylindrical shells when R
or Rg is infinite (with Hq or Hg equals one), and they degenerate into geometrical
relations for plates when both Ry and Ry are infinite (with Hy=Hg=1) [Carrera et
al. (2011); Leissa (1969)].
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Figure 2: Thickness coordinates and reference systems for mathematical layers in
functionally graded plates and shells.

Geometrical relations (Eqgs.(7)-(12)) are inserted in constitutive equations (Eqgs.(1)-
(6)) and partial derivatives %, % and a% are indicated with subscripts ¢, g and

2z

Cii(z) Ciik(2) Ciok(2) Cia(z)
- “12z) 14
Coak He Uk o HoRy Wi+ Hy Vit Hg Ry wi+Cisk(Dwez,  (14)
Ciok(2) Ciok(2) Cooi(2) Cooi(2)
= C. 15
OBk Hy o + HoRy, wi+ Hj Vep Tt Hy Ry wi+Cosr(2)wiz,  (15)
C13(2) Ci3(2) Co3i(z) Cozk(2)
= 16
Ok H, o + HoRy, + Hy Vig+ HyRy wi +Casr(z)wiz,  (16)
Caar(2) Cuar(z)
Bk = Wi+ Caai(2)Viz — Vi (17)
Z Z HBRB
Cssi(z Cssi(z
azk = ssk( )Wk,a + Cssi(z)uy; — sk >Mk ; (18)
o HOCR(X
Coor(2) Cesi(z)
OuBk = Vi + u (19)
afk H, k,o Hﬁ k

3 Equilibrium equations

The three differential equations of equilibrium written for the case of free vibration
analysis of multilayered spherical shells with constant radii of curvature Ry and Rg
are here given (the most general form for variable radii of curvature can be found
in Tornabene (2012) and Hildebrand et al. (1949)):

dCuak
do

ao-azk + (2& + ﬂ

Jdo
+ Hy—PX | HoHg

Hg 9B

)Oazk = P (2)HaHplix , (20)
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aGaBk 86;;,3,( 86,3 k 2H, ng .

Hy =g T Ha—5 5~ + HaHy ==+ Ry " R, ) Opk = Pu&)HaHpiy, (21)
0 Ouzk dOp do. Hg H, Hg Hg

Hﬁ aaz + Hgy al; +HaH[3 a? EGomck ﬁ ——OBBk T (7 +— RB )Gzzk

= pr(z)HoHpviy
(22)

where py(z) is the mass density that varies through the thickness of a functionally
graded layer. (Gaak, OB Bk; Ozks OBk, Oazks Oapi) are the six stress components and
iix, Vi and Wy indicate the second temporal derivative of the three displacement
components u, vr and wy, respectively. Each quantity depends on the k layer. Ry
and Rp are referred to the mid-surface Qg of the whole multilayered shell. Hy,
and Hg continuously vary through the thickness of the multilayered shell and they
depend on the z thickness coordinate.

The first step is the substitution of the Eqs.(14)-(19) in Egs.(20)-(22) to obtain a
displacement form of the equilibrium relations. This form of differential equations
of equilibrium is given for a generic k FGM layer:

HgCssi(z)  Cssi(z) Cssi(z)Hg  Cssi(z)Hg
— - 23
( HaRZ RoRp Ju+ ( Re | R Ju =
Ciu(z Coor(2)H
( ) koo + (66/}5{;()6) upp+ (CSSk(Z)HtxHﬁ) Uk 2z
Cllk(Z)Hﬁ Ciok(z) CSSk(Z)Hﬁ Cssi(z)
(Clz" ) + Coo( )>V"’“’3 + ( HoRy Rg T TH.R, Rg )W"’“
<C13k 7)Hp +Cssi(z )Hﬁ>Wk,az = pi(z)HoHpgiiy. ,
H H C. H
(- Rl Culdy, , (CuileHe  Culdllyy, e
HgRy aRp B o
Ceox(2)Hp Cooi(z)He
+ <T)Vk,aa + <Hﬁ>vk,ﬁﬁ + (C44k(Z)HaHﬁ)Vk,zz

C. H C. C H C
44k (2) L 44k(Z)+ 22k(2) @, 12k(Z)>Wk_ﬁ
HﬁRB R HBRﬁ Ry i

+ (C44k(Z)Ha + C23k(Z)Ha>Wk.ﬁz = px(2)HoHp iy

+ (Clzk(z) +C66k(z)>uk’a/3 + (
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<C13k(Z) n Co(z)  Cik(2)Hp  2Cixu(z) C22k(Z)Ha) 25)
ReRg ~ RaRp HoR, RoRp HgR}
( Cssk(z)Hg  Ciai(z)  Cru(2)Hg Cm(Z))
- - - - e
HaRa Rﬁ HaRa Rﬁ ’
n ( Caa(2)Ho C23k(Z) ~ Co(29)Ho C12k(Z))v
HgRy Rq HgRy Ry /) *
Cazi(z HB C33k( JHq,
+ Wiz + ( Cssk(2)Hp + Ciax(2)Hp | ug o
(% Ry et ( e
H H
+ <C44k JHo + Co3(z )Hoc>vk7[3z + <C55k( )H§>Wk aa+ (C44k( )HZ)Wk,,Bﬁ
(C33k HaHﬁ>Wk z = pk(Z)HOCHﬁWk .

Ry and Rg refer to the reference mid-surface €2 of the multilayered shell. Hgy
and Hpg are calculated through the thickness of the multilayered shell by means of
Eq.(13). Equilibrium relations in Eqs.(23)-(25) are for spherical shell panels, they
automatically degenerate into equilibrium equations for cylindrical closed/open
shell panels when Ry, or Ry is infinite (with Hy or Hg equals one) and into equilib-
rium equations for plates when Rq and Rg are infinite (with Hy, and Hg equal one).
In this way, a unique and general formulation is possible for any geometry.

Elastic coefficients C;; depend on the thickness coordinate z when the k layer is a
functionally graded material layer. Parametric coefficients Hy, and Hg depend on
the thickness coordinate z in the case of shell geometry and they are equal 1 in case
of plates. Therefore, Eqs.(23)-(25) do not have constant coefficients because of
FGM layers and/or shell geometry. In order to obtain Eqs.(23)-(25) with constant
coefficients, each k layer is divided in / mathematical layers where the coefficients
Cij can be assumed as constant and parametric coefficients Hy and Hg can easily
be calculated in the middle of each mathematical layer. The Eqs.(23)-(25) can be
rewritten by using j = k x [ mathematical layers that allow constant coefficients to
be considered [Carrera et al (2008); Brischetto and Carrera (2010)].

The closed form of Eqs.(23)-(25) is obtained for simply supported shells and plates.
The three displacement components have the following harmonic form:

uj(o, B,z,1) = Uj(z)e' cos(aa)sin(BB) . (26)
vi(a, B,z,1) = Vi(z)e'® sin(aa)cos(BB) , (27)
wi(e,B,z,t) = Wj(z)eiwtsin(dot)sin(ﬁﬁ) , (28)

where Uj(z), Vj(z) and W;(z) are the displacement amplitudes in ¢, B and z direc-
tions, respectively. i is the coefficient of the imaginary unit. @ =27 f is the circular
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frequency where f is the frequency value, ¢ is the time. In coefficients & = "%
- a

and
B = %7, m and n are the half-wave numbers and a and b are the shell dimensions in
o and B directions, respectively (calculated in the mid-surface Q).

Eqs.(26)-(28) are substituted in Eqs.(23)-(25) to obtain the following system of

equations for each j mathematical layer:

<_ CssjHp  Css, _azclleﬁ _BZC66jHa
HaRza RaRﬁ Ha Hﬁ

) CiiiHs _ Cr:  CssiHg  Css:
+<—6¢[3C12] aBC66J)V+< A b R i i WY 55’)Wj

HgRy Rg HoRy Rg
Css:H, Css:H,
+( 55 ﬁ+ 55
Ra RB

—i—ijaHﬁa)z) Uj

)UJ z+(OCC13JHﬁ + aCSS]Hﬁ>Wj + (CSSJH(xHB) jz=0,
(29)

= = CasjHa  Casj  _,CosjHp  5,CnjHy
—aBCesj — apC ~)U-+<—+——’—a — !
(- aBCss; — @B )U; W, Ry C e P,
5 CagjHy, C44] CnjHy  7Cij
+ijocHBw2)Vj+(B +ﬁ +B +B )
HgRp HgRp

Cy4;H, Cyy;iH, ~ _
—i—( 4;; =+ RJ ﬁ)Vj,z—i—(3C44jHa+ﬁC23jHa)sz+(C44]HocHﬁ) Viz=0,
[0
(30)
CssiH, Ci3; C11H, Croi ~ CyqiH, ~Cr3i =CxpiH
<(_X 55j ﬁ_(_x 13]+(_x 11 ﬁ+(_x 12])U' (B 44 O(_B 23j ﬁ 22l

+ﬁC12,> ( Ci3j n Cosj  CujHp  2Cpj  CnjHg _dZCSSjHﬁ

RaRs ' RoRg HoR%, RaRp HpR? Hy,

c i . _
Bz 44j a+ijaHﬁw> (—O{C55jHﬁ—OCC13jHﬂ>Uj,z+<_ﬁc44jHa

Hp

C33Hg n C33;Ho

Rq Rp ) fZ*(C%/HaHﬁ) Wiz =0. 31)

- BCzsta) Vit (

Elastic coefficients and mass density can be assumed as constant in each j mathe-
matical layer even if a functionally graded material is considered. Parametric co-
efficients H,, and Hp are also constant because the thickness coordinate z is known
at the middle of each j layer. The system of Eqgs.(29)-(31) is written in a compact

form by introducing constant coefficients A,; for each block O with s from 1 to
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19:
AUUJ' —|—A2J'Vj —|—A3jo —|—A4jUj’z —|—A5jo’z —|—A6jUj,zz =0 5 (32)
A7;U;+AgiVi+AgiW;+A Vi, +A11jWj,+A12jVj.=0, (33)

ApjUj+A14jVi+A1siWi+A6Uj . +A17Vi+AigjW, . +A19;W; . =0. (34)

Eqs.(32)-(34) are a system of three second order differential equations. They are
written for spherical shell panels with constant radii of curvature but they automat-
ically degenerate into equations for cylindrical shells and plates.

3.1 Solution for multilayered structures

The system of second order differential equations can be reduced to a system of
first order differential equations by using the method described in Open Document
and Boyce and DiPrima (2001). This methodology is applied to Eqs.(32)-(34):

/

A 0 0 0 0 0 U; 0 0 0 A, 0 0 U;
0An; 0 0 0 0 ||V 0 0 0 0 Ay O 4
0 0 Algj 0 0 0 Wj . 0 0 0 0 0 A19j Wj
0 0 0 Ag; 0 O Uil — | —Ai; Ay —As; —As; 0 —As; | | U]
0 0 0 0Ap O v —A7; —Agj —Agj 0 —Aj;—Au;| | V]
0 0 0 0 0 Ap; | [W —A13j—A14j —Aisj —Aiej —A17j —Aisj | | W]
(35
Eq.(35) can be written in a compact form for a generic j layer:
ay;
]l _ AU
ng — AJU] 3 (36)
where 8;? = UJf and Uj = [U; V; W; Ujf ij WJ’] Eq.(36) can be written as:
!
DU, = AU; (37)
/ -1
U =D 'A U, (38)
UJ{ =A; Uj, (39)

with A7 =D/ 'A;.
In the case of plate geometry coefficients A3, Asj, Agj, A10j, A13j, A1aj and A g are

zero because the radii of curvature Ry and Ry are infinite. The solution of Eq.(39)
can be written as [Boyce and DiPrima (2001); Zwillinger (1997)]:

U; (ZJ) = eXp(Aj*Zj)Uj(O) with Z; € [O,hj] , 40)
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where Z; is the thickness coordinate of each j layer from O at the bottom to /; at
the top (see Figure 2). The exponential matrix is calculated with Z; = h; for each j
layer as:

A*Z A*3 A*N
wok ) k1 ] 1.2 J 1.3 N
A" =exp(Aih)) =1+ Alh; + 51 —-h + 30 hi+... + N, hy", (41

where [ is the 6 x 6 identity matrix. This expansion has a fast convergence as
indicated in Moler and Van Loan (2003) and it is not time consuming from the
computational point of view.

If we consider j = Ny layers, N — 1 transfer matrices Tj_;; must be calculated
by using for each interface the following conditions for interlaminar continuity of
displacements and transverse shear/normal stresses:

b__ t b __ t b __ .t

Uj=Uj 5 Vi=Vig, Wi=W q, (42)
b __ b __ <t b __

GZZJ G zzj—1 Gazj*G(xzjflv G[}ijcﬁzjfla (43)

that means each displacement and transverse stress component at the top (t) of the
Jj-1layer is equal to displacements and transverse stress components at the bottom
(b) of the j layer.

The continuity of transverse shear stress O is given as:

C Cssj— e C
55] I'Wt |+ Cssj1U tss; 1 U; SSJC_XWb+C55] 55) UJb,
bt Hy, \Re 7' HE, ~ HYRq
(44)
/ 1 /Cssi Css; 1 Cssj Css;
up = ( Bilg 5lffa>wg + (— L B Yy
C55j Hajfl oj C55j Haj, 1Ra HajROC 45)
C55j71) I
U
+< Cssj / 17!
The continuity of transverse shear stress 0. is given as:
Casj—1 Casj—1 Casj z00b v Caaj
ﬁWt 1+C44 1V -yt = 7[3W 4+ CyyiV," — V.
1 J= 1 Jj—1 b J A b J
Hg; Hg; 1Rp Hpg; Hpg Rp
(46)
' 1 /Casj Cyq 1 Caaj—1 Caaj
o (G- SR+ (e )
44j ﬁ] 1 H 44j Bj—1"B HﬁjRﬁ 47

Cagj—1\
+(EE v
Caaj /771
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The continuity of transverse normal stress o, is given as:

~Cizj1 Cizj-1 ~ Cxj Ca3j1

aU;_; + Wi, BVi + Wi,
H(tXJ 1 H(t)u lRa o H[t3 -1 H[g] IRB !
/ C13J b C13j o Cosj b Cosj b b
+Ca3j Wil = QU} + W) = LBV + W 4 Cag W
LT R, HY, HE Ry
(43)
/ 1 Cizjo1 . Cizj _ 1 Cozj1 Co3
wh= (— o+ — >U’ ( B+ ’B)V’_]Jr
7 Gy N\ HYj HY,; Ci3j\  Hp, H;;] /
(49)
1 Cizj1 Co3j 1 Ci3j Co3;j . C33j-1 p
C ( Re H. Rs H'R, H°R )Wf—‘+(c )W
33 \Hg; Bj—11%B ajta BB 33j

The continuity of displacement components in Eq.(50) has also been used to obtain
the explicit form of Eqs.(45), (47) and (49):
b _ gt b _ b _

Ui =U;_,, V, —V}_l, W; —W;_l. (50)
In Egs.(44)-(50), 7 and b indicate top and bottom of j — I layer and j layer, respec-
tively. &, B, Ry and Rp refer to mid-surface € of the structure. Hy and Hg are
calculated at the interfaces between j — 1 layer and j layer. Eqs.(44)-(50) can be
grouped in a system:

U1 71 0 0 0 0 0] r U’
Vv 0O 1 0 0 0 O Vv
W 10 0 1 0 0 O W 1)
U’ | m 0L .53 0 O U’ ’
%4 0 T, 5 0 Tg O %4
W, Il %% 00 Tl LW],
Eq.(51) in compact form is:
=Ty U, (52)

The calculated Tj_ ; matrices allow vector U at the bottom (b) of the j layer with
vector U at the top (t) of the j — 1 layer to be linked. Eq.(52) can also be written as:

U;(0) = Tj-1; Uj-1(hj—1), (53)
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where U; is calculated for Z; = 0 and Uj_ is calculated for Z; 1 = h; ;. U at the
top of the j layer is linked with U at the bottom of the same j layer by means of the
exponential matrix AJ?“‘ in Eq.(41):

Uj(hy) = Aj™ U;(0), (54)
Eq.(53) can recursively be introduced in Eq.(54) for the Ny — 1 interfaces to obtain:
UNL (hNL) = A;f; TNL—LNL A;I*Lfl TNL—z-,NL—] ...... A;* T1’2 AT* U] (0) s (55)

the definition of the matrix Hy, for the multilayered structure allows Eq.(55) to be
written as:

Uy, (hn,) = Hin Uy (0), (56)

that links U calculated at the top of the last Ny layer with U calculated at the bottom
of the first layer.

The structures are simply supported and free stresses at the top and at the bottom
of the whole multilayered shell, this feature means:

Oy = Oq; = 0g, =0 for z=—h/2,+h/2 or Z=0,h, (57)
w=v=0, 64q =0 for x=0,a, 58)
w=u=0,0p5=0 for B=0,b. (59)

Boundary conditions given by Eqs.(58) and (59) are identically satisfied by the dis-
placement field in Egs. (26)-(28). These boundary conditions do not take part to the
determination of the maximal displacement amplitudes addressed in the remaining
of the section.

Transverse shear/normal stresses written for a generic value of Z in the j layer are:

_ Ci3j U, Ci3j Co3;j Ca3;j

0yj(2) = —Q W;— Vit — =W+ C33;W; .,
ZZJ( ) H(x( ) Ha( )R(x ﬁ ( ) J HB(Z)Rﬁ J 33jWjz
(60)

5 Cuj Cyy;j
o (Z) =B —W:+CyyiV,, — —V;, 61)
Bzj Hﬁ(z) J JiViz Hﬁ(Z)Rﬁ J

-~ Gssj Css;
Oazj(Z) = aHia(é) W;+Css;Uj , — WZ)JRO,Uj’ (62)

Imposing Egs.(57) at the the top (t) of the last Ny, layer by using Eqs.(60)-(62) with
Ry, Rg, & and B calculated in the mid-surface € of the shell, and with H, and HI’3



Exact Elasticity Solution 405

calculated at top of the whole shell (Z = h):

C 13N, Cizw, = Cop Cay,
GZtZNL = H[ - UNL H&R; W](/L - ﬁ Hlts L V[i’L + HE ; WNL + C33NLWNL Z 07
(63)
C44N Cuan,
G;SZNL B ﬁ L WNL + C44NLVNL z ng ; VNL 0, (64)
C55 Css
Ooun, = NL WNL +Cssn, Uy, . — 4 UNL 0, (65)

Hl

Imposing Eqs.(57) at the tkle bottom (b) of the first layer (j = 1) by using Eqs.(60)-
(62) with Ry, Rg, & and B calculated in the mid-surface g of the shell, and with
H?, and HY calculated at bottom of the whole shell (Z = 0):

B
C C C C
»  =C131,p 131 b 231 231 (b b
O = —Q Hb Ui +H3Rawl ﬁ Hg Vl +HgRﬁ Wi +C331W17Z =0, (66)
Caa Caa
Op, = ﬁ — WP+ Can VY — TR — V=0, (67)
[3 BB
C C
b =551 b b 551 b
GOCZI - aTgWI +C551U1,Z - %Ul — O (68)

Eqgs.(63)-(65) in matrix form are (Uy, (hx, ) means U calculated at the top of the
whole multilayered shell, last Ny, layer with Zy, = hy, ):

C C c c [ UNL (hNL) ]
—apt B (ngﬁ + m§> 0 0 GCuy | | Va(hy) 0
o o RS o cw o || M|
T ﬁ T U
CSSNL (f dCSSﬁ]L C 0 0 V/;/L hNL O
" HLRq HY, 55N JYL(< NL))
_WNL hNL .
(69)

Eqs.(66)-(68) in matrix form are (U;(0) means U calculated at the bottom of the
whole multilayered shell, first layer 1 with Z; = 0):

R

~a<y BCZ“ (,ﬁ;;aﬂfg;;ﬁ) 0 0 Cu Vi (0) 0
Wi (0

0 I%‘;elﬁ B C441 0 Cuy 0 U} ((Oi 1o

—0 diij: Gsi 0 0 || v 0
L W[(0) |
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(70)

Eqgs.(69) and (70) in compact form to express the free stress state at the top and
bottom of the whole shell are:

By, (hNL) Un, (hNL) =0, (71)
B;(0) U;(0) =0, (72)
Eq.(56) can be substituted in Eq.(71) by considering a total number of layers equals
NLZ

By, (hn, ) H Ui (0) =0 (73)

Eqs.(72) and (73) are now grouped in the following system:

Pt o =18 [u©]=]0]. 9

Matrix E has always (6 x 6) dimension, independently from the number of layers
Ny, even if the method uses a layer-wise approach. The solution is implemented
in a Matlab code where only the spherical shell method is considered because it
automatically degenerates into cylindrical open/closed shell and plate methods.

The free vibration analysis means to find the non-trivial solution of Uy (0) in Eq.(74)
by imposing the determinant of matrix E equals zero:

det[E] = 0, (75)

Eq.(75) means to find the roots of an higher order polynomial in A = @?. For
each pair of half-wave numbers (m,n) a certain number of circular frequencies are
obtained depending on the order N chosen for each exponential matrix Aj** and the
number Ny of mathematical layers.

A certain number of circular frequencies @, are found when half-wave numbers
m and n are imposed in the structures. For each frequency i, it is possible to
find the vibration mode through the thickness in terms of the three displacement
components. If the frequency @, is substituted in the (6x6) matrix E, this last
matrix has six eigenvalues. We are interested to the null space of matrix E that
means to find the (6 x 1) eigenvector related to the minimum of the six eigenvalues
proposed. This null space is the vector U calculated at the bottom of the whole
structure for the chosen frequency @;:

T
s’

Ui, (0)=[ Ui(0) Vi(0) Wi(0) U{(0) V/(0) W(0) | (76)
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T means the transpose of the vector and the subscript @, means that the null space
is calculated for the circular frequency ;.

It is possible to find Ui, (Zj) (with the three displacement components Ujq, (Z;),
Vie,(Zj) and Wjg, (Z;) through the thickness) for each j layer of the multilayered
structure by using Eqs.(53)-(56) with the index j from 1 to Ny. The thickness
coordinate Z can assume all the values from the bottom to the top of the structure.

4 Results

The three-dimensional exact solution presented in this paper for the free vibration
analysis of functionally graded plates and shells is validated by means of a compar-
ison with two published assessments. The first assessment is the free vibration anal-
ysis of a sandwich square plate with an FGM core as proposed in Li et al. (2008).
The second assessment is a one-layered FGM cylindrical shell panel as shown in
Zahedinejad et al. (2010). After this preliminary validation the method can be used
with confidence to investigate the free vibrations of square plates, cylindrical shell
panels, cylinders and spherical shell panels (see Figure 3).

Figure 3: Geometries considered for the assessments and benchmarks: (a) square
plate, (b) cylindrical shell panel, (c) cylinder, (d) spherical shell panel.
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4.1 Validation of the method

0.1h '\

0.8h E(2) [GPa]

LJE@) [GPa]

N T —

0.1h /

oot
Em=70

Figure 4: Functionally graded material law through the thickness direction of the
sandwich plate for assessment 1 (on the left) and the one-layered cylindrical shell
panel for assessment 2 (on the right).

The first assessment [Li et al. (2008)] considers a simply supported square sand-
wich plate (see geometry in Figure 3a). The sandwich plate has two external skins
with thickness 41 = h3 = 0.1h and an internal core with thickness s, = 0.8h. The
bottom skin is ceramic and the top skin is metallic, while the core is made of a func-
tionally graded material. Details about this configuration can be found in Figure 4
and in Li et al. (2008). The metallic (m) material has Young modulus E,, = 70GPa,
mass density p,, =2707kg/ m?> and Poisson ratio v,, = 0.3. The ceramic (c) material
has Young modulus E, = 380GPa, mass density p, = 3800kg/m> and Poisson ratio
V. = 0.3. The functionally graded core has constant Poisson ratio v = 0.3. Young
modulus and mass density continuously vary through the thickness direction z as:

E(z) = En+ (Ec — En)Vin, (77)
P (z) = P+ (Pec—Pm)Vm (78)

where V,, is the volume fraction of the metallic phase that continuously varies
through the thickness as:

Vn=1-=V.=1-(05+z/h)", (79)

V. is the volume fraction of ceramic phase, z varies from —h/2 to h/2. Expo-
nent p can assume values equal or greater than zero. Li et al. (2008) propose a
three-dimensional solution by means of the Ritz approach, and give the fundamen-
tal frequency for half-wave numbers m = n = 1 and for several thickness ratios
a/h and exponents p. The circular frequencies are given in non-dimensional form

= w%z, /g—g with Eg = 1GPa and py = 1kg/m>. Table 1 shows the comparison
between the model proposed in Li et al. (2008) and the present three-dimensional
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Table 1: First assessment: sandwich plate with FGM core. Fundamental circu-

Po
Eo

ratios a/h and exponents p for the material law. Comparison between 3D model
based on Ritz approach by Li et al. (2008) and the present 3D exact solution.

lar frequency @ = a)% for half-wave numbers m=n=1 and different thickness

p 0.5 1.0 2.0 5.0 10
a/h =100

Lietal. (2008) 1.33931 1.38669 1.44491 1.53143 1.59105

Present 3D 1.33928 1.38671 1.44494 1.53148 1.59113
a/h=10

Lietal. (2008) 1.29751 1.34847 1.40828 1.49309 1.54980

Present 3D 1.29748 1.34848 1.40829 1.49311 1.54984

a/h=>5
Lietal (2008) 1.19580 1.25338 1.31569 1.39567 1.44540
Present 3D 1.19575 1.25337 1.31566 1.39564 1.44537

exact solution. The two methods are in accordance for each thickness ratio a/h and
exponent p for the FGM law.

The second assessment [Zahedinejad et al. (2010)] considers a simply supported
cylindrical shell panel (see geometry in Figure 3b). The shell has the two dimen-
sions a and b that are coincident (a = b), the thickness ratio investigated is a/h
equals 5. Two different radii of curvature R, are considered, that means a/R
equals 0.5 or 1. The radius of curvature Ry is infinite. The shell is one-layered
and is made of a functionally graded material as shown in Figure 4. In this case
the structure is fully metallic at the bottom and fully ceramic at the top. This fea-
ture means that Egs.(79) and (80) are still valid, but the volume fraction of ceramic
phase V. is considered in place of the volume fraction of metallic phase V,,:

Ve =(0.5+2z/h)". (80)

The metallic phase and the ceramic phase have the properties already seen for the
first assessment [Li et al. (2008)]. The only difference is for p,,, which is equal to
2702kg /m? (the first assessment considers p,, = 2707kg/m>). These material data
can be found in Zahedinejad et al. (2010), who propose a three-dimensional dif-
ferential quadrature method for the free vibration analysis of the cylindrical panel
for imposed half-wave numbers m = n = 1 and for several exponent values p. The

results are given as non-dimensional circular frequencies @ = wh, /%. Table 2
shows that the present three-dimensional exact model gives results similar to those
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Table 2: Second assessment: one-layered FGM cylindrical shell panel with thick-
ness ratio a/h=5. Fundamental circular frequency @ = wh, / % for half-wave num-

bers m=n=1 and different radii of curvature R, and exponents p for the material
law. Comparison between 3D model based on the differential quadrature method
by Zahedinejad et al. (2010) and the present 3D exact solution.

p 0.0 0.5 1.0 4.0 10
a/Ry =0.5

Zahedinejad et al. (2010) 0.2113 0.1814 0.1639 0.1367 0.1271

Present 3D 0.2129 0.1817 0.1638 0.1374 0.1296
a/Rq=1.0

Zahedinejad et al. (2010) 0.2164 0.1852 0.1676 0.1394 0.1286

Present 3D 0.2155 0.1848 0.1671 0.1392 0.1300

obtained with the method proposed by Zahedinejad et al. (2010). The minor dif-
ferences are due to the fact that the present 3D model is given in exact form while
the 3D model in Zahedinejad et al. (2010) is proposed by means of a numerical
method such as the differential quadrature method.

In the two proposed assessments, the present 3D solution uses Ny = 100 mathemat-
ical layers. The exponential matrix in Eq.(41) is approximated with order N = 3.
The convergence of the approximation is very fast, a small N value is used because
of the large number of layers NV; employed to correctly include the curvature effect
and the gradation law of the material. The computational cost is low because the
E matrix in Eq.(74) has always 6 x 6 dimension even if a layer wise approach is
employed and N, = 100 mathematical layers are used. The same values of N and
N, are also employed for benchmarks proposed in Section 4.2.

After these two preliminary assessments, the present three-dimensional exact so-
lution can be considered as validated for the free vibration analysis of one-layered
and multilayered FGM plates and shells.

4.2 Benchmarks

Four different geometries are considered in the new benchmarks proposed (see Fig-
ure 3 for further details). The square plate has dimensions a = b = 5,20, 100 and
thickness ratios a/h = 5,20, 100. The cylindrical shell panel has a radius of curva-
ture R, = 10 and an infinite radius of curvature Rg in B direction. The dimensions
are a = %Ra and b = 20. The thickness ratios are Ry /h = 1000, 100, 10. The cylin-
der has the same radii of curvature of the cylindrical shell panel, but it is closed in
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Figure 5: Functionally graded material law through the thickness direction for the
one-layered benchmarks (on the left) and sandwich benchmarks (on the right).
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Figure 6: VOll;me fraction of ceramic phase, Young modulus and mass density
through the thickness of the one-layered FGM structures (first row) and through

the thickness of the sandwich FGM structures (second row).

circumferential direction that means a = 27R,. The other dimension is b = 100.
The thickness ratios are Ry /h = 1000, 100, 10. The last geometry is the spherical
shell panel with radii of curvature Ry = Rg = 10, dimensions a = b = 5Rq, and
thickness ratios Ry /h = 1000, 100, 10. All these structures are simply supported.
Each geometry includes two different material configurations (see Figure 5). The
first material configuration is a one-layered functionally graded material structure
where the bottom is fully metallic (m) (Aluminium Alloy Al2024: Young modu-
lus E,;, = 73GPa, mass density p,, = 2800kg/ m?> and Poisson ratio v,, = 0.3) and
the top is fully ceramic (c) (Alumina Al,O3: Young modulus E. = 380GPa, mass
density p. = 3800kg /m3 and Poisson ratio V. = 0.3). The Poisson ratio is con-
stant through the thickness. Mass density and Young modulus vary through the
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Figure 7: Benchmark 1. One-layered FGM plate, first three modes for thickness ra-
tio a/h=20, exponent for material law p=1.0 and several half-wave numbers (m,n).

thickness by means of the law indicated in Eqs.(79)-(80) where the volume frac-
tion considered is that indicated in Eq.(82) for the ceramic phase (V. = 0 at the
bottom and V, = 1 at the top). The exponents p used for the material law are
p=0.0, 0.5, 1.0, 2.0. p=0.0 means fully ceramic structure. The second material
configuration is a sandwich structure with two external skins with a thickness of
hy = hz = 0.15h and an internal FGM core with a thickness of 7, = 0.7h. The bot-
tom skin is metallic (Aluminum Alloy Al2024) and the top skin is ceramic (Young
modulus E, = 200G Pa, mass density p. = 5700kg/ m?3 and Poisson ratio v, = 0.3).
The functionally graded core has constant Poisson ratio. Mass density and Young
modulus have the same variation already indicated for the first material configu-
ration. The p exponents are 0.5, 1.0 and 2.0. A classical core is also considered
with material properties E = E"EE’" ,p="2 “;p “ and Poisson ratio v = 0.3. Figure 6
shows the thickness variation for volume fraction of ceramic phase, Young modulus
and mass density for the one-layered FGM structures (first line) and the thickness
variation for the sandwich structures embedding an FGM core (second line). Eight
different benchmarks are proposed to show a complete overview of the free vi-
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Figure 8: Benchmark 2. One-layered FGM cylindrical shell panel, first three modes
for thickness ratio Ry /h = 10, exponent for material law p=0.5 and several half-
wave numbers (m,n).

bration analysis of one-layered and sandwich FGM plates and shells: one-layered
FGM plate (see Table 3 and Figure 7), one-layered FGM cylindrical shell panel
(see Table 4 and Figure 8), one-layered FGM cylinder (see Table 5), one-layered
FGM spherical shell panel (see Table 6), sandwich FGM plate (see Table 7), sand-
wich FGM cylindrical shell panel (see Table 8), sandwich FGM cylinder (see Table
9 and Figure 9), sandwich FGM spherical shell panel (see Table 10 and Figure 10).

The first three circular frequencies in non-dimensional form (@ = a)(%)2 % for

plate geometry and @ = 1—(‘(’)(%‘)‘)21 / %:- for shell geometries) are calculated in Tables

3-10 for various pairs of half-wave numbers (m,n), several thickness ratios and var-
ious exponents p for the material law. The vibration modes plotted in Figs. 7-10
are given in terms of non-dimensional values such as u* = u/|umax|, v = v/|Viax
w* =w/|Wpay| and z* = Z/h.

B

Table 3 presents thick and thin square one-layered FGM plates (Benchmark 1). The
first three vibration modes are shown for half-wave numbers m=n=1,2,3. Different
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Table 3: Benchmark 1. One-layered FGM plate, first three circular frequencies ®

numbers (m,n), thickness ratios a/h and exponents p for the material law.

= 0(%)?, \m\m for different half-wave

P 0.0 0.5 1.0 2.0

a/h 100 20 5 100 20 5 100 20 5 100 20 5
m=n=1

I 5.9713 5.9219 5.3036 5.0502 5.0126 4.5316 45529 4.5193 4.0923 4.1453 4.1118 3.6943

1I 275.53 55.107 13.777 246.60 49316 12.312 22827 45.643 11.368 206.11 41.202 10.225

I  465.73 93.113 23.136 416.82 83.325 20.666 385.84 77.106 19.026 348.37 69.578 17.010
m=n=2

I 23.860 23.108 16.882 20.182 19.603 14.644 18.195 17.681 13.278 16.564 16.054 11.876

11 551.07 110.21 27.554 49320 98.605 24.514 456.53 91.219 22.453 412.19 82.284 19.955

I 93142 186.01 45.071 833.60 166.39 40.106 771.60 153.82 36.330 696.63 138.55 31.591
m=n=3

I 53.592 50.055 30.318 45.338 42.605 26.597 40.874 38.447 24.217 37206 34813 21.574

11 826.61 165.32 41.330 739.78 147.84 36.483 684.76 136.66 32.945 618.23 123.12 28.763

I 1397.0 27846 62.671 1250.3 248.94 56.109 1157.2 229.73 50.081 1044.6  206.29 42.333
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Table 5: Benchmark 3. One-layered FGM cylinder, first three circular frequencies @ = {3 (

numbers (m,n), thickness ratios R /h and exponents p for the material law.

Ry
h

)2 m\m for different half-wave

p 0.0 0.5 1.0 2.0

Ro/h 1000 100 10 1000 100 10 1000 100 10 1000 100 10
m=2, n=1

I 619.55 6.1956 0.0620 554.55 5.5499 0.0560 513.35 5.1399 0.0521 463.54 4.6429 0.0472

11 6907.6 69.077 0.6910 6182.0 61.801 0.6162 5722.5 57.197 0.5694 5166.8 51.638 0.5134

111 14993 14993 1.4972 13418 134.17 1.3384 12421  124.19 1.2385 11215 112.14 1.1184
m=2, n=2

I 1953.5 19.535 0.1957 1748.5 17.496 0.1763 1618.6 16.202 0.1638 1461.5 14.634 0.1484

11 8453.9 84.539 0.8457 7566.0 75.643 0.7549 7003.5 70.012 0.6979 6323.6 63.209 0.6296

111 15541 15541 1.5521 13909 139.08 1.3887 12875 128.75 1.2857 11625 11626 1.1615
m=2, n=3

| 3428.8 34.289 0.3437 3068.9 30.704 0.3090 28409 28.430 0.2869 2565.2 25.678 0.2597

11 10153 101.53 1.0155 9086.3 90.845 0.9069 8410.9 84.085 0.8386 75943 75916 0.7566

111 16589 165.88 1.6570 14847 148.48 1.4845 13743 137.46 1.3754 12409 124.13 1.2432
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Table 7: Benchmark 5. Sandwich plate embedding an FGM core, first three circular frequencies @ = SAmvm m\m for different
half-wave numbers (m,n), thickness ratios a/h and exponents p for the material law.
p core classical 0.5 1.0 2.0
a/h 100 20 5 100 20 5 100 20 5 100 20 5
m=n=1
I 5.5911 5.5460 4.9779 5.3707 5.3327 4.8434 5.3788 5.3384 4.8233 54598 5.4137 4.8396
II 263.62 52.723 13.179 267.13 53425 13.354 263.62 52.722 13.176 259.44 51.886 12.965
1 44559 89.086 22.139 451.52  90.276 22.450 44559 89.086 22.143 438.52 87.670 21.771
m=n=2
I 22342  21.653 15.894 21464 20.880 15.750 21495 20.876 15.565 21.816 21.114 15.379
11 527.23 105.44 26.350 534.25 106.85 26.691 527.23 105.44 26.323 518.87 103.76 25.887
I 891.13 17797 43.175 903.01 180.37 43.948 891.13 17798 43.262 877.00 175.12 42.300
m=n=3
I 50.183 46.940 28.602 48.221 45453 28.713 48.287 45.360 28.241 48.998 45.707 27.640
I 790.85 158.16 39.501 801.38 160.26 39.993 790.84 158.14 39.412 778.31 155.62 38.721
I 1336.6 266.44 60.223 13544 270.09 62.220 1336.6 266.46 60.684 13154 262.10 57.815
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Table 9: Benchmark 7. Sandwich cylinder embedding an FGM core, first three circular frequencies @ = _\gmﬁx%vﬁ \m\m for
different half-wave numbers (1m,n), thickness ratios Ry /h and exponents p for the material law.

p core classical 0.5 1.0 2.0

Ro/h 1000 100 10 1000 100 10 1000 100 10 1000 100 10
m=2, n=1

I 592.79 5.9309 0.0597 600.70 6.0111 0.0606 592.81 5.9330 0.0599 583.42 5.8397 0.0590

II 6608.5 66.061 0.6584 6696.5 66.930 0.6661 6608.4 66.043 0.6567 6503.6 64.992 0.6458

I 14344 143.38 1.4267 14534 145.27 1.4435 14343  143.34 1.4231 14116  141.06  1.3997
m=2, n=2

I 1869.1 18.697 0.1879 1894.0 18.949 0.1906 1869.1 18.702 0.1883 1839.5 18.407 0.1855

I 8088.0 80.858 0.8066 8195.6 81.926 0.8164 8087.8 80.842 0.8051 7959.6  79.557 0.7919

I 14868 148.63 1.4798 15066 150.59 1.4975 14868 148.60 1.4766 14632 146.24  1.4525
m=2, n=3

I 3280.6 32.814 0.3296 33243 33254 0.3342 3280.6 32.819 0.3301 3228.7 32301 0.3251

I 9713.1 97.109 0.9690 9842.4 98.393 0.9810 9713.0 97.093 0.9674 9559.0 95.550 0.9517

I 15871 158.67 1.5813 16082  160.76  1.6007 15870 158.64 1.5788 15619 156.12 1.5534
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First mode for m=n=2 and classical core Second mode for m=n=2 and classical core Third mode for m=m=2 and classical core
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Figure 9: Benchmark 7. Sandwich cylinder, first three modes for thickness ratio

Ry /h = 10 and half-wave numbers m=n=2. Classical core versus FGM core with
exponent for material law p=1.0.

First mode for m=n=3 and classical core Second mode for m=n=3 and classical core Third mode for m=n=3 and classical core
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Figure 10: Benchmark 8. Sandwich sphérical shell panel, first three modes for
thickness ratio Ry /h = 10 and half-wave numbers m=n=3. Classical core versus
FGM core with exponent for material law p=2.0.

thickness ratios and exponents p of the FGM law are investigated. For each vibra-
tion mode and thickness ratio, the biggest frequencies are obtained for the case of
full ceramic material (p=0.0). The frequencies decrease in the case of FGM mate-
rial from p=0.5 to p=2.0. Each frequency (from the first to the third one) increases
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with the increase of the half-wave numbers (m,n). Figure 7 shows the first three
vibration modes in terms of displacements for the one-layered FGM plate in the
cases of half-wave numbers m=n=1,2,3 and exponent for the material law p=1.0.
The first mode has linear in-plane displacements (x*,v*) and constant transverse
displacement (w*) through the thickness for each pair of half-wave numbers. The
second mode has zero transverse displacement (in-plane vibration mode) and con-
stant in-plane displacements through the thickness for each pair of half-wave num-
bers. The third mode has constant in-plane displacements and linear transverse
displacement through the thickness for each pair of half-wave numbers. When the
half-wave numbers increase the constant displacements become quasi-constant dis-
placements and the linear displacements become quasi-linear displacements. The
frequency values in Table 3 are obtained by dividing the plate into N;, = 100 math-
ematical layers. The same number of mathematical layers are used for results in
Table 4 (Benchmark 2), Table 5 (Benchmark 3) and Table 6 (Benchmark 4) for
one-layered FGM cylindrical shell panel, cylinder and spherical shell panel, re-
spectively. The behavior of shell structures is similar to that shown for plates. For
each vibration mode and thickness ratio, the biggest frequencies are obtained for
fully ceramic material (p=0.0). For FGM materials, the frequencies decrease from
p=0.5 to p=2.0. Each frequency (from the first to the third one) increases with the
increase of the half-wave numbers (m,n). For cylinders, half-wave number m can
assume only even values (e.g., m=2 in Table 5) because the structure is closed in
a-direction. Half-wave number n in B-direction has values 1, 2 and 3. Figure 8
shows the first three vibration modes in terms of displacements for the one-layered
FGM cylindrical shell panel for half-wave numbers m=n=1,2,3 and exponent for
material law p=0.5. The first mode has linear or quasi-linear in-plane displace-
ments (u*,v*) and constant or quasi-constant transverse displacement (w*) through
the thickness for each pair of half-wave numbers. The second mode has constant
or quasi-constant in-plane and transverse displacements through the thickness for
each pair of half-wave numbers. The effect of the curvature gives a second vibra-
tion mode for the cylindrical shell panel that is not an in-plane mode as in the case
of plate shown in Figure 7. The plate has the same radii of curvature because both
Ry and Rg are infinite. The cylindrical shell panel has two different radii of curva-
ture, Ry = 10 and infinite Rg radius of curvature in longitudinal direction. The third
mode has constant or quasi-constant in-plane displacements through the thickness
and linear transverse displacement through the thickness. The effect of half-wave
numbers is the one already shown for the plate case seen in Figure 7.

Table 7 shows thick and thin square sandwich plates with an FGM core (Bench-
mark 5). The first three vibration modes are calculated for half-wave numbers
m=n=1,2,3 and for different thickness ratios and exponents p of the FGM law (the
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use of a classical core is also analyzed). A different ceramic material is consid-
ered in Benchmarks 5-8 for sandwich cases. The behavior in terms of vibration
modes is similar to the one-layered cases. Some small differences are due to the
fact that the skins are in classical materials and the FGM layer has a different ce-
ramic phase even if the FGM law is the one already seen for the one-layered case.
Minor differences are shown for the first vibration mode (I) that does not decrease
when exponent p increases. It is clear how the FGM behavior depends on both
the FGM law through the thickness and the materials of the two phases. The be-
havior seen for the plate case in Table 7 is similar to the behaviors shown in Table
8 (Benchmark 6), Table 9 (Benchmark 7) and Table 10 (Benchmark 8) for sand-
wich FGM cylindrical shell panel, cylinder and spherical shell panel, respectively.
Each vibration mode for a given thickness ratio and pair of half-wave numbers
(m,n) always has frequency values that decrease when the p value increases. The
classical core, with material properties that are an average between ceramic and
metal properties, gives frequencies similar to those obtained with an FGM core
with p = 1.0 (linear thickness law for elastic properties). The frequency values are
obtained by dividing the FGM core into 80 mathematical layers and each classical
skin into 10 mathematical layers. Mathematical layers are used to correctly con-
sider both FGM material law and curvature effects. This splitting into mathemati-
cal layers is the same for both plate and shell geometries. Figure 9 shows the first
three vibration modes for half-wave numbers m=n=2 and sandwich cylinder. FGM
cores with exponent for material law p=1.0 are compared with classical cores. For
both cases the first mode has constant through-the-thickness in-plane circumfer-
ential displacement and transverse displacement and linear through-the-thickness
in-plane longitudinal displacement. The second mode has constant through-the-
thickness in-plane longitudinal displacement and transverse displacement and lin-
ear through-the-thickness in-plane circumferential displacement (for both types of
core). The third mode has quasi-constant in-plane displacements and transverse
displacements (for both types of core). The cylinder is closed in ¢-direction with
one of the two radii of curvature that is infinite. Ry different from Rg gives the
second vibration mode that is not an in-plane mode. The plate case in Figure 7
(both infinite radii of curvature, that means the same values of Ry and Rg) has an
in-plane second vibration mode. Figure 10 shows the first three vibration modes
for half-wave numbers m=n=3 for sandwich spherical shell panel. The FGM core
with exponent for material law p=2.0 is compared with classical core. There are
no differences in terms of vibration modes for the two core configurations. The
imposed half-wave numbers considered in this example have higher values. There-
fore, the displacements are quasi-linear or quasi-constant. The first vibration mode
has quasi-linear in-plane displacements and quasi-constant transverse displacement
through the thickness. The second vibration mode is an in-plane mode (zero trans-
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verse displacement) as in the plate case of Figure 7 because the structure has co-
incident (Rq = Rg = 10) radii of curvature (see the comparison with the cylinder
case in Figure 9). In-plane displacements are quasi-constant through the thickness.
The third vibration mode has linear transverse displacement through the thickness
and quasi-constant in-plane displacements through the thickness.

The use of an FGM layer allows the change of frequency values without any change
in the behavior of the structure in terms of vibration modes.

5 Conclusions

The general three-dimensional formulation proposed in this paper uses an exact ge-
ometry for shells and a layer-wise approach for the multilayered FGM structures.
The differential equations of equilibrium in orthogonal curvilinear coordinates for
the free vibrations of simply supported plates and shells have been exactly solved
in three-dimensional form. This method allows free vibration results for spheri-
cal, open cylindrical, closed cylindrical and flat panels to be obtained. The layer-
wise approach proposed is based on the continuity of displacements and transverse
shear/normal stresses at the interfaces between the layers of the plates and shells.
This approach allows the solution of equilibrium equations for FGM shells by in-
troducing several mathematical layers where material properties and parametric
coefficients for the shell geometry description can be assumed as constant. There-
fore, they do not depend on the thickness coordinate. One-layered FGM structures
and sandwich plates and shells with external classical skins and an internal FGM
core have been investigated. The first three vibration modes have been shown for
several geometries, material configurations, various thickness ratios and half-wave
numbers imposed. The introduction of FGM layers allows the change of frequency
values but the behavior of the structure in terms of vibration modes remains the
same. These results will be useful benchmarks to validate future refined 2D models
for the free vibration analysis of FGM structures. Furthermore, this exact solution
gives a global three-dimensional overview of the free vibration problem of FGM
plates and shells.
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