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Exact Elasticity Solution for Natural Frequencies of
Functionally Graded Simply-supported Structures

S. Brischetto1

Abstract: This paper gives an exact three-dimensional elastic model for the free
vibration analysis of functionally graded one-layered and sandwich simply-supported
plates and shells. An exact elasticity solution is proposed for the differential equa-
tions of equilibrium written in general orthogonal curvilinear coordinates. The
equations consider a geometry for shells without simplifications, and allow the
analysis of the cases of spherical shell panels, cylindrical shell panels, cylindri-
cal closed shells and plates. The main novelty is the possibility of a general for-
mulation for these geometries. The coefficients in equilibrium equations depend
on the thickness coordinate because of the radii of curvature for the shell geome-
tries and/or the use of functionally graded layers. These equations are solved in a
layer-wise form by introducing a number of mathematical layers where the coeffi-
cients are constant. An exhaustive 3D overview of the vibration modes is given for
a number of thickness ratios, imposed wave numbers, geometries and embedded
materials. Results are given for one-layered functionally graded plates and shells
and for sandwich structures with external homogenous skins and an internal core
made of functionally graded material. These results can also be used as reference
solutions for the validation of analytical or numerical two-dimensional models for
functionally graded plates and shells.

Keywords: functionally graded materials, free vibrations, exact solution, three-
dimensional analysis, plates, shells.

1 Introduction

Functionally Graded Materials (FGMs) are a new generation of composite mate-
rials where two or more constituent phases have a continuously variable composi-
tion [Birman and Byrd (2007); Dong and Atluri (2011)]. FGMs present a number
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of advantages such as a potential reduction of in-plane and transverse through-
the-thickness stresses, an improved residual stress distribution, enhanced thermal
properties, higher fracture toughness, and reduced stress intensity factors [Bishay
et al. (2012); Bishay and Atluri (2012)]. In the design of sandwich structures, the
use of FGM cores is a valid alternative to classical cores. Sandwiches with FGM
cores have some properties (e.g., the continuity of in-plane stresses in the thickness
direction) that sandwiches embedding conventional cores do not have [Brischetto
(2009); Carrera and Brischetto (2009)]. The severe temperature loads involved
in many engineering applications, such as thermal barrier coatings, engine com-
ponents or rocket nozzles, require high-temperature resistant materials and high
structural performance. The use of FGM structures embedding ceramic and metal-
lic phases that continuously vary through the thickness could be an optimal solution
for these applications [Brischetto et al. (2008)]. Further FGM applications were
described in Mattei et al. (2012) where these materials were used to reproduce
biological structures characterized by functional spatially distributed gradients in
which each layer has one or more specific functions to perform. FGMs require an
accurate evaluation of displacements, strains, stresses and vibrations. These vari-
ables are fundamental in the design of FGM structures. Several 2D and 3D models
have been developed for the analysis of plate and shell elements embedding func-
tionally graded layers.

Two-dimensional solutions were proposed in the literature for the case of simple
problems for one-layered and multilayered FGM structures. Batra and Jin (2005)
proposed the first-order shear deformation theory (FSDT) coupled with the finite
element method (FEM) to study free vibrations of a functionally graded anisotropic
rectangular plate. The first-order shear deformation theory was derived and solved
in Efraim and Eisenberger (2007) for various combinations of boundary conditions.
The solution was obtained by using the exact element method and the dynamic
stiffness method for the free vibrations of annular FGM plates. Annular sectorial
FGM plates with simply supported radial edges and arbitrary circular edges were
also studied in Nie and Zhong (2008) where the state space method (SSM) and the
differential quadrature method (DQM) were used for free and forced vibration anal-
ysis. Shariyat (2009) analyzed vibration and dynamic buckling of FGM rectangular
plates subjected to thermo-electro-mechanical loading conditions by using a finite
element formulation based on a higher-order shear deformation theory. The first-
order shear deformation plate theory that uses the element-free kp-Ritz method was
presented in Zhao et al. (2009) for the free vibration analysis of metal and ceramic
functionally graded plates. The use of refined or higher order models for the free vi-
bration analysis of FGM plates was proposed in Dozio (2013) where advanced two-
dimensional Ritz-based models are developed. Wu and Chiu (2011) developed the
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meshless collocation (MC) and element-free Galerkin (EFG) method (using the dif-
ferential reproducing kernel (DRK) interpolation) for the quasi-three-dimensional
free vibration analysis. Further results for free vibration analysis of FGM plates
are based on two-dimensional models in closed form solution. Hosseini-Hashemi
et al. (2011) used the Reddy third-order shear deformation plate theory. Matsunaga
(2008) used a two-dimensional (2-D) higher-order theory. Xia and Shen (2008) de-
veloped a higher-order shear deformation plate theory and a general von Karman-
type equation for the inclusion of thermal effects. Zenkour (2005b) showed a si-
nusoidal shear deformation plate theory. Other two-dimensional models for FGM
plates consider the static analysis. Zenkour (2005a) investigated deformations in
FGM plates via either the shear deformation theories or the classical theories. The
extension of Carrera’s Unified Formulation to FGM plates was shown in Carrera et
al. (2008), Brischetto and Carrera (2010), Brischetto (2009) and Brischetto et al.
(2008) where one-layered and sandwich FGM structures were analyzed when sub-
jected to mechanical or thermal loads. Two-dimensional models for the analysis of
FGM shells are less numerous than models for FGM plate analysis. Among these,
Loy et al. (1999) used strains-displacements relations from Love’s shell theory
and the eigenvalue governing equation was obtained using Rayleigh-Ritz method.
Pradyumna and Bandyopadhyay (2008) analyzed free vibration analysis of func-
tionally graded curved panels by using a higher-order finite element formulation.
Matsunaga (2009) extended to shell case the work done in Matsunaga (2008) for
two-dimensional (2-D) higher-order plate theory. Wu and Jiang (2012) proposed
a quasi-3D model for the analysis of FGM cylinders on the basis of the Reissner
Mixed Variational Theorem (RMVT). In another recent model, free vibration anal-
ysis of cylindrical shells with holes was investigated by means of a beam model
[Cao and Wang (2007)].

An important feature in FGM plate and shell analysis is the use of three-dimensional
models. They allow two-dimensional model validations and checks to be made,
and they also give further details about three-dimensional effects and their impor-
tance. In the literature, three-dimensional solutions for FGM structures are given
for specific geometries separately and not in a general framework that is capable
to be reduced to different cases such as plates, cylindrical or spherical shells. In
a recent study for FGM plates, Dong (2008) investigated three-dimensional free
vibrations of functionally graded annular plates with different boundary conditions
using the Chebyshev-Ritz method. Li et al. (2008) analyzed free vibrations of func-
tionally graded material sandwich rectangular plates also using the Chebyshev-Ritz
method. A semi-analytical approach composed of differential quadrature method
(DQM) and series solution was adopted in Malekzadeh (2009) to solve the equa-
tions of motions for the free vibration analysis of thick FGM plates supported on
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two-parameter elastic foundation. Further three-dimensional models for free vibra-
tion analysis of FGM plates used a closed exact solution [Hosseini-Hashemi et al.
(2012); Vel and Batra (2004)]. Other three-dimensional exact models allow static
analysis of FGM plates. Kashtalyan (2004) and Xu and Zhou (2009) showed the
bending of one-layered functionally graded plates. Kashtalyan and Menshykova
(2009) investigated the bending of sandwich plates embedding FGM cores. Zhong
and Shang (2003) developed an exact three-dimensional analysis for a functionally
gradient piezoelectric rectangular plate that was simply supported and grounded
along its four edges. Further works analyze FGM shells. Alibeigloo et al. (2012)
investigated 3D free vibrations of a functionally graded cylindrical shell embed-
ded in piezoelectric layers. An analytical method for simply supported bound-
ary conditions and a semi-analytical method for non-simply supported conditions
were used. Zahedinejad et al. (2010) studied free vibration analysis of function-
ally graded (FG) curved thick panels under various boundary conditions using the
three-dimensional elasticity theory and the differential quadrature method. The
trigonometric functions were used to discretize the governing equations. Chen et
al. (2004) proposed free vibrations of simply supported, fluid-filled cylindrically
orthotropic functionally graded shells with arbitrary thickness. A laminate approxi-
mate model was employed that is suitable for an arbitrary variation of material con-
stants along the radial direction. An exact elasticity solution was presented in Vel
(2010) for the free and forced vibrations of functionally graded cylindrical shells.
Three-dimensional linear elastodynamics equations were used and they were sim-
plified to the case of generalized plane strain deformation in the axial direction. A
meshless method based on the local Petrov-Galerkin approach was presented for
three-dimensional (3-D) axisymmetric linear elastic solids with continuously vary-
ing material properties for the cases of 3D stress analysis of FGM bodies [Sladek
et al. (2005)], 3D heat conduction analysis of FGM bodies [Sladek et al. (2008)],
and 3D static and elastodynamic analysis of FGM bodies [Sladek et al. (2009)].

In the literature, studies about exact three-dimensional solutions for FGM shells
are not so numerous. Moreover, they analyze the various geometries separately and
do not give a general framework that is capable to consider different cases such as
plates or shells. The present paper aims to fill this gap by proposing a general for-
mulation for the equations of motion in orthogonal curvilinear coordinates that is
valid for plates, cylindrical shell panels, spherical shell panels and cylinders embed-
ding layers made of functionally graded material. A general overview is given for
those readers interested in both plate and shell analysis. This paper exactly solves
the equations of motion in general curvilinear orthogonal coordinates including an
exact geometry for shell FGM structures without simplifications. The author used
similar approaches for one-layered orthotropic structures and for multilayered or-
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thotropic plates and shells. To the best of the author’s knowledge, this is the first
time that this solution is proposed by means of the exponential matrix method for
the three-dimensional elastic free vibration analysis of FGM plates and shells. The
system of second order differential equations is reduced to a system of first order
differential equations, and afterwards it is exactly solved by using the exponential
matrix method. This methodology has been used in Messina (2009) for the three-
dimensional analysis of orthotropic plates in rectilinear orthogonal coordinates, and
in Soldatos and Ye (1995) for the exact, three-dimensional, free vibration analysis
of angle-ply laminated cylinders in cylindrical coordinates. The equations of mo-
tion written in orthogonal curvilinear coordinates allow general exact solutions for
plate and shell geometries with constant radii of curvature. The results proposed are
for simply supported square plates, cylinders, cylindrical and spherical shell panels
made of one FGM layer or for sandwich configurations embedding a function-
ally graded core. This investigation considers the effects of different functionally
graded materials, thickness ratios, geometries, imposed wave numbers, orders of
frequencies and vibration modes.

2 Constitutive and geometrical relations

Figure 1: Geometry, notation and reference system for shells.

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear
coordinates (α , β , z) (see Figure 1) are here given for a generic k isotropic layer
[Carrera et al. (2011)]. Coefficients Ci j depend on the thickness coordinate z in the
case of functionally graded materials. The stress components (σαα , σββ , σzz, σβ z,
σαz, σαβ ) are linked with the strain components (εαα , εββ , εzz, γβ z, γαz, γαβ ) for
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each k FGM layer as:

σααk =C11k(z)εααk +C12k(z)εββk +C13k(z)εzzk , (1)

σββk =C12k(z)εααk +C22k(z)εββk +C23k(z)εzzk , (2)

σzzk =C13k(z)εααk +C23k(z)εββk +C33k(z)εzzk , (3)

σβ zk =C44k(z)γβ zk , (4)

σαzk =C55k(z)γαzk , (5)

σαβk =C66k(z)γαβk . (6)

The strain-displacement relations of three-dimensional theory of elasticity in or-
thogonal curvilinear coordinates, as also shown in Leissa (1973) and Soedel (2005),
are here written for the generic k layer of the multilayered FGM shell with constant
radii of curvature (see Figure 1):

εααk =
1

Hα

∂uk

∂α
+

wk

HαRα

, (7)

εββk =
1

Hβ

∂vk

∂β
+

wk

Hβ Rβ

, (8)

εzzk =
∂wk

∂ z
, (9)

γβ zk =
1

Hβ

∂wk

∂β
+

∂vk

∂ z
− vk

Hβ Rβ

, (10)

γαzk =
1

Hα

∂wk

∂α
+

∂uk

∂ z
− uk

HαRα

, (11)

γαβk =
1

Hα

∂vk

∂α
+

1
Hβ

∂uk

∂β
. (12)

The parametric coefficients for shells with constant radii of curvature are:

Hα = (1+
z

Rα

) = (1+
z̃−h/2

Rα

) , Hβ = (1+
z

Rβ

) = (1+
z̃−h/2

Rβ

) , Hz = 1 , (13)

h is the total thickness of the structure. Hα and Hβ depend on z or z̃ coordinate
(see Figure 2). Hz = 1 because z coordinate is always rectlinear. Rα and Rβ are the
principal radii of curvature along the coordinates α and β , respectively. Symbol ∂

indicates the partial derivatives. General geometrical relations for spherical shells
in Eqs.(7)-(12) degenerate into geometrical relations for cylindrical shells when Rα

or Rβ is infinite (with Hα or Hβ equals one), and they degenerate into geometrical
relations for plates when both Rα and Rβ are infinite (with Hα=Hβ =1) [Carrera et
al. (2011); Leissa (1969)].
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Figure 2: Thickness coordinates and reference systems for mathematical layers in
functionally graded plates and shells.

Geometrical relations (Eqs.(7)-(12)) are inserted in constitutive equations (Eqs.(1)-
(6)) and partial derivatives ∂

∂α
, ∂

∂β
and ∂

∂ z are indicated with subscripts ,α , ,β and
,z:

σααk =
C11k(z)

Hα

uk,α +
C11k(z)
HαRα

wk +
C12k(z)

Hβ

vk,β +
C12k(z)
Hβ Rβ

wk +C13k(z)wk,z , (14)

σββk =
C12k(z)

Hα

uk,α +
C12k(z)
HαRα

wk +
C22k(z)

Hβ

vk,β +
C22k(z)
Hβ Rβ

wk +C23k(z)wk,z , (15)

σzzk =
C13k(z)

Hα

uk,α +
C13k(z)
HαRα

wk +
C23k(z)

Hβ

vk,β +
C23k(z)
Hβ Rβ

wk +C33k(z)wk,z , (16)

σβ zk =
C44k(z)

Hβ

wk,β +C44k(z)vk,z−
C44k(z)
Hβ Rβ

vk , (17)

σαzk =
C55k(z)

Hα

wk,α +C55k(z)uk,z−
C55k(z)
HαRα

uk , (18)

σαβk =
C66k(z)

Hα

vk,α +
C66k(z)

Hβ

uk,β . (19)

3 Equilibrium equations

The three differential equations of equilibrium written for the case of free vibration
analysis of multilayered spherical shells with constant radii of curvature Rα and Rβ

are here given (the most general form for variable radii of curvature can be found
in Tornabene (2012) and Hildebrand et al. (1949)):

Hβ

∂σααk

∂α
+Hα

∂σαβk

∂β
+HαHβ

∂σαzk

∂ z
+(

2Hβ

Rα

+
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Rβ

)σαzk = ρk(z)HαHβ ük , (20)
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Hβ
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∂α
+Hα

∂σββk

∂β
+HαHβ

∂σβ zk

∂ z
+(

2Hα
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Hβ

Rα
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Hβ

∂σαzk
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+HαHβ
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∂ z
−
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= ρk(z)HαHβ ẅk ,

(22)

where ρk(z) is the mass density that varies through the thickness of a functionally
graded layer. (σααk,σββk,σzzk,σβ zk,σαzk,σαβk) are the six stress components and
ük, v̈k and ẅk indicate the second temporal derivative of the three displacement
components uk, vk and wk, respectively. Each quantity depends on the k layer. Rα

and Rβ are referred to the mid-surface Ω0 of the whole multilayered shell. Hα

and Hβ continuously vary through the thickness of the multilayered shell and they
depend on the z thickness coordinate.

The first step is the substitution of the Eqs.(14)-(19) in Eqs.(20)-(22) to obtain a
displacement form of the equilibrium relations. This form of differential equations
of equilibrium is given for a generic k FGM layer:(
−

HβC55k(z)
HαR2

α
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RαRβ

)
uk +
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(C66k(z)Hα

Hβ

)
uk,ββ +
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(C13k(z)
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+
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Rα and Rβ refer to the reference mid-surface Ω0 of the multilayered shell. Hα

and Hβ are calculated through the thickness of the multilayered shell by means of
Eq.(13). Equilibrium relations in Eqs.(23)-(25) are for spherical shell panels, they
automatically degenerate into equilibrium equations for cylindrical closed/open
shell panels when Rα or Rβ is infinite (with Hα or Hβ equals one) and into equilib-
rium equations for plates when Rα and Rβ are infinite (with Hα and Hβ equal one).
In this way, a unique and general formulation is possible for any geometry.

Elastic coefficients Ci j depend on the thickness coordinate z when the k layer is a
functionally graded material layer. Parametric coefficients Hα and Hβ depend on
the thickness coordinate z in the case of shell geometry and they are equal 1 in case
of plates. Therefore, Eqs.(23)-(25) do not have constant coefficients because of
FGM layers and/or shell geometry. In order to obtain Eqs.(23)-(25) with constant
coefficients, each k layer is divided in l mathematical layers where the coefficients
Ci j can be assumed as constant and parametric coefficients Hα and Hβ can easily
be calculated in the middle of each mathematical layer. The Eqs.(23)-(25) can be
rewritten by using j = k× l mathematical layers that allow constant coefficients to
be considered [Carrera et al (2008); Brischetto and Carrera (2010)].

The closed form of Eqs.(23)-(25) is obtained for simply supported shells and plates.
The three displacement components have the following harmonic form:

u j(α,β ,z, t) =U j(z)eiωtcos(ᾱα)sin(β̄β ) , (26)

v j(α,β ,z, t) =Vj(z)eiωtsin(ᾱα)cos(β̄β ) , (27)

w j(α,β ,z, t) =Wj(z)eiωtsin(ᾱα)sin(β̄β ) , (28)

where U j(z), Vj(z) and Wj(z) are the displacement amplitudes in α , β and z direc-
tions, respectively. i is the coefficient of the imaginary unit. ω = 2π f is the circular
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frequency where f is the frequency value, t is the time. In coefficients ᾱ = mπ

a and
β̄ = nπ

b , m and n are the half-wave numbers and a and b are the shell dimensions in
α and β directions, respectively (calculated in the mid-surface Ω0).

Eqs.(26)-(28) are substituted in Eqs.(23)-(25) to obtain the following system of
equations for each j mathematical layer:(
−

C55 jHβ

HαR2
α

−
C55 j

RαRβ

− ᾱ
2C11 jHβ

Hα

− β̄
2C66 jHα

Hβ

+ρ jHαHβ ω
2
)
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+
(
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)
Wj,z +
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)
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)
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)
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)
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+ ᾱ
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HαRα

+ ᾱ
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+
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−
C11 jHβ

HαR2
α

−
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−
C22 jHα

Hβ R2
β
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Hβ

+ρ jHαHβ ω
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− ᾱC55 jHβ − ᾱC13 jHβ

)
U j,z +

(
− β̄C44 jHα
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Rα

+
C33 jHα
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)
Wj,z +

(
C33 jHαHβ

)
Wj,zz = 0 . (31)

Elastic coefficients and mass density can be assumed as constant in each j mathe-
matical layer even if a functionally graded material is considered. Parametric co-
efficients Hα and Hβ are also constant because the thickness coordinate z is known
at the middle of each j layer. The system of Eqs.(29)-(31) is written in a compact
form by introducing constant coefficients As j for each block

()
with s from 1 to
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19:

A1 jU j +A2 jVj +A3 jWj +A4 jU j,z +A5 jWj,z +A6 jU j,zz = 0 , (32)

A7 jU j +A8 jVj +A9 jWj +A10 jVj,z +A11 jWj,z +A12 jVj,zz = 0 , (33)

A13 jU j +A14 jVj +A15 jWj +A16 jU j,z +A17 jVj,z +A18 jWj,z +A19 jWj,zz = 0 . (34)

Eqs.(32)-(34) are a system of three second order differential equations. They are
written for spherical shell panels with constant radii of curvature but they automat-
ically degenerate into equations for cylindrical shells and plates.

3.1 Solution for multilayered structures

The system of second order differential equations can be reduced to a system of
first order differential equations by using the method described in Open Document
and Boyce and DiPrima (2001). This methodology is applied to Eqs.(32)-(34):


A6 j 0 0 0 0 0
0 A12 j 0 0 0 0
0 0 A19 j 0 0 0
0 0 0 A6 j 0 0
0 0 0 0 A12 j 0
0 0 0 0 0 A19 j





U j
Vj
Wj
U ′j
V ′j
W ′j



′

=


0 0 0 A6 j 0 0
0 0 0 0 A12 j 0
0 0 0 0 0 A19 j
−A1 j −A2 j −A3 j −A4 j 0 −A5 j
−A7 j −A8 j −A9 j 0 −A10 j−A11 j
−A13 j−A14 j−A15 j−A16 j−A17 j−A18 j





U j
Vj
Wj
U ′j
V ′j
W ′j


(35)

Eq.(35) can be written in a compact form for a generic j layer:

Dj
∂Uj

∂ z̃
= AjUj , (36)

where ∂Uj
∂ z̃ = U′j and Uj = [Uj Vj Wj U′j V′j W′j]. Eq.(36) can be written as:

DjU′j = AjUj , (37)

U′j = D−1
j Aj Uj , (38)

U′j = A∗j Uj , (39)

with A∗j = D−1
j Aj.

In the case of plate geometry coefficients A3 j, A4 j, A9 j, A10 j, A13 j, A14 j and A18 j are
zero because the radii of curvature Rα and Rβ are infinite. The solution of Eq.(39)
can be written as [Boyce and DiPrima (2001); Zwillinger (1997)]:

Uj(z̃j) = exp(A∗j z̃j)Uj(0) with z̃j ∈ [0,hj] , (40)
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where z̃ j is the thickness coordinate of each j layer from 0 at the bottom to h j at
the top (see Figure 2). The exponential matrix is calculated with z̃ j = h j for each j
layer as:

A∗∗j = exp(A∗j hj) = I+A∗j hj +
A∗2j

2!
h2

j +
A∗3j

3!
h3

j + . . .+
A∗Nj

N!
hN

j , (41)

where I is the 6× 6 identity matrix. This expansion has a fast convergence as
indicated in Moler and Van Loan (2003) and it is not time consuming from the
computational point of view.

If we consider j = NL layers, NL− 1 transfer matrices Tj−1,j must be calculated
by using for each interface the following conditions for interlaminar continuity of
displacements and transverse shear/normal stresses:

ub
j = ut

j−1 , vb
j = vt

j−1 , wb
j = wt

j−1 , (42)

σ
b
zz j = σ

t
zz j−1 , σ

b
αz j = σ

t
αz j−1 , σ

b
β z j = σ

t
β z j−1 , (43)

that means each displacement and transverse stress component at the top (t) of the
j-1 layer is equal to displacements and transverse stress components at the bottom
(b) of the j layer.
The continuity of transverse shear stress σαz is given as:

C55 j−1

Ht
α j−1

ᾱW t
j−1 +C55 j−1U

′t
j−1−

C55 j−1

Ht
α j−1Rα

U t
j−1 =

C55 j

Hb
α j

ᾱW b
j +C55 jU

′b
j −

C55 j

Hb
α jRα

Ub
j ,

(44)

U
′b
j =

1
C55 j

(C55 j−1

Ht
α j−1

ᾱ−
C55 j

Hb
α j

ᾱ

)
W t

j−1 +
1

C55 j

(
−

C55 j−1

Ht
α j−1Rα

+
C55 j

Hb
α jRα

)
U t

j−1

+
(C55 j−1

C55 j

)
U
′t
j−1 .

(45)

The continuity of transverse shear stress σβ z is given as:

C44 j−1

Ht
β j−1

β̄W t
j−1 +C44 j−1V

′t
j−1−

C44 j−1

Ht
β j−1Rβ

V t
j−1 =

C44 j

Hb
β j

β̄W b
j +C44 jV

′b
j −

C44 j

Hb
β jRβ

V b
j ,

(46)

V
′b
j =

1
C44 j

(C44 j−1

Ht
β j−1

β̄ −
C44 j

Hb
β j

β̄

)
W t

j−1 +
1

C44 j

(
−

C44 j−1

Ht
β j−1Rβ

+
C44 j

Hb
β jRβ

)
V t

j−1

+
(C44 j−1

C44 j

)
V
′t
j−1 .

(47)
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The continuity of transverse normal stress σzz is given as:

−
C13 j−1

Ht
α j−1

ᾱU t
j−1 +

C13 j−1

Ht
α j−1Rα

W t
j−1−

C23 j−1

Ht
β j−1

β̄V t
j−1 +

C23 j−1

Ht
β j−1Rβ

W t
j−1

+C33 j−1W
′t
j−1 =−

C13 j

Hb
α j

ᾱUb
j +

C13 j

Hb
α jRα

W b
j −

C23 j

Hb
β j

β̄V b
j +

C23 j

Hb
β jRβ

W b
j +C33 jW

′b
j ,

(48)

W
′b
j =

1
C33 j

(
−

C13 j−1

Ht
α j−1

ᾱ +
C13 j

Hb
α j

ᾱ

)
U t

j−1 +
1

C33 j

(
−

C23 j−1

Ht
β j−1

β̄ +
C23 j

Hb
β j

β̄

)
V t

j−1+

(49)
1

C33 j

( C13 j−1

Ht
α j−1Rα

+
C23 j−1

Ht
β j−1Rβ

−
C13 j

Hb
α jRα

−
C23 j

Hb
β jRβ

)
W t

j−1 +
(C33 j−1

C33 j

)
W
′t
j−1 .

The continuity of displacement components in Eq.(50) has also been used to obtain
the explicit form of Eqs.(45), (47) and (49):

Ub
j =U t

j−1 , V b
j =V t

j−1 , W b
j =W t

j−1 . (50)

In Eqs.(44)-(50), t and b indicate top and bottom of j−1 layer and j layer, respec-
tively. ᾱ , β̄ , Rα and Rβ refer to mid-surface Ω0 of the structure. Hα and Hβ are
calculated at the interfaces between j− 1 layer and j layer. Eqs.(44)-(50) can be
grouped in a system:

U
V
W
U ′

V ′

W ′



b

j

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10


j−1, j



U
V
W
U ′

V ′

W ′



t

j−1

, (51)

Eq.(51) in compact form is:

Ub
j = Tj−1,jUt

j−1 . (52)

The calculated Tj−1,j matrices allow vector U at the bottom (b) of the j layer with
vector U at the top (t) of the j−1 layer to be linked. Eq.(52) can also be written as:

Uj(0) = Tj−1,j Uj−1(hj−1) , (53)
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where Uj is calculated for z̃ j = 0 and Uj−1 is calculated for z̃ j−1 = h j−1. U at the
top of the j layer is linked with U at the bottom of the same j layer by means of the
exponential matrix A∗∗j in Eq.(41):

Uj(hj) = A∗∗j Uj(0) , (54)

Eq.(53) can recursively be introduced in Eq.(54) for the NL−1 interfaces to obtain:

UNL(hNL) = A∗∗NL
TNL−1,NL A∗∗NL−1 TNL−2,NL−1 . . . . . .A∗∗2 T1,2 A∗∗1 U1(0) , (55)

the definition of the matrix Hm for the multilayered structure allows Eq.(55) to be
written as:

UNL(hNL) = Hm U1(0) , (56)

that links U calculated at the top of the last NL layer with U calculated at the bottom
of the first layer.

The structures are simply supported and free stresses at the top and at the bottom
of the whole multilayered shell, this feature means:

σzz = σαz = σβ z = 0 for z =−h/2,+h/2 or z̃ = 0,h , (57)

w = v = 0, σαα = 0 for α = 0,a , (58)

w = u = 0, σββ = 0 for β = 0,b . (59)

Boundary conditions given by Eqs.(58) and (59) are identically satisfied by the dis-
placement field in Eqs. (26)-(28). These boundary conditions do not take part to the
determination of the maximal displacement amplitudes addressed in the remaining
of the section.

Transverse shear/normal stresses written for a generic value of z̃ in the j layer are:

σzz j(z̃) =−ᾱ
C13 j

Hα(z̃)
U j +

C13 j

Hα(z̃)Rα

Wj− β̄
C23 j

Hβ (z̃)
Vj +

C23 j

Hβ (z̃)Rβ

Wj +C33 jWj,z ,

(60)

σβ z j(z̃) = β̄
C44 j

Hβ (z̃)
Wj +C44 jVj,z−

C44 j

Hβ (z̃)Rβ

Vj , (61)

σαz j(z̃) = ᾱ
C55 j

Hα(z̃)
Wj +C55 jU j,z−

C55 j

Hα(z̃)Rα

U j , (62)

Imposing Eqs.(57) at the the top (t) of the last NL layer by using Eqs.(60)-(62) with
Rα , Rβ , ᾱ and β̄ calculated in the mid-surface Ω0 of the shell, and with Ht

α and Ht
β
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calculated at top of the whole shell (z̃ = h):

σ
t
zzNL

=−ᾱ
C13NL

Ht
α

U t
NL

+
C13NL

Ht
αRα

W t
NL
− β̄

C23NL

Ht
β

V t
NL

+
C23NL

Ht
β

Rβ

W t
NL

+C33NLW t
NL,z = 0 ,

(63)

σ
t
β zNL

= β̄
C44NL

Ht
β

W t
NL

+C44NLV t
NL,z−

C44NL

Ht
β

Rβ

V t
NL

= 0 , (64)

σ
t
αzNL

= ᾱ
C55NL

Ht
α

W t
NL

+C55NLU t
NL,z−

C55NL

Ht
αRα

U t
NL

= 0 , (65)

Imposing Eqs.(57) at the the bottom (b) of the first layer ( j = 1) by using Eqs.(60)-
(62) with Rα , Rβ , ᾱ and β̄ calculated in the mid-surface Ω0 of the shell, and with
Hb

α and Hb
β

calculated at bottom of the whole shell (z̃ = 0):

σ
b
zz1 =−ᾱ

C131

Hb
α

Ub
1 +

C131

Hb
αRα

W b
1 − β̄

C231

Hb
β

V b
1 +

C231

Hb
β

Rβ

W b
1 +C331W b

1,z = 0 , (66)

σ
b
β z1 = β̄

C441

Hb
β

W b
1 +C441V b

1,z−
C441

Hb
β

Rβ

V b
1 = 0 , (67)

σ
b
αz1 = ᾱ

C551

Hb
α

W b
1 +C551Ub

1,z−
C551

Hb
αRα

Ub
1 = 0 . (68)

Eqs.(63)-(65) in matrix form are (UNL(hNL) means U calculated at the top of the
whole multilayered shell, last NL layer with z̃NL = hNL):


−ᾱ

C13NL
Ht

α
−β̄

C23NL
Ht

β

(
C13NL
Ht

α Rα
+

C23NL
Ht

β
Rβ

) 0 0 C33NL

0 −C44NL
Ht

β
Rβ

β̄
C44NL

Ht
β

0 C44NL 0

−C55NL
Ht

α Rα
0 ᾱ

C55NL
Ht

α
C55NL 0 0




UNL(hNL)
VNL(hNL)
WNL(hNL)
U ′NL

(hNL)

V ′NL
(hNL)

W ′NL
(hNL)

=

 0
0
0

 .

(69)

Eqs.(66)-(68) in matrix form are (U1(0) means U calculated at the bottom of the
whole multilayered shell, first layer 1 with z̃1 = 0):


−ᾱ

C131
Hb

α

−β̄
C231
Hb

β

( C131
Hb

α Rα

+ C231
Hb

β
Rβ

) 0 0 C331

0 − C441
Hb

β
Rβ

β̄
C441
Hb

β

0 C441 0

− C551
Hb

α Rα

0 ᾱ
C551
Hb

α

C551 0 0




U1(0)
V1(0)
W1(0)
U ′1(0)
V ′1(0)
W ′1(0)

=

 0
0
0

 .
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(70)

Eqs.(69) and (70) in compact form to express the free stress state at the top and
bottom of the whole shell are:

BNL(hNL) UNL(hNL) = 0 , (71)

B1(0) U1(0) = 0 , (72)

Eq.(56) can be substituted in Eq.(71) by considering a total number of layers equals
NL:

BNL(hNL) Hm U1(0) = 0 (73)

Eqs.(72) and (73) are now grouped in the following system:[
BNL(hNL) Hm

B1(0)

] [
U1(0)

]
=
[

E
] [

U1(0)
]
=
[

0
]
. (74)

Matrix E has always (6× 6) dimension, independently from the number of layers
NL, even if the method uses a layer-wise approach. The solution is implemented
in a Matlab code where only the spherical shell method is considered because it
automatically degenerates into cylindrical open/closed shell and plate methods.

The free vibration analysis means to find the non-trivial solution of U1(0) in Eq.(74)
by imposing the determinant of matrix E equals zero:

det[E] = 0 , (75)

Eq.(75) means to find the roots of an higher order polynomial in λ = ω2. For
each pair of half-wave numbers (m,n) a certain number of circular frequencies are
obtained depending on the order N chosen for each exponential matrix A∗∗j and the
number NL of mathematical layers.

A certain number of circular frequencies ωs are found when half-wave numbers
m and n are imposed in the structures. For each frequency ωs, it is possible to
find the vibration mode through the thickness in terms of the three displacement
components. If the frequency ωs is substituted in the (6×6) matrix E, this last
matrix has six eigenvalues. We are interested to the null space of matrix E that
means to find the (6×1) eigenvector related to the minimum of the six eigenvalues
proposed. This null space is the vector U calculated at the bottom of the whole
structure for the chosen frequency ωs:

U1ωs(0) =
[

U1(0) V1(0) W1(0) U ′1(0) V ′1(0) W ′1(0)
]T

ωs
, (76)
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T means the transpose of the vector and the subscript ωs means that the null space
is calculated for the circular frequency ωs.

It is possible to find Ujωs(z̃j) (with the three displacement components U jωs(z̃ j),
Vjωs(z̃ j) and Wjωs(z̃ j) through the thickness) for each j layer of the multilayered
structure by using Eqs.(53)-(56) with the index j from 1 to NL. The thickness
coordinate z̃ can assume all the values from the bottom to the top of the structure.

4 Results

The three-dimensional exact solution presented in this paper for the free vibration
analysis of functionally graded plates and shells is validated by means of a compar-
ison with two published assessments. The first assessment is the free vibration anal-
ysis of a sandwich square plate with an FGM core as proposed in Li et al. (2008).
The second assessment is a one-layered FGM cylindrical shell panel as shown in
Zahedinejad et al. (2010). After this preliminary validation the method can be used
with confidence to investigate the free vibrations of square plates, cylindrical shell
panels, cylinders and spherical shell panels (see Figure 3).

Figure 3: Geometries considered for the assessments and benchmarks: (a) square
plate, (b) cylindrical shell panel, (c) cylinder, (d) spherical shell panel.
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4.1 Validation of the method

Figure 4: Functionally graded material law through the thickness direction of the
sandwich plate for assessment 1 (on the left) and the one-layered cylindrical shell
panel for assessment 2 (on the right).

The first assessment [Li et al. (2008)] considers a simply supported square sand-
wich plate (see geometry in Figure 3a). The sandwich plate has two external skins
with thickness h1 = h3 = 0.1h and an internal core with thickness h2 = 0.8h. The
bottom skin is ceramic and the top skin is metallic, while the core is made of a func-
tionally graded material. Details about this configuration can be found in Figure 4
and in Li et al. (2008). The metallic (m) material has Young modulus Em = 70GPa,
mass density ρm = 2707kg/m3 and Poisson ratio νm = 0.3. The ceramic (c) material
has Young modulus Ec = 380GPa, mass density ρc = 3800kg/m3 and Poisson ratio
νc = 0.3. The functionally graded core has constant Poisson ratio ν = 0.3. Young
modulus and mass density continuously vary through the thickness direction z as:

E(z) = Em +(Ec−Em)Vm , (77)

ρ(z) = ρm +(ρc−ρm)Vm , (78)

where Vm is the volume fraction of the metallic phase that continuously varies
through the thickness as:

Vm = 1−Vc = 1− (0.5+ z/h)p , (79)

Vc is the volume fraction of ceramic phase, z varies from −h/2 to h/2. Expo-
nent p can assume values equal or greater than zero. Li et al. (2008) propose a
three-dimensional solution by means of the Ritz approach, and give the fundamen-
tal frequency for half-wave numbers m = n = 1 and for several thickness ratios
a/h and exponents p. The circular frequencies are given in non-dimensional form

ω̄ = ω
a2

h

√
ρ0
E0

with E0 = 1GPa and ρ0 = 1kg/m3. Table 1 shows the comparison
between the model proposed in Li et al. (2008) and the present three-dimensional
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Table 1: First assessment: sandwich plate with FGM core. Fundamental circu-
lar frequency ω̄ = ω

a2

h

√
ρ0
E0

for half-wave numbers m=n=1 and different thickness
ratios a/h and exponents p for the material law. Comparison between 3D model
based on Ritz approach by Li et al. (2008) and the present 3D exact solution.

p 0.5 1.0 2.0 5.0 10
a/h = 100

Li et al. (2008) 1.33931 1.38669 1.44491 1.53143 1.59105
Present 3D 1.33928 1.38671 1.44494 1.53148 1.59113

a/h = 10
Li et al. (2008) 1.29751 1.34847 1.40828 1.49309 1.54980
Present 3D 1.29748 1.34848 1.40829 1.49311 1.54984

a/h = 5
Li et al. (2008) 1.19580 1.25338 1.31569 1.39567 1.44540
Present 3D 1.19575 1.25337 1.31566 1.39564 1.44537

exact solution. The two methods are in accordance for each thickness ratio a/h and
exponent p for the FGM law.

The second assessment [Zahedinejad et al. (2010)] considers a simply supported
cylindrical shell panel (see geometry in Figure 3b). The shell has the two dimen-
sions a and b that are coincident (a = b), the thickness ratio investigated is a/h
equals 5. Two different radii of curvature Rα are considered, that means a/Rα

equals 0.5 or 1. The radius of curvature Rβ is infinite. The shell is one-layered
and is made of a functionally graded material as shown in Figure 4. In this case
the structure is fully metallic at the bottom and fully ceramic at the top. This fea-
ture means that Eqs.(79) and (80) are still valid, but the volume fraction of ceramic
phase Vc is considered in place of the volume fraction of metallic phase Vm:

Vc = (0.5+ z/h)p . (80)

The metallic phase and the ceramic phase have the properties already seen for the
first assessment [Li et al. (2008)]. The only difference is for ρm, which is equal to
2702kg/m3 (the first assessment considers ρm = 2707kg/m3). These material data
can be found in Zahedinejad et al. (2010), who propose a three-dimensional dif-
ferential quadrature method for the free vibration analysis of the cylindrical panel
for imposed half-wave numbers m = n = 1 and for several exponent values p. The
results are given as non-dimensional circular frequencies ω̄ = ωh

√
ρc
Ec

. Table 2
shows that the present three-dimensional exact model gives results similar to those
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Table 2: Second assessment: one-layered FGM cylindrical shell panel with thick-
ness ratio a/h=5. Fundamental circular frequency ω̄ =ωh

√
ρc
Ec

for half-wave num-
bers m=n=1 and different radii of curvature Rα and exponents p for the material
law. Comparison between 3D model based on the differential quadrature method
by Zahedinejad et al. (2010) and the present 3D exact solution.

p 0.0 0.5 1.0 4.0 10
a/Rα = 0.5

Zahedinejad et al. (2010) 0.2113 0.1814 0.1639 0.1367 0.1271
Present 3D 0.2129 0.1817 0.1638 0.1374 0.1296

a/Rα = 1.0
Zahedinejad et al. (2010) 0.2164 0.1852 0.1676 0.1394 0.1286
Present 3D 0.2155 0.1848 0.1671 0.1392 0.1300

obtained with the method proposed by Zahedinejad et al. (2010). The minor dif-
ferences are due to the fact that the present 3D model is given in exact form while
the 3D model in Zahedinejad et al. (2010) is proposed by means of a numerical
method such as the differential quadrature method.

In the two proposed assessments, the present 3D solution uses NL = 100 mathemat-
ical layers. The exponential matrix in Eq.(41) is approximated with order N = 3.
The convergence of the approximation is very fast, a small N value is used because
of the large number of layers NL employed to correctly include the curvature effect
and the gradation law of the material. The computational cost is low because the
E matrix in Eq.(74) has always 6× 6 dimension even if a layer wise approach is
employed and NL = 100 mathematical layers are used. The same values of N and
NL are also employed for benchmarks proposed in Section 4.2.

After these two preliminary assessments, the present three-dimensional exact so-
lution can be considered as validated for the free vibration analysis of one-layered
and multilayered FGM plates and shells.

4.2 Benchmarks

Four different geometries are considered in the new benchmarks proposed (see Fig-
ure 3 for further details). The square plate has dimensions a = b = 5,20,100 and
thickness ratios a/h = 5,20,100. The cylindrical shell panel has a radius of curva-
ture Rα = 10 and an infinite radius of curvature Rβ in β direction. The dimensions
are a = π

3 Rα and b = 20. The thickness ratios are Rα/h = 1000,100,10. The cylin-
der has the same radii of curvature of the cylindrical shell panel, but it is closed in
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Figure 5: Functionally graded material law through the thickness direction for the
one-layered benchmarks (on the left) and sandwich benchmarks (on the right).

Figure 6: Volume fraction of ceramic phase, Young modulus and mass density
through the thickness of the one-layered FGM structures (first row) and through
the thickness of the sandwich FGM structures (second row).

circumferential direction that means a = 2πRα . The other dimension is b = 100.
The thickness ratios are Rα/h = 1000,100,10. The last geometry is the spherical
shell panel with radii of curvature Rα = Rβ = 10, dimensions a = b = π

3 Rα , and
thickness ratios Rα/h = 1000,100,10. All these structures are simply supported.
Each geometry includes two different material configurations (see Figure 5). The
first material configuration is a one-layered functionally graded material structure
where the bottom is fully metallic (m) (Aluminium Alloy Al2024: Young modu-
lus Em = 73GPa, mass density ρm = 2800kg/m3 and Poisson ratio νm = 0.3) and
the top is fully ceramic (c) (Alumina Al2O3: Young modulus Ec = 380GPa, mass
density ρc = 3800kg/m3 and Poisson ratio νc = 0.3). The Poisson ratio is con-
stant through the thickness. Mass density and Young modulus vary through the
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Figure 7: Benchmark 1. One-layered FGM plate, first three modes for thickness ra-
tio a/h=20, exponent for material law p=1.0 and several half-wave numbers (m,n).

thickness by means of the law indicated in Eqs.(79)-(80) where the volume frac-
tion considered is that indicated in Eq.(82) for the ceramic phase (Vc = 0 at the
bottom and Vc = 1 at the top). The exponents p used for the material law are
p=0.0, 0.5, 1.0, 2.0. p=0.0 means fully ceramic structure. The second material
configuration is a sandwich structure with two external skins with a thickness of
h1 = h3 = 0.15h and an internal FGM core with a thickness of h2 = 0.7h. The bot-
tom skin is metallic (Aluminum Alloy Al2024) and the top skin is ceramic (Young
modulus Ec = 200GPa, mass density ρc = 5700kg/m3 and Poisson ratio νc = 0.3).
The functionally graded core has constant Poisson ratio. Mass density and Young
modulus have the same variation already indicated for the first material configu-
ration. The p exponents are 0.5, 1.0 and 2.0. A classical core is also considered
with material properties E = Ec+Em

2 , ρ = ρc+ρm
2 and Poisson ratio ν = 0.3. Figure 6

shows the thickness variation for volume fraction of ceramic phase, Young modulus
and mass density for the one-layered FGM structures (first line) and the thickness
variation for the sandwich structures embedding an FGM core (second line). Eight
different benchmarks are proposed to show a complete overview of the free vi-
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Figure 8: Benchmark 2. One-layered FGM cylindrical shell panel, first three modes
for thickness ratio Rα/h = 10, exponent for material law p=0.5 and several half-
wave numbers (m,n).

bration analysis of one-layered and sandwich FGM plates and shells: one-layered
FGM plate (see Table 3 and Figure 7), one-layered FGM cylindrical shell panel
(see Table 4 and Figure 8), one-layered FGM cylinder (see Table 5), one-layered
FGM spherical shell panel (see Table 6), sandwich FGM plate (see Table 7), sand-
wich FGM cylindrical shell panel (see Table 8), sandwich FGM cylinder (see Table
9 and Figure 9), sandwich FGM spherical shell panel (see Table 10 and Figure 10).
The first three circular frequencies in non-dimensional form (ω̄ = ω(a

h)
2
√

ρc
Ec

for

plate geometry and ω̄ = ω

10(
Rα

h )2
√

ρc
Ec

for shell geometries) are calculated in Tables
3-10 for various pairs of half-wave numbers (m,n), several thickness ratios and var-
ious exponents p for the material law. The vibration modes plotted in Figs. 7-10
are given in terms of non-dimensional values such as u∗ = u/|umax|, v∗ = v/|vmax|,
w∗ = w/|wmax| and z∗ = z̃/h.

Table 3 presents thick and thin square one-layered FGM plates (Benchmark 1). The
first three vibration modes are shown for half-wave numbers m=n=1,2,3. Different
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Figure 9: Benchmark 7. Sandwich cylinder, first three modes for thickness ratio
Rα/h = 10 and half-wave numbers m=n=2. Classical core versus FGM core with
exponent for material law p=1.0.

Figure 10: Benchmark 8. Sandwich spherical shell panel, first three modes for
thickness ratio Rα/h = 10 and half-wave numbers m=n=3. Classical core versus
FGM core with exponent for material law p=2.0.

thickness ratios and exponents p of the FGM law are investigated. For each vibra-
tion mode and thickness ratio, the biggest frequencies are obtained for the case of
full ceramic material (p=0.0). The frequencies decrease in the case of FGM mate-
rial from p=0.5 to p=2.0. Each frequency (from the first to the third one) increases
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with the increase of the half-wave numbers (m,n). Figure 7 shows the first three
vibration modes in terms of displacements for the one-layered FGM plate in the
cases of half-wave numbers m=n=1,2,3 and exponent for the material law p=1.0.
The first mode has linear in-plane displacements (u∗,v∗) and constant transverse
displacement (w∗) through the thickness for each pair of half-wave numbers. The
second mode has zero transverse displacement (in-plane vibration mode) and con-
stant in-plane displacements through the thickness for each pair of half-wave num-
bers. The third mode has constant in-plane displacements and linear transverse
displacement through the thickness for each pair of half-wave numbers. When the
half-wave numbers increase the constant displacements become quasi-constant dis-
placements and the linear displacements become quasi-linear displacements. The
frequency values in Table 3 are obtained by dividing the plate into NL = 100 math-
ematical layers. The same number of mathematical layers are used for results in
Table 4 (Benchmark 2), Table 5 (Benchmark 3) and Table 6 (Benchmark 4) for
one-layered FGM cylindrical shell panel, cylinder and spherical shell panel, re-
spectively. The behavior of shell structures is similar to that shown for plates. For
each vibration mode and thickness ratio, the biggest frequencies are obtained for
fully ceramic material (p=0.0). For FGM materials, the frequencies decrease from
p=0.5 to p=2.0. Each frequency (from the first to the third one) increases with the
increase of the half-wave numbers (m,n). For cylinders, half-wave number m can
assume only even values (e.g., m=2 in Table 5) because the structure is closed in
α-direction. Half-wave number n in β -direction has values 1, 2 and 3. Figure 8
shows the first three vibration modes in terms of displacements for the one-layered
FGM cylindrical shell panel for half-wave numbers m=n=1,2,3 and exponent for
material law p=0.5. The first mode has linear or quasi-linear in-plane displace-
ments (u∗,v∗) and constant or quasi-constant transverse displacement (w∗) through
the thickness for each pair of half-wave numbers. The second mode has constant
or quasi-constant in-plane and transverse displacements through the thickness for
each pair of half-wave numbers. The effect of the curvature gives a second vibra-
tion mode for the cylindrical shell panel that is not an in-plane mode as in the case
of plate shown in Figure 7. The plate has the same radii of curvature because both
Rα and Rβ are infinite. The cylindrical shell panel has two different radii of curva-
ture, Rα = 10 and infinite Rβ radius of curvature in longitudinal direction. The third
mode has constant or quasi-constant in-plane displacements through the thickness
and linear transverse displacement through the thickness. The effect of half-wave
numbers is the one already shown for the plate case seen in Figure 7.

Table 7 shows thick and thin square sandwich plates with an FGM core (Bench-
mark 5). The first three vibration modes are calculated for half-wave numbers
m=n=1,2,3 and for different thickness ratios and exponents p of the FGM law (the
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use of a classical core is also analyzed). A different ceramic material is consid-
ered in Benchmarks 5-8 for sandwich cases. The behavior in terms of vibration
modes is similar to the one-layered cases. Some small differences are due to the
fact that the skins are in classical materials and the FGM layer has a different ce-
ramic phase even if the FGM law is the one already seen for the one-layered case.
Minor differences are shown for the first vibration mode (I) that does not decrease
when exponent p increases. It is clear how the FGM behavior depends on both
the FGM law through the thickness and the materials of the two phases. The be-
havior seen for the plate case in Table 7 is similar to the behaviors shown in Table
8 (Benchmark 6), Table 9 (Benchmark 7) and Table 10 (Benchmark 8) for sand-
wich FGM cylindrical shell panel, cylinder and spherical shell panel, respectively.
Each vibration mode for a given thickness ratio and pair of half-wave numbers
(m,n) always has frequency values that decrease when the p value increases. The
classical core, with material properties that are an average between ceramic and
metal properties, gives frequencies similar to those obtained with an FGM core
with p = 1.0 (linear thickness law for elastic properties). The frequency values are
obtained by dividing the FGM core into 80 mathematical layers and each classical
skin into 10 mathematical layers. Mathematical layers are used to correctly con-
sider both FGM material law and curvature effects. This splitting into mathemati-
cal layers is the same for both plate and shell geometries. Figure 9 shows the first
three vibration modes for half-wave numbers m=n=2 and sandwich cylinder. FGM
cores with exponent for material law p=1.0 are compared with classical cores. For
both cases the first mode has constant through-the-thickness in-plane circumfer-
ential displacement and transverse displacement and linear through-the-thickness
in-plane longitudinal displacement. The second mode has constant through-the-
thickness in-plane longitudinal displacement and transverse displacement and lin-
ear through-the-thickness in-plane circumferential displacement (for both types of
core). The third mode has quasi-constant in-plane displacements and transverse
displacements (for both types of core). The cylinder is closed in α-direction with
one of the two radii of curvature that is infinite. Rα different from Rβ gives the
second vibration mode that is not an in-plane mode. The plate case in Figure 7
(both infinite radii of curvature, that means the same values of Rα and Rβ ) has an
in-plane second vibration mode. Figure 10 shows the first three vibration modes
for half-wave numbers m=n=3 for sandwich spherical shell panel. The FGM core
with exponent for material law p=2.0 is compared with classical core. There are
no differences in terms of vibration modes for the two core configurations. The
imposed half-wave numbers considered in this example have higher values. There-
fore, the displacements are quasi-linear or quasi-constant. The first vibration mode
has quasi-linear in-plane displacements and quasi-constant transverse displacement
through the thickness. The second vibration mode is an in-plane mode (zero trans-
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verse displacement) as in the plate case of Figure 7 because the structure has co-
incident (Rα = Rβ = 10) radii of curvature (see the comparison with the cylinder
case in Figure 9). In-plane displacements are quasi-constant through the thickness.
The third vibration mode has linear transverse displacement through the thickness
and quasi-constant in-plane displacements through the thickness.

The use of an FGM layer allows the change of frequency values without any change
in the behavior of the structure in terms of vibration modes.

5 Conclusions

The general three-dimensional formulation proposed in this paper uses an exact ge-
ometry for shells and a layer-wise approach for the multilayered FGM structures.
The differential equations of equilibrium in orthogonal curvilinear coordinates for
the free vibrations of simply supported plates and shells have been exactly solved
in three-dimensional form. This method allows free vibration results for spheri-
cal, open cylindrical, closed cylindrical and flat panels to be obtained. The layer-
wise approach proposed is based on the continuity of displacements and transverse
shear/normal stresses at the interfaces between the layers of the plates and shells.
This approach allows the solution of equilibrium equations for FGM shells by in-
troducing several mathematical layers where material properties and parametric
coefficients for the shell geometry description can be assumed as constant. There-
fore, they do not depend on the thickness coordinate. One-layered FGM structures
and sandwich plates and shells with external classical skins and an internal FGM
core have been investigated. The first three vibration modes have been shown for
several geometries, material configurations, various thickness ratios and half-wave
numbers imposed. The introduction of FGM layers allows the change of frequency
values but the behavior of the structure in terms of vibration modes remains the
same. These results will be useful benchmarks to validate future refined 2D models
for the free vibration analysis of FGM structures. Furthermore, this exact solution
gives a global three-dimensional overview of the free vibration problem of FGM
plates and shells.
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