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Interactions of Three Parallel Square-Hole Cracks in an
Infinite Plate Subjected to Internal Pressure
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Abstract: By using a hybrid displacement discontinuity method, the interactions
of three parallel square-hole cracks in an infinite plate subjected to internal pressure
are investigated in this paper. Numerical examples are included to illustrate that the
numerical approach is very simple and effective for calculating the stress intensity
factors (SIFs) of complex plane crack problems. Many numerical results of the
SIFs are given and discussed. It is found that a square hole has a shielding effect on
crack(s) emanating from the hole. The finding perhaps has an important meaning
in engineering.

Keywords: Parallel Cracks, Square hole, Stress intensity factor, Crack-tip ele-
ment, Displacement discontinuity method.

1 Introduction

Due to the stress concentration effect around the hole, cracks are likely to initiate
at the hole under the action of fatigue loading. Consequently, a number of papers
dealing with hole edge crack problems are available. For radial crack(s) emanating
from a circular hole in an infinite plate under tension, typical solutions were given
by Bowie (1956) and by Newman (1971). For radial cracks emanating from an
elliptical hole in an infinite plate under tension, typical solutions were obtained by
Nisitani and Isida (1982), by Murakami (1978) by using the body force and by
Newman (1971) by using the boundary collocation method. For cracks emanating
from a triangular or square hole in an infinite plate under tension, Murakami (1978)
used the body force method to calculate their stress intensity factors.

The boundary element method (BEM) also known a boundary integral equation
(BIE) method has proven to be a robust and accurate numerical technique in many
engineering disciplines. The attraction of BEM can be largely attributed to the re-
duction in the dimensionality of the problem; for 2D analysis only the line bound-
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ary of the domain needs to be discretized into elements and for 3D problems only
the surface of the domain needs to be discretized. This means that, compared to
domain type analysis, a boundary analysis results in a substantial reduction in data
preparation and a much smaller system of equations to be solved. Furthermore, this
simpler description of the body means that regions of high stress concentration can
be modeled more efficiently as the necessary high concentration of grid points in
confined to one less dimension. The ability of model high stress gradients accu-
rately and efficiently has been the main reason for the method success in fracture
mechanics applications [e.g., Aliabadi (1997); Dong and Atluri (2012); Dong and
Atluri (2013a,b); Cruse (1972)]. Indeed, fracture mechanics has been the most ac-
tive specialized area of research in the boundary element method and probably the
one most exploited by industry.

Various formulations of boundary integral equation methods have been developed
for elastic fracture mechanics problems. These formulations differ from each other
mainly because of the different approaches used in dealing with the singularity of
stress near a crack tip and the geometry identity of the surfaces of a crack. The stan-
dard boundary element formulation, when regarding the cracks as narrow slits with
upper and lower surfaces slightly separated, degenerates for flat cracks and is sim-
ply not appropriate for numerical modeling [e.g, Cruse (1972)]. This degeneracy is
linked to the ill-posed nature of problems with two coplanar surfaces. Several dif-
ferent formulations have been proposed to avoid this fundamental limitation. The
first one is the Green’s function method by Cruse (1978), which has the advantage
of avoiding crack surface modeling and gives excellent accuracy. It is however
restricted to fracture problems involving very simple crack geometries for which
analytical Green’s functions can be obtained. The second one is the multi-domain
technique by Blandford, Ingraffea and Liggett (1981). The advantage of this ap-
proach is its ability to model cracks with any geometric shape. The disadvantage
is an artificial subdivision of the original domain into several subdomains, thus re-
sulting in a large system of equations. The third approach is the displacement dis-
continuity method by Crouch and Starfied (1983). Instead of using the Green’s dis-
placements and stresses from point forces, the displacement discontinuity method
uses Greens functions corresponding to point dislocations (i.e., displacement dis-
continuity). The fourth approach is the so-called Dual Boundary Element Method
[e.g., Portela, Aliabadi and Rook (1992); Mi and Aliabadi (1992); Leonel and Ven-
turini (2010); Wang and Yao (2011)] where the displacement integral equation is
collocated on the no-crack boundary and on one side of the crack surface while the
traction integral equation is collocated on the other side of the crack surface. For
each formulation, in order to model the singularity of stress near a crack tip, options
are available such as building in the crack-tip stress singularity [e.g., Tanaka, and
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Itoh (1987); Kebir, Roelandt and Foulquier (1999)], using the quarter-point bound-
ary element by Blandford, Ingraffea and Liggett (1981), and strategically refining
the near-crack-tip nonsingular element. Further details on elastic crack analysis by
the boundary element method are given by Aliabadi (1997) and Cruse (1989).

In addition, the displacement discontinuity method are more straight-forward when
dealing with infinite domains. For practical problems with finite domains, the al-
ternating method by SN Atluri and co-workers [Park and Atluri (1998); Dong and
Atluri (2013b)] can be combined with the displacement discontinuity method. The
displacement-discontinuity method can be used to model cracks in an infinite do-
main, with the coarse FEM can be used to model finite structures without consid-
ering the cracks.
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Figure 1: Schematic of three parallel square-hole cracks in an infinite plate sub-
jected to internal pressure p (internal pressurep on hole faces and crack faces is not
pictured)

By using a hybrid displacement discontinuity method, the interactions of three par-
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allel square-hole cracks in an infinite plate subjected to internal pressure shown
in Fig.1 are investigated in this paper. It is found that the previous investigations
that the hybrid displacement discontinuity method has very high accuracy and ef-
ficiency for a branched crack [e.g. Yan (2004a); Yan (2005a); and Yan (2006a)],
complex plane cracks in a finite plate (2004b; 2005b and 2006b), a multiple cracks
interaction [e.g., Yan (2003a); Yan (2005c) and Yan (2006e)], a mixed-mode crack
problem [e.g., Yan (2006d)], including a fatigue growth simulation of a mixed-
mode crack [e.g., Yan (2006e)]. In this paper, numerical examples are given to
illustrate that the numerical approach is very simple and effective for calculating
the stress intensity factors (SIFs) of complex plane crack problems. Many numer-
ical results are given and discussed. It is found that a square hole has a shielding
effect on crack(s) emanating from the hole. The finding perhaps has an important
meaning in engineering.

2 Description of the Hybrid Displacement Discontinuity Method

In this section, the hybrid displacement discontinuity method presented by Yan
(2005b) is described briefly. It consists of the constant displacement discontinuity
element presented by Crouch and Starfield (1983) and the crack-tip displacement
discontinuity elements.

2.1 Constant Displacement Discontinuity Element

Figure 2: Schematic of constant displacement discontinuity components Dx and Dy

The displacement discontinuity Di is defined as the difference in displacement be-
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tween the two sides of the segment (see Fig.2):

Dx = ux(x,0−)−ux(x,0+)

Dy = uy(x,0−)−uy(x,0+)
(1)

The solution to the subject problem is given by Crouch and Starfield (1983). The
displacements and stresses can be written as

ux = Dx[2(1−ν)F3(x,y)− yF5(x,y)]+Dy[−(1−2ν)F2(x,y)− yF4(x,y)],

uy = Dx[(1−2ν)F2(x,y)− yF4(x,y)]+Dy[2(1−ν)F3(x,y)− yF5(x,y)],
(2)

and

σxx = 2GDx[2F4(x,y)+ yF6(x,y)]+2GDy[−F5(x,y)+ yF7(x,y)],

σyy = 2GDx[−yF6(x,y)]+2GDy[−F5(x,y)− yF7(x,y)],

σxy = 2GDx[−F5(x,y)+ yF7(x,y)]+2GDy[−yF6(x,y)].

(3)

G and vin these equations are shear modulus and Poisson’s ratio, respectively.
Functions F2 through F7 are described by Crouch and Starfield (1983). Eqs (2)
and (3) are used by Crouch and Starfield (1983) to set up a constant displacement
discontinuity method.

2.2 Crack-Tip Displacement Discontinuity Elements

By using the Eqs (2) and (3), recently, Yan (2005b) presented crack-tip displace-
ment discontinuity elements, which can be classified as the left and the right crack-
tip displacement discontinuity elements to deal with crack problems in general
plane elasticity. The following gives basic formulas of the left crack-tip displace-
ment discontinuity element.

For the left crack-tip displacement discontinuity element (see Fig.3), its displace-
ment discontinuity functions are chosen as

Dx = Hs(
atip +ξ

atip
)

1
2 , Dy = Hn(

atip +ξ

atip
)

1
2 . (4)

where Hs and Hn are the tangential and normal displacement discontinuity quan-
tities at the center of the element, respectively, atip is a half length of crack-tip
element. Here, it is noted that the element has the same unknowns as the two-
dimensional constant displacement discontinuity element. But it can be seen that
the displacement discontinuity functions defined in (4) can model the displacement
fields around the crack tip. The stress field determined by the displacement discon-
tinuity functions (4) possesses r−1/2 singularity around the crack tip.
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Figure 3: Schematic of the left crack tip displacement discontinuity element

Based on the Eqs (2) and (3), the displacements and stresses at a point (x,y) due to
the left crack-tip displacement discontinuity element can be obtained,

ux = Hs[2(1−ν)B3(x,y)− yB5(x,y)]+Hn[−(1−2ν)B2(x,y)− yB4(x,y)],

uy = Hs[(1−2ν)B2(x,y)− yB4(x,y)]+Hn[2(1−ν)B3(x,y)− yB5(x,y)],
(5)

and

σxx = 2GHs[2B4(x,y)+ yB6(x,y)]+2GHn[−B5(x,y)+ yB7(x,y)],

σyy = 2GHs[−yB6(x,y)]+2GHn[−B5(x,y)− yB7(x,y)],

σxy = 2GHs[−B5(x,y)+ yB7(x,y)]+2GHn[−yB6(x,y)],

(6)

where functions B2 through B7 are described by Yan (2005b).

2.3 Implementation of the Hybrid Displacement Discontinuity Method

Crouch and Starfield (1983) used Eqs (2) and (3) to set up constant displacement
discontinuity boundary element equations. Similarly, we can use Eqs (5) and (6)
to set up boundary element equations associated with the crack-tip elements. The
constant displacement discontinuity element together with the crack-tip elements
is combined easily to form a very effective numerical approach for calculating the
SIFs of general plane cracks. In the boundary element implementation, the left or
the right crack-tip element is placed locally at the corresponding left or right crack
tip on top of the constant displacement discontinuity elements that cover the entire
crack surface and the other boundaries. The method is called a hybrid displacement
discontinuity method (HDDM).
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2.4 Computational Formulas of the Stress Intensity Factors

The objective of many analyses of linear elastic crack problems is to obtain the
SIFs KI and KII . Based on the displacement field around the crack tip, the following
formulas exist

KI =−
√

2πGHn

4(1−ν)
√atip

, KII =−
√

2πGHs

4(1−ν)
√atip

. (7)

2.5 A Numerical Example

In order to illustrate the accuracy and efficiency of the hybrid displacement discon-
tinuity method for analyzing crack problems, an example is given here.

Figure 4: Schematic of a circular-hole crack in an infinite plate subjected to internal
pressure p.

Shown in Fig.4 is a circular-hole crack in an infinite plate subjected to internal
pressure p. For this problem, the symmetric conditions can be used. The following
cases are considered

a/R = 1.02,1.04,1.06,1.08,1.10,1.15,1.2,1.25,1.3,1.4,1.5,1.6,1.8,2.0,2.2,2.5,3.0

Regarding discretization, here, the number of elements on a quarter of the circular
hole is 200 and the other boundaries are discretized according to the limitation that
all boundary elements have approximately the same length. The calculated SIFs
normalized by p

√
πa are given in Table 1. For the comparison purpose, Table 1

also lists the numerical result reported by Bowie (1956). From Table 1, it is found
that the calculated results are in excellent agreement with those reported by Bowie
(1956).
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Table 1: Normalized SIFs of a circular-hole crack in an infinite plate subjected to
internal pressure.

a/R present Bowie
(1956)

1.02
1.04
1.06
1.08
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.60
1.80
2.00
2.20
2.50
3.00

0.2963
0.4123
0.4915
0.5517
0.5999
0.6878
0.7479
0.7916
0.8247
0.8711
0.9016
0.9228
0.9496
0.9651
0.9747
0.9832
0.9899

0.3058
0.4183
0.4958
0.5551
0.6025
0.6898
0.7494
0.7929
0.8259
0.8723
0.9029
0.9242
0.9513
0.9670
0.9768
0.9855
0.9927

3 Numerical Results and Discussions

2b 

2a 

Figure 5: Schematic of a square-hole crack in an infinite plate subjected to internal
pressure p (internal pressure p is not pictured).
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Table 2: Normalized SIFs of a square-hole crack in an infinite plate subjected to
internal pressure p.

a/b 1.005 1.01 1.02 1.04 1.06 1.08 1.10 1.15 1.29 1.25 1.30
SIFs 0.7546 0.7794 0.8046 0.8314 0.8482 0.8603 0.8705 0.8907 0.9051 0.9161 0.9261
a/b 1.35 1.50 2.0 2.5 3.0 3.5 4.0 4.5 5.0 10.0
SIFs 0.9339 0.9523 0.9811 0.9918 0.9956 0.9973 0.9980 0.9984 0.9986 0.9984
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Figure 6: Normalized SIFs of a square-hole crack in an infinite plate subjected to
internal pressure p.

Before analyzing three parallel square-hole cracks in an infinite plate subjected to
internal pressure p shown in Fig.1, first a square-hole crack in an infinite plate sub-
jected to internal pressure p shown in Fig.5 is studied by using the hybrid displace-
ment discontinuity method. Here, the SIFs of the square-hole crack are expressed
mathematically as KIsh(a/b). If the SIFs of the center crack of the length 2a sub-
jected to internal pressure p are expressed as KIcc, then their ratio can be denoted
by FIsh

FIsh = KIsh(a/b)/KIcc = KIsh(a/b)/(p
√

πa) (8)

which is called a normalized SIFs. The calculated normalized SIFs FIsh are given
in Table 2, also see Fig.6. From Fig.6, it can be seen that:

With an increase of ab(= a/b), FIsh fast increases monotonously and subsequently
increases slowly. As ab are large enough (e.g. ab � abl), FIsh reaches its maximum
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FIshm, and keeps this maximum with an increase of ab. Here, abl = 2.50, FIshm = 1.

After introducing the dimensionless parameters,ablandFIshm, it is found that:

(1) As ab < abl , a square hole has a shielding effect on the cracks emanating from
the hole. And the closer the size of the square hole is to that of the crack, the
stronger the shielding effect is.

(2) As ab > abl , a square hole has no effect on the SIFs of the cracks emanating
from the hole. That is to say that at this time the size of the square hole is small
enough relative to that of the center crack, the effect of the square hole on the SIFs
of cracks emanating from the hole is completely neglected.

The interactions of three parallel square-hole cracks in an infinite plate subjected to
internal pressure p shown in Fig.1 are investigated by using the hybrid displacement
discontinuity method. The following cases are considered,

a/b = 1.01,1.02,1.04,1.06,1.08,1.10,1.15,1.25,1.50,2.50,4.00

a/d = 0.05,0.20,0.40,0.70,0.80,0.84,0.88,0.90

For the hole crack problem shown in Fig.1, the symmetry conditions can be used.
Thus its quarter boundary is discretized in the boundary element analysis. Regard-
ing discretizations, number of elements (denoted by N) on a branched crack is given
in Table 3, the other boundaries are discretized according to the limitation that all
boundary elements have approximately the same length.

If the SIFs normalized by p
√

πa for three parallel square-hole cracks are denoted
by FIthcp, obviously, FIthcp can be expressed mathematically as

FIthcp = FIthcp(a/b,a/d) (9)

If we let the SIFs normalized by p
√

πa for three parallel cracks with same length
in an infinite plate subjected to internal pressure p be denoted by FItcp, then FItcp

can be expressed mathematically as

FItcp = FItcp(a/d) (10)

The calculated SIFs FIthcp are given in Tables 4 and 5. The SIFs FItcp reported by
Isida (1976) are listed in Table 6. It can be seen from Tables 2, 4, 5 and 6 that:

(1) When a/d is very small, for example, a/d = 0.05, the interactions of three
parallel square-hole cracks can be neglected. At this time, the SIFs FIthcp at the
crack tips A and B are all almost equal and equal to those of single square-hole
crack FIsh.

(2) When a/b is large enough, for example, a/b = 4.00, the effect of square holes
on the SIFs can be neglected. At this time, the SIFs FIthcp at the crack tip A for three
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Figure 7: Normalized SIFs FIthcp at the crack tip A for three parallel square-hole
cracks in an infinite plate subjected to internal pressure.
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Figure 8: Normalized SIFs FIthcp at the crack tip A for three parallel square-hole
cracks in an infinite plate subjected to internal pressure .
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Table 3: Number of elements on a branched crack for the crack problem shown in
Fig.1

a/b 1.01 1.02 1.04 1.06 1.08 1.10 1.15 1.25 1.50 2.50 4.00
N 3 5 5 7 10 10 20 25 50 150 300

Table 4: Normalized SIFs of crack tip A for three parallel square-hole cracks in an
infinite plate subjected to internal pressure

a/d
a/b

1.01 1.02 1.04 1.06 1.08 1.10 1.15 1.25 1.50 2.50 4.00
0.05
0.20
0.40
0.60
0.80
1.00

0.7747
0.7647
0.7401
0.7127
0.6825
0.6329

0.8048
0.7936
0.7677
0.7394
0.7082
0.6612

0.8304
0.8197
0.7930
0.7637
0.7325
0.6900

0.8486
0.8370
0.8096
0.7796
0.7485
0.7082

0.8612
0.8496
0.8215
0.7908
0.7598
0.7213

0.8711
0.8592
0.8305
0.7994
0.7686
0.7320

0.8897
0.8775
0.8476
0.8153
0.7847
0.7508

0.9153
0.9022
0.8702
0.8360
0.8052
0.7751

0.9505
0.9362
0.9008
0.8628
0.8306
0.8030

0.9894
0.9735
0.9332
0.8891
0.8519
0.8231

0.9960
0.9797
0.9379
0.8913
0.8517
0.8212

Table 5: Normalized SIFs of crack tip B for three parallel square-hole cracks in an
infinite plate subjected to internal pressure

a/d
a/b

1.01 1.02 1.04 1.06 1.08 1.10 1.15 1.25 1.50 2.50 4.00
0.05
0.20
0.40
0.60
0.80
1.00

0.7745
0.7582
0.7166
0.6649
0.5968
0.4455

0.8033
0.7864
0.7430
0.6895
0.6202
0.4807

0.8302
0.8125
0.7674
0.7124
0.6433
0.5196

0.8478
0.8297
0.7833
0.7271
0.6588
0.5457

0.8606
0.8420
0.7946
0.7376
0.6701
0.5648

0.8704
0.8515
0.8031
0.7455
0.6788
0.5800

0.8892
0.8695
0.8192
0.7601
0.6951
0.6080

0.9146
0.8937
0.8403
0.7783
0.7150
0.6414

0.9499
0.9270
0.8683
0.8013
0.7382
0.6771

0.9888
0.9633
0.8974
0.8224
0.7560
0.7014

0.9954
0.9693
0.9014
0.8236
0.7551
0.7007

Table 6: Normalized SIFs of three parallel cracks with same length in infinite plate
reported by Isida (1976)

a/d 0.0 0.2 0.4 0.6 0.8
FIA 1.00000 0.98198 0.94010 0.89080 0.85052
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parallel square-hole cracks shown in Fig.1 are almost equal to those corresponding
to three parallel cracks with the same crack length and the same spacing.

The above two points illustrate that the numerical results obtained for three parallel
square-hole cracks shown in Fig.1 are accurate and effective.

From Table 4, it can be seen that, for any a/b, variations of the normalized SIFs
FIthcp at the crack tip A for three parallel square-hole cracks with a/d are similar to
those of the normalized SIFs FItcp at the crack tip A for three parallel cracks. For
a/b = 1.01,1.10,4.00, for example, the SIFs FIthcp at the crack tip A are shown in
Fig.7, from which the observation can be proven.

From Table 4, it can be also seen that, for any a/d, variations of the normalized
SIFs FIthcp of three parallel square-hole cracks with a/b are similar to those of the
normalized SIFs FIsh of a square hole crack. For a/d = 0.05,0.60,1.0, for example,
the SIFs FIthcp at the crack tip A are shown in Fig.8, from which the observation
can be proven.

Based on discussions on an effect of a square hole on a crack emanating from the
square hole in an infinite plate subjected to internal pressure and the similarity of
variations of the SIFs FIthcp(a/b,a/d) with a/b to that of the SIFs FIsh(a/b) with
a/b, we come to conclude that there is also a shielding effect for three parallel
square-hole cracks in an infinite plate subjected to internal pressure. The shielding
effect perhaps has an important meaning in engineering. For example, suppose that
there are three parallel cracks in an infinite plate subjected to internal pressure with
a/d = 0.80. From Table 6, the normalized SIF is 0.85052. Here, suppose also that
three parallel square holes are cut out on the three parallel cracks with a/b = 1.02.
From Table 4, the normalized SIF is 0.7082. Thus it can be concluded from these
data that the plate with the three parallel square-hole cracks with a/b = 1.02 is
much safer than that with the three parallel cracks.

4 Conclusions

From the present investigations, the following conclusions can be made

By using the hybrid displacement discontinuity method, the interactions of three
parallel square-hole cracks in an infinite plate subjected to internal pressure were
investigated. The detail numerical results of the SIFs were given, from which it can
be seen that

(a) Variations of the SIFs FIthcp(a/b,a/d) at the crack tip A for three parallel
square-hole cracks with a/b are similar to those of the SIFsFIsh(a/b) of a square-
hole crack with a/b. In particular, it is found that a square hole has a shielding
effect on the cracks emanating from the hole and that the closer the size of the
square hole is to that of the crack, the stronger the shielding effect is.
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(b) Variations of the SIFs FIthcp(a/b,a/d) at the crack tip A for three parallel
square-hole cracks with a/d are similar to those of the SIFsFItcp(a/d) at the crack
tip A for three parallel cracks with a/d.

Acknowledgement: Special thanks are due to the National Natural Science
Foundation of China (No.10272037 and No.10672046) for supporting the present
work.
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