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A Direct Forcing Immersed Boundary Method Employed
With Compact Integrated RBF Approximations For Heat

Transfer and Fluid Flow Problems

N. Thai-Quang1, N. Mai-Duy1, C.-D. Tran1 and T. Tran-Cong1,2

Abstract: In this paper, we present a numerical scheme, based on the direct forc-
ing immersed boundary (DFIB) approach and compact integrated radial basis func-
tion (CIRBF) approximations, for solving the Navier-Stokes equations in two di-
mensions. The problem domain of complicated shape is embedded in a Cartesian
grid containing Eulerian nodes. Non-slip conditions on the inner boundaries, repre-
sented by Lagrangian nodes, are imposed by means of the DFIB method, in which
a smoothed version of the discrete delta functions is utilised to transfer the phys-
ical quantities between two types of nodes. The velocities and pressure variables
are approximated locally on Eulerian nodes using 3-node CIRBF stencils, where
first- and second-order derivative values of the field variables are also included in
the RBF approximations. The present DFIB-CIRBF scheme is verified through the
solution of several test problems including Taylor-Green vortices, rotational flow,
lid-driven cavity flow with multiple solid bodies, flow between rotating circular and
fixed square cylinders, and natural convection in an eccentric annulus between two
circular cylinders. Numerical results obtained using relatively coarse grids are in
good agreement with available data in the literature.

Keywords: compact integrated RBF, immersed boundary, direct forcing, viscous
flow, heat transfer.

1 Introduction

Flows past solid bodies of arbitrary shapes are widely encountered in engineering
applications. Body-fitted grid methods, where the governing equations are discre-
tised on a curvilinear grid conforming to the boundary, have been applied to solve
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such problems. Their main advantage is that the boundary conditions can be im-
posed in a simple and accurate way. However, generating a high quality mesh/grid
is difficult and time-consuming. As a result, a lot of research effort has been spent
on the development of non-body-conforming methods. Among them, the immersed
boundary methods (IBMs) have received much attention in recent years. In IBMs,
one joins the fluid and solid regions together to make a single domain that is discre-
tised using a Cartesian grid. This approach greatly simplifies the process of mesh
generation and also retains the relative simplicity of the governing equations. The
basis of IBMs lies in the way to introduce forces into the governing equations to
impose prescribed values on the immersed boundary.

The IBM was originally introduced by Peskin (1977) to investigate the fluid dy-
namics of blood flow in human heart. The flow field is defined on the Eulerian
coordinates, while the boundaries are represented on the Lagrangian coordinates.
The singular forces on the boundaries are known, and their effects on the flow field
are taken into account via regularised Dirac delta functions. Since then, many vari-
ants of the Peskin’s method have been proposed. Goldstein, Handler, and Sirovich
(1993) developed a feedback forcing approach to iteratively determine the magni-
tude of the force required to obtain a desired velocity on the immersed boundary.
Saiki and Biringen (1996) implemented this approach with the virtual boundary
method (VBM) to compute the flow past a stationary, rotating and oscillating cir-
cular cylinder. However, the feedback forcing approach induces some oscillations
and places some restriction on the computational time step. To overcome these
drawbacks, Fadlun, Verzicco, Orlandi, and Mohd-Yusof (2000) proposed an ap-
proach, namely the direct forcing (DF) technique, to evaluate the interactive forces
between the immersed boundary (IB) and the fluid, which is equivalent to apply-
ing a forcing term to the Navier-Stokes equations. In comparison with the feed-
back forcing approach, the DF approach can work with larger computational time
steps. Kim, Kim, and Choi (2001) proposed a combined IB finite-volume method,
where a mass source/sink and a momentum forcing are introduced, for simulat-
ing flows over complex geometries. To transfer the physical quantities smoothly
between Eulerian and Lagrangian nodes and avoid strong restrictions on the time
step, Uhlmann (2005) presented a method to incorporate the regularised delta func-
tions into a direct formulation of the fluid-solid interactive force. Wang, Fan, and
Luo (2008) developed an explicit multi-direct forcing approach and obtained a bet-
ter satisfaction of the non-slip boundary condition than the original DF approach.
Recently, Ji, Munjiza, and Williams (2012) proposed an iterative IBM in which the
body force updating is incorporated into the pressure iterations for the two- (2D)
and three-dimensional (3D) numerical simulations of laminar and turbulent flows.
The reader is referred to, e.g., Mittal and Iaccarino (2005) for a comprehensive
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review of IBMs.

High-order approximation schemes for the Navier-Stokes equations have the ability
to provide efficient solutions to steady/unsteady fluid flow problems. A high level
of accuracy can be achieved using a relatively coarse discretisation. Many types of
high-order schemes for the Navier-Stokes equations have been reported in the lit-
erature. Botella and Peyret (1998) developed a Chebyshev collocation method and
provided the benchmark results for the lid-driven cavity flow problem. Ding, Shu,
Yeo, and Xu (2006) presented a local multiquadric differential quadrature method
for the solution of 3D incompressible flow problems in the velocity-pressure formu-
lation, while Mai-Duy and Tran-Cong (2001b), Mai-Duy, Le-Cao, and Tran-Cong
(2008), Mai-Duy and Tran-Cong (2008), Le-Cao, Mai-Duy, and Tran-Cong (2009)
proposed an integrated-RBF (IRBF) method to solve heat transfer and fluid flow
problems in the stream function-vorticity formulation. Recently, Tian, Liang, and
Yu (2011) proposed a fourth-order compact difference scheme constructed on 2D
nine-point stencils, and Fadel and Agouzoul (2011) used the standard Padé scheme
to construct high-order approximations for the velocity-pressure-pressure gradient
formulation. It is noted that the velocity (u) and pressure (p) formulation has sev-
eral advantages over the stream function-vorticity formulation and the stream func-
tion formulation. The u-p formulation can provide the velocity and pressure fields
directly from solving the discretised equations and also work for 2D and 3D prob-
lems in a similar manner.

RBF networks (RBFNs) have emerged as a powerful approximation tool. The ap-
plication of RBFNs for the solution of ordinary (ODEs) and partial (PDEs) dif-
ferential equations was first presented by Kansa (1990). Mai-Duy and Tran-Cong
(2001a) proposed the use of integration, instead of the usual differentiation, to con-
struct the RBFN expressions (IRBFNs) in order to avoid the reduction of conver-
gence rate. IRBFNs were developed into global one-dimensional forms (1D-IRBF)
for second- and fourth-order PDEs [Mai-Duy and Tanner (2007)] and compact local
forms for second-order elliptic problems [Mai-Duy and Tran-Cong (2011); Mai-
Duy and Tran-Cong (2013)]. For the latter, the information about the governing
equation or derivatives of the field variable is also included in local approximations
to enhance the solution accuracy.

In this paper, we present a numerical scheme, namely DFIB-CIRBF, for solving
unsteady/steady fluid flow problems in 2D. The present scheme combines the di-
rect forcing immersed boundary (DFIB) method and the high-order compact inte-
grated radial basis function (CIRBF) approximations for the spatial discretisation
and utilises the second-order Adams-Bashforth/Crank-Nicolson algorithms for the
temporal discretisation. An interactive force, representing the effect of the solid
bodies on the fluid region, is added directly to the governing equations (i.e. di-
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rect forcing) on the fluid-solid regions to satisfy their boundary conditions. This
interactive force is evaluated explicitly from the pressure gradient, the convection
and diffusion terms in the previous time level. Because the Eulerian grid nodes do
not generally coincide with the nodes on the interfaces represented by Lagrangian
nodes, a smoothed version of the discrete delta functions is employed to transfer the
quantities between two types of nodes. The CIRBF approximations are constructed
over 3-point stencils, where nodal first- and second-order derivative values of the
field variables are included in the RBF approximations [Thai-Quang, Mai-Duy,
Tran, and Tran-Cong (2012)]. A series of test problems, including Taylor-Green
vortices, rotational flow, flow between rotating circular and fixed square cylinders,
and natural convection in an eccentric annulus between two circular cylinders, is
considered to verify the present scheme. The remainder of the paper is organised as
follows. Section 2 outlines the equations which govern the fluid flow phenomena.
The numerical formulation including the derivation of interactive forces, and the
temporal and spatial discretisations is described in detail in Section 3. In Section
4, in order to evaluate the efficiency of the present method, several numerical re-
sults are presented and compared with the analytic solutions and some approximate
results available in the literature, where appropriate. Section 5 concludes the paper.

2 Governing equations

The IB approach takes the Navier-Stokes equation for thermal flows in the dimen-
sionless form as follows

∇.u = 0 in Ω, (1)

∂u
∂ t

+(u.∇)u =−∇p+

√
Pr
Ra

∇
2u+ fb + fI in Ω, (2)

∂T
∂ t

+(u.∇)T =
1√

PrRa
∇

2T + fI,T in Ω, (3)

subject to the initial and boundary conditions:

u(x,y,0) = u0(x,y) in Ω, (4)

T (x,y,0) = T0(x,y) in Ω, (5)

u(x,y, t) = uΓ(x,y, t) on Γ, (6)

T (x,y, t) = TΓ(x,y, t) on Γ, (7)

where Ω is the entire domain of analysis that is of simpler shape than the fluid
domain; u = (u,v)T , p and T the velocity vector, the static pressure and the tem-
perature, respectively; fb =

(
fb,x, fb,y

)T , fI = ( fI,x, fI,y)
T and fI,T the body-force
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vector, the momentum interactive force vector and the thermal interactive force,
respectively; u0, uΓ, T0 and TΓ prescribed functions; Pr and Ra the Prandtl and
Rayleigh numbers defined as Pr = ν/α and Ra = βg∆T L3/αν , respectively, in
which ν is the kinematic viscosity, α is thermal diffusivity, β the thermal expan-
sion coefficient, g the gravity and L and ∆T the characteristic length and tempera-
ture difference, respectively. In the dimensionless form, the characteristic velocity
is taken as U0 =

√
gLβ∆T for the purpose of balancing the buoyancy and inertial

forces.

In (1), (2) and (3), the field variables are made dimensionless according to the
following definitions

x =
x′

L
, y =

y′

L
, u =

u′

U0
, v =

v′

U0
, p =

p′

ρU2
0
, T =

T ′−Tc

Th−Tc
, (8)

where x′, y′, u′, v′, p′, T ′ are the corresponding dimensional variables; and Th and
Tc the hot and cold temperatures, respectively.

The interactive forces fI and fI,T represent the influence of the immersed solid
bodies on the fluid by the viscous and thermal effects, while the body force fb is
a function of the temperature, for instance, fb = (0,T )T for the thermal problem
considered in Section 4. For isothermal flows, the term fb in (2) is set to null,

equation (3) is deactivated and the term
√

Pr
Ra in (2) is replaced by 1

Re where Re =
U0L/ν is the Reynolds number.

3 Numerical formulation

Consider a domain Ω comprised of the fluid region Ω f and solid region Ωs. The

latter is composed of Nesb embedded solid bodies Sk

(
Ωs =

⋃Nesb
k=1 Sk

)
as shown in

Figure 1. Let Γ and ∂Sk be the boundaries of Ω and kth solid body Sk, respec-
tively. While the entire domain Ω is discretised using a fixed uniform Cartesian
grid gh containing Eulerian grid nodes xi, j = (xi, j,yi, j)

T (i ∈ {1,2, . . . ,nx} and j ∈
{1,2, . . . ,ny}), each ∂Sk is described by a set of Nk

L Lagrangian nodes

Xk
l =

(
Xk

l ,Y
k
l

)T
∈ ∂Sk 1≤ l ≤ Nk

L, 1≤ k ≤ Nesb. (9)

3.1 Direct forcing method

It can be seen that the Lagrangian nodes, representing the immersed boundaries,
do not generally coincide with the fixed Eulerian nodes on the computational do-
main Ω. The direct forcing (DF) method, a variant of the IB approach, takes into
account non-slip and thermal boundary conditions on the fluid-solid interfaces by
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Figure 1: A schematic outline for the problem domain.

using the momentum interactive force fI and the thermal interactive force fI,T to
impose desired velocity and temperature values, respectively, at selected Eulerian
nodes near the IB. An interpolation process is necessary to transfer data between
the selected Eulerian nodes and the Lagrangian nodes on the IB. Below are the de-
tails for computing the momentum interactive force fI in (2). One can calculate the
thermal interactive force fI,T in (3) in a similar manner.

3.1.1 Derivation of the momentum interactive force

A temporal discretisation of the momentum equation (2) is given by Uhlmann
(2005)

un−un−1

∆t
= rhsn−1/2 + fn−1/2

I , (10)

where the superscript n denotes the current time level; the convection, pressure,
diffusion and body-force terms at a time tn−1/2 are lumped together in rhsn−1/2.

The interactive force term yielding the desired velocity u(d) can thus be defined as
[Fadlun, Verzicco, Orlandi, and Mohd-Yusof (2000)]

fn−1/2
I =

u(d),n−un−1

∆t
− rhsn−1/2, (11)

at some selected nodes (and zero elsewhere). The corresponding interactive force
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at the Lagrangian nodes will be

Fn−1/2
I =

U(d),n−Un−1

∆t
−RHSn−1/2. (12)

Hereafter, we use upper-case letters for quantities evaluated at the Lagrangian
nodes Xk

l .

The desired velocity at a node on the fluid-solid interface in (12) is computed from
the rigid-body motion of the solid body as follow

U(d)(Xk
l ) = Uk

c +ωωω
k
c× (Xk

l −Xk
c), (13)

where Uk
c =

(
Uk

c ,V
k
c
)T , ωωωk

c and Xk
c are the translational velocity, rotational velocity

and the position vectors of the mass centre of the kth solid body, respectively - all
is defined in the Cartesian coordinate system.

When the interactive force is absent, equation (12) leads to

Ũn = Un−1 +RHSn−1/2
∆t, (14)

where Ũ
n

is a preliminary velocity. Its Eulerian counterpart is

ũn = un−1 + rhsn−1/2
∆t. (15)

In the present work, we employ the Adams-Bashforth scheme for the temporal
discretisation. The term rhsn−1/2 in (15) is computed explicitly as [Butcher (2003)]

rhsn−1/2 =−
[

3
2

∇pn−1− 1
2

∇pn−2
]
−
[

3
2
(un−1.∇)un−1− 1

2
(un−2.∇)un−2

]
+

√
Pr
Ra

[
3
2

∇
2un−1− 1

2
∇

2un−2
]
+

[
3
2

fn−1
b − 1

2
fn−2
b

]
. (16)

Then, the interactive force at the Lagrangian nodes is computed now as

Fn−1/2
I =

U(d),n− Ũn

∆t
. (17)

In order to complete the evaluation of the interactive force term in (10), a mech-
anism for transferring the preliminary velocities (ũn, Ũ

n
) and the forces (Fn−1/2

I ,

fn−1/2
I ) between the two Eulerian and Lagrangian node systems is required.
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3.1.2 Transfer of quantities between Eulerian and Lagrangian nodes

Peskin (2002) employed the class of regularised delta functions

δh(x−x0) =
1
h2 φ

(
x− x0

h

)
φ

(
y− y0

h

)
, (18)

as kernels in a transfer step, where φ(r) is the one-dimensional (1D) discrete delta
functions (r can be (x− x0)/h or (y− y0)/h); and h the grid size. The relation of
the velocity and force between the two types of nodes can be given by Uhlmann
(2005)

Ũ(Xk
l ) = ∑

x∈gh

ũ(x)δh(x−Xk
l )h

2 ∀1≤ l ≤ NL, 1≤ k ≤ Nesb, (19)

fI(x) =
Nesb

∑
k=1

NL

∑
l=1

FI(Xk
l )δh(x−Xk

l )∆V k
l ∀x ∈ gh, (20)

where the temporal superscript is dropped for brevity and ∆V k
l is the volume cover-

ing the lth Lagrangian node of the kth solid body. For 2D problems, this volume is
simply taken as ∆V k

l = ∆s2 [Uhlmann (2005)], where ∆s is a Lagrangian grid size
that is chosen so that ∆s≈ h (h-the Eulerian grid size).

In Peskin (2002), several axioms, including momentum conditions and a quadratic
condition, are described. These axioms lead to the unique definition of a particular
smoothed delta function with finite support. A family of such functions may be
generated by imposing additional moment conditions and correspondingly broad-
ening the support. The several commonly used discrete delta functions can be cited
as the 2-point hat function δ2h(r) [Leveque and Li (1994)], the 3-point discrete
delta function δ3h(r) [Roma, Peskin, and Berger (1999)] and the 4-point piecewise
function δ4h(r) [Peskin (2002)]. Their 1D forms are given below

φ2(r) =

{
1−|r|, |r| ≤ 1,
0, 1≤ |r|,

(21)

φ3(r) =


1
3

(
1+
√
−3r2 +1

)
, |r| ≤ 0.5,

1
6

(
5−3|r|−

√
−3(1−|r|)2 +1

)
, 0.5≤ |r| ≤ 1.5,

0, 1.5≤ |r|,

(22)

φ4(r) =


1
8

(
3−2|r|+

√
1+4|r|−4r2

)
, |r| ≤ 1,

1
8

(
5−2|r|−

√
−7+12|r|−4r2

)
, 1≤ |r| ≤ 2,

0, 2≤ |r|.

(23)
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In the present study, we employ the 3-point discrete delta function δ3h(r) [Roma,
Peskin, and Berger (1999)].

3.2 Spatial discretisation

In this paper, the spatial derivatives are discretised using the CIRBF-2 scheme de-
scribed in Thai-Quang, Mai-Duy, Tran, and Tran-Cong (2012) and modified as
follows. At the boundary nodes, the compact 4-point stencils are replaced with
a newly derived compact 2-point stencil in order to make the coefficient matrices
tridiagonal. The present scheme is named CIRBF-3.

η
1

η
2

η
3

Figure 2: Compact 3-point IRBF stencil.

At an interior grid point xi, j =(xi, j,yi, j)
T (i∈{2,3, . . . ,nx−1} and j∈{2,3, . . . ,ny−

1}), its associated 3-point stencils are [xi−1, j,xi, j,xi+1, j] in the x-direction and [yi, j−1,
yi, j, yi, j+1] in the y-direction. For the sake of convenience, we use η to denote x and
y, thus having a generic stencil [η1,η2,η3] (η1 < η2 < η3, η2 ≡ ηi, j) as shown in
Figure 2. The integral approach starts with the decomposition of the highest-order
(second-order in this case) derivatives of u into RBFs

d2u(η)

dη2 =
m

∑
i=1

wiGi(η), (24)

where {Gi(η)}m
i=1 is the set of RBFs; and {wi}m

i=1 the set of weights/coefficients to
be found. Approximate representations for the first-order derivative and the func-
tion itself are then obtained through integration

du(η)

dη
=

m

∑
i=1

wiHi(η)+ c1, (25)

u(η) =
m

∑
i=1

wiH i(η)+ c1η + c2, (26)

where Hi(η) =
∫

Gi(η)dη ; H i(η) =
∫

Hi(η)dη ; and c1 and c2 are the constants of
integration.

The value of m is taken to be 3 for interior local stencils and 2 for boundary local
stencils.
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3.2.1 First-order derivative compact approximations

To approximate nodal values of the first-order derivative, the conversion system of
the present compact 3-node stencil is constructed as

u1
u2
u3
du1
dη
du3
dη

=

(
H
H

)
︸ ︷︷ ︸

C1


w1
w2
w3
c1
c2

 , (27)

where ui = u(ηi) (i ∈ {1,2,3}); dui
dη

= du
dη

(ηi) (i ∈ {1,3}); C1 is the conversion
matrix and H , H are submatrices defined as

H =

 H1(η1) H2(η1) H3(η1) η1 1
H1(η2) H2(η2) H3(η2) η2 1
H1(η3) H2(η3) H3(η3) η3 1

 , (28)

H =

[
H1(η1) H2(η1) H3(η1) 1 0
H1(η3) H2(η3) H3(η3) 1 0

]
. (29)

Solving (27) yields
w1
w2
w3
c1
c2

= C−1
1


u1
u2
u3
du1
dη
du3
dη

 , (30)

which maps the vector of nodal values of the function and of its first-order deriva-
tive to the vector of RBF coefficients including the two integration constants. Ap-
proximate expression for the first-order derivative in the physical space is obtained
by substituting (30) into (25)

du(η)

dη
=
[

H1(η) H2(η) H3(η) 1 0
]
C−1

1

(
û
d̂u
dη

)
, (31)

where η1 ≤ η ≤ η3; û = (u1,u2,u3)
T ; and d̂u

dη
=
(

du1
dη

, du3
dη

)T
. It can be rewritten in

the form

du(η)

dη
=

3

∑
i=1

dφi(η)

dη
ui +

dφ4(η)

dη

du1

dη
+

dφ5(η)

dη

du3

dη
, (32)
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where {φi(η)}5
i=1 is the set of integrated RBFs in the physical space.

At the current time level, equation (32) is taken as

dun(η)

dη
=

3

∑
i=1

dφi(η)

dη
un

i +
dφ4(η)

dη

dun
1

dη
+

dφ5(η)

dη

dun
3

dη
, (33)

where nodal values of the first-order derivatives on the right hand side are treated
as unknowns.

Collocating (33) at the central node of the compact stencil, i.e. η = η2, results in

−dφ4(η2)

dη

dun
1

dη
+

dun
2

dη
− dφ5(η2)

dη

dun
3

dη
=

dφ1(η2)

dη
un

1 +
dφ2(η2)

dη
un

2 +
dφ3(η2)

dη
un

3,

(34)

or in matrix-vector form

[
−dφ4(η2)

dη
1 −dφ5(η2)

dη

]
dun

1
dη
dun

2
dη
dun

3
dη

=
[

dφ1(η2)
dη

dφ2(η2)
dη

dφ3(η2)
dη

] un
1

un
2

un
3

 .
(35)

η
n

η
η

1
η

2
η

4
η

3
(η

n
η

−3) (η
n

η

−2) (η
n

η

−1)

Figure 3: Special compact 2-point IRBF stencils for the left and right boundary
nodes

At the boundary nodes, we compute the first derivative here using special compact
local stencils (Figure 3). These proposed stencils are constructed as follows. Con-
sider a boundary node η1. Its associated stencil is [η1,η2]. The conversion system
of this stencil is presented as the following matrix-vector multiplication

 u1
u2
du2
dη

=

(
Hsp

Hsp

)
︸ ︷︷ ︸

Csp1


w1
w2
c1
c2

 , (36)
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where Csp1 is the conversion matrix; and Hsp, Hsp matrices defined as

Hsp =

[
H1(η1) H2(η1) η1 1
H1(η2) H2(η2) η2 1

]
, (37)

Hsp =
[

H1(η2) H2(η2) 1 0
]
. (38)

Solving (36) yields
w1
w2
c1
c2

= C−1
sp1

 u1
u2
du2
dη

 . (39)

The boundary value of the first-order derivative of u is thus obtained by substituting
(39) into (25) and taking η = η1

du(η1)

dη
=
[

H1(η1) H2(η1) 1 0
]
C−1

sp1

(
u1 u2

du2
dη

)T
, (40)

or
dun

1
dη
−

dφsp3(η1)

dη

dun
2

dη
=

dφsp1(η1)

dη
un

1 +
dφsp2(η1)

dη
un

2, (41)

where {φspi(η)}3
i=1 is the set of IRBFs in the physical space. We rewrite equation

(41) in matrix-vector form[
1 −dφsp3 (η1)

dη

][ dun
1

dη
dun

2
dη

]
=
[

dφsp1 (η1)

dη

dφsp2 (η1)

dη

][ un
1

un
2

]
. (42)

In a similar manner, one can calculate the first derivative of u at the other boundary
node ηnη

.

The IRBF system on a grid line for the first derivative of u is obtained by letting the
interior node taking value from 2 to (nη −1) in (35) and making use of (42),

Lη ûn
η = Aη ûn. (43)

3.2.2 Second-order derivative compact approximations

To approximate nodal values of the second-order derivative, we represent the con-
version system of the present compact stencil as a matrix-vector multiplication

u1
u2
u3

d2u1
dη2

d2u3
dη2

=

(
H
G

)
︸ ︷︷ ︸

C2


w′1
w′2
w′3
c′1
c′2

 , (44)
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where ui = u(ηi) (i ∈ {1,2,3}); d2ui
dη2 = d2u

dη2 (ηi) (i ∈ {1,3}); C2 the conversion ma-

trix; and H , G submatrices defined as (28) and

G =

[
G1(η1) G2(η1) G3(η1) 0 0
G1(η3) G2(η3) G3(η3) 0 0

]
, respectively. (45)

Solving (44) yields
w′1
w′2
w′3
c′1
c′2

= C−1
2


u1
u2
u3

d2u1
dη2

d2u3
dη2

 , (46)

which maps the vector of nodal values of the function and of its second-order
derivative to the vector of RBF coefficients including the two integration constants.
Approximate expression for the second-order derivative in the physical space is
obtained by substituting (46) into (24)

d2u(η)

dη2 =
[

G1(η) G2(η) G3(η) 0 0
]
C−1

2

(
û

d̂2u
dη2

)
, (47)

where η1 ≤ η ≤ η3; û = (u1,u2,u3)
T ; and d̂2u

dη2 =
(

d2u1
dη2 ,

d2u3
dη2

)T
. It can be rewritten

in the form

d2u(η)

dη2 =
3

∑
i=1

d2ϕi(η)

dη2 ui +
d2ϕ4(η)

dη2
d2u1

dη2 +
d2ϕ5(η)

dη2
d2u3

dη2 , (48)

or

d2un(η)

dη2 =
3

∑
i=1

d2ϕi(η)

dη2 un
i +

d2ϕ4(η)

dη2
d2un

1
dη2 +

d2ϕ5(η)

dη2
d2un

3
dη2 , (49)

where {ϕi(η)}5
i=1 is the set of IRBFs in the physical space.

Collocating (49) at the central node of the compact stencil, i.e. η = η2, leads to

− d2ϕ4(η2)

dη2
d2un

1
dη2 +

d2un
2

dη2 −
d2ϕ5(η2)

dη2
d2un

3
dη2 =

d2ϕ1(η2)

dη2 un
1 +

d2ϕ2(η2)

dη2 un
2 +

d2ϕ3(η2)

dη2 un
3, (50)
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or in matrix-vector form

[
−d2ϕ4(η2)

dη2 1 −d2ϕ5(η2)
dη2

]
d2un

1
dη2

d2un
2

dη2

d2un
3

dη2

=
[

d2ϕ1(η2)
dη2

d2ϕ2(η2)
dη2

d2ϕ3(η2)
dη2

] un
1

un
2

un
3

 .
(51)

At the boundary nodes, we compute the second derivative here using special com-
pact local stencils (Figure 3). Consider a boundary node, e.g., η1. The conversion
system of its associated 2-node stencil is presented as the following matrix-vector
multiplication u1

u2
d2u2
dη2

=

(
Hsp

Gsp

)
︸ ︷︷ ︸

Csp2


w1
w2
c1
c2

 , (52)

where Csp2 is the conversion matrix; Hsp defined as before; and

Gsp =
[

G1(η2) G2(η2) 0 0
]
. (53)

Solving (52) yields
w1
w2
c1
c2

= C−1
sp2

 u1
u2

d2u2
dη2

 . (54)

The boundary value of the second-order derivative of u is thus obtained by substi-
tuting (54) into (24) and taking η = η1

d2u(η1)

dη2 =
[

G1(η1) G2(η1) 0 0
]
C−1

sp2

(
u1 u2

d2u2
dη2

)T
, (55)

or

d2un
1

dη2 −
d2ϕsp3(η1)

dη2
d2un

2
dη2 =

d2ϕsp1(η1)

dη2 un
1 +

d2ϕsp2(η1)

dη2 un
2, (56)

where {ϕspi(η)}3
i=1 is the set of IRBFs in the physical space. We rewrite equation

(56) in matrix-vector form

[
1 −d2ϕsp3 (η1)

dη2

] d2un
1

dη2

d2un
2

dη2

=
[

d2ϕsp1 (η1)

dη2
d2ϕsp2 (η1)

dη2

][ un
1

un
2

]
. (57)
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The IRBF system on a grid line for the second derivative of u is obtained by letting
the interior node taking value from 2 to (nη −1) in (51) and making use of (57),

Lηη ûn
ηη = Bηη ûn, (58)

where Lηη , Bηη are nη ×nη matrices.

3.3 Temporal discretisation

The temporal discretisation of (1)-(3) using the Adams-Bashforth scheme [Butcher
(2003)] for the convection term and the Crank-Nicolson scheme [Crank and Nicol-
son (1996)] for the diffusion term yields

∇.un = 0, (59)

un−un−1

∆t
+

[
3
2
(un−1.∇)un−1− 1

2
(un−2.∇)un−2

]
=

−∇pn−1/2 +
1
2

√
Pr
Ra

(
∇

2un +∇
2un−1)+ fn−1/2

b + fn−1/2
I , (60)

T n−T n−1

∆t
+

[
3
2
(un−1.∇)T n−1− 1

2
(un−2.∇)T n−2

]
=

1
2
√

PrRa

(
∇

2T n +∇
2T n−1)+ f n−1/2

I,T . (61)

We apply the pressure-free projection/fractional-step method developed in Kim and
Moin (1985) to solve (60). This equation is advanced in time according to the
following two step procedure

u∗,n−un−1

∆t
+

[
3
2
(un−1.∇)un−1− 1

2
(un−2.∇)un−2

]
=

1
2

√
Pr
Ra

(
∇

2u∗,n +∇
2un−1)+ fn−1/2

b + fn−1/2
I , (62)

un−u∗,n

∆t
=−∇φ

n, (63)

where u∗ = (u∗,v∗)T denotes the intermediate velocity vector; and φ the pseudo-
pressure. It is noted that u∗,n does not satisfy the continuity equation (59) and the
actual pressure p is derived as

pn−1/2 = φ
n−

(
∆t
2

√
Pr
Ra

)
∇

2
φ

n. (64)
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3.4 Algorithm of the computational procedure

• Step 0: Start with the given initial and boundary conditions. In this study, the
initial conditions are zero for the velocity and temperature fields.

• Step 1: Compute thermal Eulerian counterpart t̃
n
, using a formula similar

to (15), which is then transferred to Lagrangian nodes to obtain T̃
n

using a
formula similar to (19).

• Step 2: Compute Fn−1/2
I,T , using a formula similar to (17), which is then trans-

ferred to Eulerian nodes to obtain f n−1/2
I,T using a formula similar to (20).

• Step 3: Solve (61) for the solution T n with known f n−1/2
I,T and prescribed

boundary condition T n
Γ

.

• Step 4: Compute the body force fn−1/2
b from the temperature field as

fn−1/2
b =

(
0,T n−1/2

)T
=

(
0,

T n +T n−1

2

)T

. (65)

• Step 5: Compute momentum Eulerian counterpart ũn from (15), which is
then transferred to Lagrangian nodes to obtain Ũ

n
via (19).

• Step 6: Compute Fn−1/2
I from (17), which is then transferred to Eulerian

nodes to obtain fn−1/2
I via (20).

• Step 7: Solve (62) for u∗,n subject to the following boundary condition [Kim
and Moin (1985)]

u∗,n|Γ = un
b +∆t

(
∇φ

n−1) |Γ. (66)

For a more efficient solution, one can apply the alternating direction implicit
(ADI) algorithm to solve (62) and (61) as shown in Thai-Quang, Mai-Duy,
Tran, and Tran-Cong (2012).

• Step 8: Equations (63) and (59) are then solved in a coupled manner for
un and φ n in which the boundary condition for the pseudo-pressure φ is not
required. The values of φ n are obtained for the interior nodes only. After
that, the values of φ at the boundary nodes are extrapolated from known
values at the interior nodes and known Neumann boundary values derived
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from (63) (i.e., ∇φ n|Γ =
(
u∗,nb −un

b

)
/∆t) [Thai-Quang, Le-Cao, Mai-Duy,

and Tran-Cong (2012)]:(
φ n

1, j
φ n

nx, j

)
=

[
H1(x1, j) · · · Hnx(x1, j) x1, j 1
H1(xnx, j) · · · Hnx(xnx, j) xnx, j 1

]


H1(x2, j) · · · Hnx(x2, j) x2, j 1
H1(x3, j) · · · Hnx(x3, j) x3, j 1

...
. . .

...
...

...
H1(xnx−1, j) · · · Hnx(xnx−1, j) xnx−1, j 1

H1(x1, j) · · · Hnx(x1, j) 1 0
H1(xnx, j) · · · Hnx(xnx, j) 1 0



−1


φ n
2, j

φ n
3, j
...

φ n
nx−1, j

∂φ n
1, j/∂x

∂φ n
nx, j/∂x


, (67)

for a x-grid line, and(
φ n

i,1
φ n

i,ny

)
=

[
H1(yi,1) · · · Hny(yi,1) yi,1 1
H1(yi,ny) · · · Hny(yi,ny) yi,ny 1

]


H1(yi,2) · · · Hny(yi,2) yi,2 1
H1(yi,3) · · · Hny(yi,3) yi,3 1

...
. . .

...
...

...
H1(yi,ny−1) · · · Hny(yi,ny−1) yi,ny−1 1

H1(yi,1) · · · Hny(yi,1) 1 0
H1(yi,ny) · · · Hny(yi,ny) 1 0



−1


φ n
i,2

φ n
i,3
...

φ n
i,ny−1

∂φ n
i,1/∂y

∂φ n
i,ny

/∂y


, (68)

for a y-grid line. It is noted that for flows with irregular outer boundaries,
instead of solving (63) and (59), we solve (59)-(60) simultaneously for un

and pn−1/2 in which pn−1/2 involves the interior nodes only (the boundary
condition for pn−1/2 is not required here).

• Step 9: Go back to step 1 and iterate for the next time level.

4 Numerical examples

It has generally been accepted that, among RBFs, the multiquadric (MQ) function
tends to result in the most accurate approximation [Franke (1982)]. We choose MQ
as the basis function in the present calculations

Gi(x) =
√

(x− ci)T (x− ci)+a2
i , (69)

where x = (x,y)T is the position vector of the point of interest; and ci = (xci ,yci)
T

and ai the position vector of the centre and the width of the ith MQ, respectively.
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For each stencil, the set of nodal points is taken to be the set of MQ centres. We
simply choose the MQ width as ai = βhi in which β is a given positive number
and hi the distance between the ith node and its nearest neighbouring node. For
the calculations in this paper, β = 25 and β = 50 are employed. We assess the
performance of the present scheme through following measures:

• the root mean square (RMS) error defined as

RMS =

√
∑

N
i=1(ui−ui)2

N
, (70)

where N is the number of nodes over the whole domain; and u the analytic
solution,

• maximum absolute error (L∞) defined as

L∞ = max
i
|ui−ui|, (71)

• the error behaviour, expressed as O(hα), where h is an average grid size; and
α the average rate of grid convergence, determined in the least square sense,

• the convergence measure based on the velocity magnitude (CMvel) in the
whole analysis domain is defined as (given two successive grids)

CMvel =

√
∑

N
i=1

(
velct f g

i − vel f g
i

)2

√
∑

N
i=1

(
vel f g

i

)2
, (72)

where vel f g is the velocity magnitude field computed using the finer grid;
velct f g is the velocity magnitude field obtained at the finer grid by interpo-
lating the solution computed using the coarser grid. The present results is
considered to be grid convergent if CMvel is less than 10−3.

A flow is considered to reach a steady state when√
∑

N
i=1(u

n
i −un−1

i )2

N
< 10−9, (73)

where un and un−1 are the approximate solutions at the current and previous time
levels, respectively.
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Since the approximations are presently based on RBFs, distances between two
neighbouring nodes in the stencil can be different. This capability is exploited
here to handle non-rectangular outer boundaries in a direct manner (i.e. body-fitted
grid). We can thus retain a body-conforming treatment for rectangular and non-
rectangular outer boundaries. We numerically demonstrate this ability with the
following example

∂ 2u
∂x2 +

∂ 2u
∂y2 =−8π

2 sin(2πx)sin(2πy), (74)

defined on a circular domain of radius R = 1.5 and subject to Dirichlet boundary
condition. Its exact solution is u = sin(2πx)sin(2πy). A number of grids, namely
{12× 12, 22× 22, . . . , 102× 102}, are employed to study the grid-convergence
behaviour of the solution (Figure 4). Those interior nodes that fall very close to the
boundary (within a distance of h/8) are removed from the set of of nodal points.
Figure 5 shows the matrix condition number and the RMS error of the interior solu-
tion against grid size. Results by the Cartesian-grid finite-difference method (FDM)
[Sanmiguel-Rojas, Ortega-Casanova, del Pino, and Fernandez-Feria (2005)] are
also included for comparison purposes. The solution converges as O(h2.03) for
FDM and quite fast as O(h3.17) for the present method. The two methods have
similar condition numbers of the system matrix.

Figure 4: Poisson equation, circular domain: Computational domain and its dis-
cretisation.
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Figure 5: Poisson equation, circular domain, {12× 12,22× 22, . . . ,102× 102}:
The solution accuracy (top) and the matrix condition number (bottom) against grid
size by FDM and the present method. The solution converges as O(h2.03) and
O(h3.17) while the matrix condition grows as O(h−2.52) and O(h−2.46) for FDM
and the present method, respectively.
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4.1 Taylor-Green vortices

This problem is taken from Uhlmann (2005), where the analytic solution is given
by

u(x,y, t) = sin(πx)cos(πy)e−2π2t/Re, (75)

v(x,y, t) =−sin(πy)cos(πx)e−2π2t/Re, (76)

p(x,y, t) = 0.5
(
cos2(πy)− sin2(πx)

)
e−4π2t/Re, (77)

from which one can derive the initial solution, the time-dependent boundary condi-
tions and the time-dependent desired velocities U(d) on the inner immersed bound-
aries. The solution is computed at Re = 5 and t = 0.3 using a time step ∆t = 0.001
and β = 25 for the following two domains

4.1.1 Circular domain

A circular domain of unit radius is chosen here to investigate the performance of
the present scheme in dealing with non-rectangular outer boundaries. Several grids,
namely {12× 12, 22× 22, . . . , 52× 52} are employed. Figure 6 shows the RMS
errors of the velocity components and the pressure against the grid size h. The
solutions converge as O(h3.31), O(h3.29) and O(h2.87) for the x-component velocity,
y-component velocity and pressure, respectively. It can be seen that fast rates of
convergence (about third order) are achieved with the present method. Figure 7
shows the analytic and computed vorticity isolines using a grid of 52× 52, which
are graphically indistinguishable.

4.1.2 Concentric annulus between two circular cylinders

The outer and inner radii of this domain are taken as Ro = 1 and Ri = 0.5, respec-
tively. We employ a set of grids, namely {22×22, 32×32, . . . , 52×52} to repre-
sent the problem domain. Figure 8 shows the Eulerian nodes distributed inside and
on the outer boundary, and Lagrangian nodes distributed on the inner boundary, for
instance, by a grid of 22×22. Figure 9 shows the analytic and computed vorticity
isolines using a grid of 52×52, where an excellent agreement can be seen. The L∞

errors of the velocity components and pressure against the grid size h are presented
in Figure 10. The solutions converge as O(h2.02), O(h2.03) and O(h2.02) for u, v
and p, respectively. The rates of convergence are reduced due to the effect of using
regularised δh functions, which are second-order accurate [Uhlmann (2005)], in the
IB approach.
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Figure 6: Taylor-Green vortices, circular domain, {12×12,22×22, . . . ,52×52}:
The solution accuracy of the velocity components and pressure against grid size.
The solution converges as O(h3.31), O(h3.29) and O(h2.87) for x-component veloc-
ity, y-component velocity and pressure, respectively.
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Figure 7: Taylor-Green vortices, circular domain, 52×52, ∆t = 0.001: the analytic
(left) and computed (right) isolines of the vorticity field at t = 0.3.



A Direct Forcing Immersed Boundary Method 71

Figure 8: Taylor-Green vortices, concentric annulus: Computational domain and
its discretisation (Eulerian nodes inside the annulus and on the outer boundary,
Lagrangian nodes on the inner boundary with a grid of 22×22).
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Figure 9: Taylor-Green vortices, concentric annulus, 52×52, ∆t = 0.001: the ana-
lytic (left) and computed (right) isolines of the vorticity field at t = 0.3.
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Figure 10: Taylor-Green vortices, concentric annulus, {22× 22,32× 32, . . . ,52×
52}: The solution accuracy of the velocity components and pressure against grid
size. The solution converges as O(h2.02), O(h2.03) and O(h2.02) for x-component
velocity, y-component velocity and pressure, respectively.

4.2 Rotational flow

The present scheme is further verified with a rotational flow, where a circular ring
(zero thickness) of R = 0.3 is embedded in a square domain Ω = [−1,1]× [−1,1].
The solid ring rotates about its centre with an angular velocity ω = 2. The simula-
tion is conducted for Re = 18 using a grid of 65×65 and ∆t = h/4 as in Le, Khoo,
and Peraire (2006). Plots of the velocity u and velocity vector in a subdomain
[−0.5,0.5]× [−0.5,0.5] at t = 10 are shown in Figure 11, in which the flow be-
haviours observed here are very similar to those reported in Le, Khoo, and Peraire
(2006).
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Figure 11: Rotational flow generated by a circular ring rotating about its centre in
a fluid filled square cavity, Re = 18, 65×65, t = 10, ∆t = h/4: Distributions of the
x-component velocity (top) and velocity vector (bottom) over the computational
domain.



74 Copyright © 2013 Tech Science Press CMES, vol.96, no.1, pp.49-90, 2013

−1 0 1
−1

0

1

y

u = 0
v = 0

u = 1, v = 0

u = 0
v = 0

u = 0, v = 0

x

Figure 12: Lid-driven cavity flow with multiple solid bodies: Geometry and bound-
ary condition.
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Figure 13: Lid-driven cavity flow with multiple solid bodies: Velocity vector field.
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Figure 14: Lid-driven cavity flow with multiple solid bodies: The effect of the grid
size on the u-velocity profile along the diagonal x= y. The curves are discontinuous
due to the presence of a circular body on the diagonal around x = y = 0.

4.3 Lid-driven cavity flow with multiple solid bodies

This test problem is concerned with the lid-driven cavity flow in a square domain
Ω = [−1,1]× [−1,1] containing five fixed rigid circular cylinders (Figure 12). The
radius of the cylinders is R = 0.15 and their centres are located at (0,0), (0,−0.6),
(−0.6,0), (0,0.6) and (0.6,0), respectively. The top wall is driven from left to right
by a unit velocity whereas the other walls are stationary. The Lagrangian nodes
are distributed on the boundaries with a grid spacing ratio ∆s/h = 0.85. These
parameters are taken from Su and Lai (2007).

The grid convergence study for this problem is carried out at Re = 100 on a set of
uniform grids, namely {41×41,61×61,81×81,101×101,121×121,141×141},
using a time step of ∆t = 0.001. The present solutions converge at the grid of
121× 121. The velocity field obtained with the grid 121× 121 is presented in
Figure 13, showing that the primary vortex is captured very well around the top-
right corner. The flow field looks feasible and similar in comparison with those
shown in Su and Lai (2007). (To avoid cluttering, the velocity vectors are plotted
at every third grid point, i.e. at 41×41 points as in Su and Lai (2007)). Figure 14
shows the u-velocity profile along the diagonal x = y for different grid sizes.
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4.4 Flow between a rotating circular and a fixed square cylinder

Consider a flow in a concentric annulus between a square cylinder Ω = [−2,2]×
[−2,2] and a circular cylinder of R = 1 (Figure 15). The inner cylinder rotates with
an angular velocity ω = 1 while the outer cylinder is stationary. This problem is
taken from Lewis (1979). The boundary conditions are as follows

u = 0 on x =±2, y =±2, (78)

u =−ωy, v = ωx on R = 1. (79)

The calculations are carried out on a set of uniform grid N ∈{61×61,81×81,101×
101,121× 121,131× 131,141× 141} and a set of time step ∆t ∈ {0.001,0.0005,
0.00025,0.0001} for various values of the Reynolds number, namely Re ∈ {1, 100,
200, 500, 1000, 1400}. Smaller time step is utilised for denser grid and higher
Reynolds number. The maximum values of the stream function and vorticity (ψmax

and ζmax), the values of the stream function on the circular cylinder (ψc) and min-
imum values of the stream function (ψmin) are presented in Table 1. The present
results, convergent at a grid of 131×131, agree well with those reported in Lewis
(1979) using a 161×161 grid.
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Figure 15: Flow between a rotating circular and a fixed square cylinder: Geometry
and boundary conditions.
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Figure 16: Flow between a rotating circular and a fixed square cylinder: Stream-
lines of the flow for several Reynolds numbers using a grid of 131× 131. The
contour values used here are taken to be the same as those in Lewis (1979), except
those on the circular boundary.
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Table 1: Flow between rotating circular and fixed square cylinders: Maximum
values of the stream function (ψmax) and vorticity (ζmax), and values of the stream
function on the circular cylinder (ψc) by the present method and FDM.

Re Method Grid ψmin ψmax ζmax ψc
1 Present (u− p) 61×61 -1.4203E-4 0.4785 1.0472 0.4785

81×81 -1.3415E-4 0.4699 1.0233 0.4699
101×101 -1.3588E-4 0.4712 1.0325 0.4712
121×121 -1.3523E-4 0.4701 1.0249 0.4701
131×131 -1.3478E-4 0.4695 1.0216 0.4695
141×141 -1.3472E-4 0.4691 1.0209 0.4691

FDM (ψ−ζ ) [Lewis (1979)] 161×161 -1.4000E-4 0.4656 1.0186 0.4656
100 Present (u− p) 61×61 -1.2527E-3 0.4808 1.2433 0.4808

81×81 -1.1994E-3 0.4747 1.2374 0.4747
101×101 -1.1830E-3 0.4711 1.2265 0.4711
121×121 -1.1788E-3 0.4679 1.2216 0.4679
131×131 -1.1760E-3 0.4658 1.2198 0.4658
141×141 -1.1758E-3 0.4652 1.2193 0.4652

FDM (ψ−ζ ) [Lewis (1979)] 161×161 — — — 0.4577
200 Present (u− p) 61×61 -2.0812E-3 0.4777 1.3110 0.4777

81×81 -1.9988E-3 0.4715 1.3095 0.4715
101×101 -1.9882E-3 0.4678 1.2992 0.4678
121×121 -1.9796E-3 0.4652 1.2916 0.4652
131×131 -1.9721E-3 0.4629 1.2897 0.4629
141×141 -1.9716E-3 0.4625 1.2893 0.4625

FDM (ψ−ζ ) [Lewis (1979)] 161×161 — 0.4539 1.2559 0.4539
500 Present (u− p) 61×61 -3.0170E-3 0.4738 1.3957 0.4738

81×81 -2.9114E-3 0.4676 1.4143 0.4676
101×101 -2.8354E-3 0.4599 1.3732 0.4599
121×121 -2.7762E-3 0.4526 1.3719 0.4526
131×131 -2.7298E-3 0.4512 1.3708 0.4512
141×141 -2.7291E-3 0.4511 1.3702 0.4511

FDM (ψ−ζ ) [Lewis (1979)] 161×161 -2.7100E-3 0.4465 1.3430 0.4465
1000 Present (u− p) 61×61 -3.2525E-3 0.4714 1.4321 0.4714

81×81 -3.1714E-3 0.4648 1.4899 0.4648
101×101 -3.1014E-3 0.4502 1.4264 0.4502
121×121 -3.0326E-3 0.4429 1.3925 0.4429
131×131 -3.0048E-3 0.4397 1.3767 0.4397
141×141 -3.0042E-3 0.4394 1.3761 0.4394

FDM (ψ−ζ ) [Lewis (1979)] 161×161 — — — 0.4375
1400 Present (u− p) 61×61 -3.2105E-3 0.4707 1.4329 0.4707

81×81 -3.1543E-3 0.4637 1.5223 0.4637
101×101 -3.0785E-3 0.4461 1.4279 0.4461
121×121 -3.0241E-3 0.4379 1.4117 0.4379
131×131 -2.9953E-3 0.4324 1.4026 0.4324
141×141 -2.9947E-3 0.4320 1.4024 0.4320

FDM (ψ−ζ ) [Lewis (1979)] 161×161 — — — 0.4314
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The streamlines of the flow field using a grid of 131× 131 is shown in Figure 16,
in which the vortices at the corners are well captured and in agreement with the
results of Lewis (1979).

4.5 Natural convection in an eccentric annulus between two circular cylinders

The geometry of this problem can be defined through the following parameters: the
eccentricity ε , angular position ϕ , radius of the outer cylinder Ro and radius of the
inner cylinder Ri (Figure 17). The inner and outer cylinders are heated (Th = 1) and
cooled (Tc = 0), respectively. Calculation is carried out for Pr = 0.71, Ro/Ri = 2.6
and Ra = 104 using a set of uniform grids, namely {60×60,70×70,80×80,90×
90,100×100} and a set of time steps ∆t ∈{0.001,0.0005,0.00025,0.0001}. Smaller
time steps are used for higher grid densities. A distribution of nodes and the bound-
ary conditions are shown in Figure 17.

For symmetrical flows, where the centres of the inner and outer cylinders lie on the
vertical symmetrical axis, several values of eccentricity, namely ε ∈ {0.25,0.50,
0.75,0.95} and angular direction, namely ϕ ∈ {−90◦,90◦} are considered. Table
2 compares the maximum value of the stream function (ψmax) between the present
scheme, one-dimensional integrated radial basis function (1D-IRBF) scheme [Le-
Cao, Mai-Duy, and Tran-Cong (2011)] and differential quadrature method (DQM)
[Shu, Yao, Yeo, and Zhu (2002)]. It can be seen that good agreement is achieved.
The present solutions are convergent at the grid of 90×90.

For unsymmetrical flows, the stream function at the inner wall (ψw) is no longer
zero and its value varies with the location of the inner cylinder. Values of the ec-
centricity and angular direction are taken as {0.25,0.50,0.75} and {−45◦,0◦,45◦},
respectively. In Table 3, values of ψw are presented and agree satisfactorily with
those obtained by the 1D-IRBF scheme [Le-Cao, Mai-Duy, and Tran-Cong (2011)],
DQM [Shu, Yao, Yeo, and Zhu (2002)] and domain-free discretisation method
(DFD) [Shu and Wu (2002)]. It is noted that the present governing equations (1)-
(3) are different from those used in Shu, Yao, Yeo, and Zhu (2002) and Shu and
Wu (2002) by a factor

√
PrRa. Therefore, to facilitate a comparison, our results in

the table, which are computed in the average sense from the values of ψ at the La-
grangian nodes, are multiplied by this factor. The present solutions are convergent
at the grid of 90×90.

Figures 18-19 and Figures 20-22 show the isotherms and streamlines of the flow for
symmetrical and unsymmetrical flows, respectively, where several combinations of
eccentricity and angular direction are considered. Each plot contains 22 contour
lines whose levels vary linearly from the minimum to maximum values. All plots
look very feasible when compared with those obtained by the 1D-IRBF scheme
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[Le-Cao, Mai-Duy, and Tran-Cong (2011)], DQM [Shu, Yao, Yeo, and Zhu (2002)]
and (DFD) [Shu and Wu (2002)].
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Figure 17: Natural convection in eccentric circular-circular annulus: Geometry and
boundary conditions (left) and distribution of nodes (right) (Eulerian nodes inside
the annulus and on the outer boundary, Lagrangian nodes on the inner boundary
with a grid of 60×60).

Table 2: Natural convection in eccentric circular-circular annulus, symmetrical
flows: the maximum values of the stream function (ψmax) for two special cases
ϕ ∈ {−90◦,90◦} by the present and some other numerical schemes.

ψmax
ϕ ε DQMa 1D-IRBFb DFIB-CIRBFc

60×60 70×70 80×80 90×90 100×100
−90◦ 0.25 15.50 15.71 15.26 15.30 15.35 15.36 15.36

0.50 18.32 18.50 18.10 18.39 18.44 18.47 18.47
0.75 20.62 20.72 20.10 20.41 20.47 20.49 20.49
0.95 22.16 22.19 21.91 22.35 22.44 22.49 22.50

90◦ 0.25 11.13 11.26 11.07 11.11 11.13 11.14 11.14
0.50 9.55 9.64 9.51 9.55 9.57 9.58 9.58
0.75 8.12 8.25 8.17 8.18 8.20 8.21 8.21
0.95 7.17 7.28 7.21 7.23 7.24 7.24 7.24

a Shu, Yao, Yeo, and Zhu (2002)
b Le-Cao, Mai-Duy, and Tran-Cong (2011)
c Present
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Figure 18: Natural convection in an eccentric circular-circular annulus, symmetri-
cal flows: Contour plots for the temperature (left) and stream function (right) fields
for ε ∈ {0.25,0.50,0.75,0.95} (from top to bottom) and ϕ =−90◦. Each plot con-
tains 22 contour lines whose levels vary linearly from the minimum to maximum
values.
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Figure 19: Natural convection in an eccentric circular-circular annulus, symmetri-
cal flows: Contour plots for the temperature (left) and stream function (right) fields
for ε ∈ {0.25,0.50,0.75,0.95} (from top to bottom) and ϕ = 90◦. Each plot con-
tains 22 contour lines whose levels vary linearly from the minimum to maximum
values.
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Figure 20: Natural convection in an eccentric circular-circular annulus, unsym-
metrical flows: Contour plots for the temperature (left) and stream function (right)
fields for ε ∈ {0.25,0.50,0.75} (from top to bottom) and ϕ =−45◦. Each plot con-
tains 22 contour lines whose levels vary linearly from the minimum to maximum
values.
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Figure 21: Natural convection in an eccentric circular-circular annulus, unsym-
metrical flows: Contour plots for the temperature (left) and stream function (right)
fields for ε ∈ {0.25,0.50,0.75} (from top to bottom) and ϕ = 0◦. Each plot con-
tains 22 contour lines whose levels vary linearly from the minimum to maximum
values.



A Direct Forcing Immersed Boundary Method 85

Figure 22: Natural convection in an eccentric circular-circular annulus, unsym-
metrical flows: Contour plots for the temperature (left) and stream function (right)
fields for ε ∈ {0.25,0.50,0.75} (from top to bottom) and ϕ = 45◦. Each plot con-
tains 22 contour lines whose levels vary linearly from the minimum to maximum
values.
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Table 3: Natural convection in eccentric circular-circular annulus, unsymmet-
rical flows: the stream function values at the inner cylinders (ψw) for ε ∈
{0.25,0.50,0.75} and ϕ ∈ {−45◦,0◦,45◦} by the present and some other numeri-
cal schemes.

ψw

ϕ ε DFDa DQMb 1D-IRBFc DFIB-CIRBFd

60×60 70×70 80×80 90×90 100×100
−45◦ 0.25 0.51 0.51 0.48 0.46 0.48 0.49 0.50 0.50

0.50 0.77 0.92 0.80 0.80 0.81 0.82 0.82 0.82
0.75 0.77 0.99 1.05 1.10 1.13 1.14 1.15 1.15

0◦ 0.25 0.72 0.72 0.60 0.67 0.68 0.68 0.68 0.68
0.50 1.10 1.15 1.28 1.07 1.07 1.07 1.07 1.07
0.75 1.26 1.30 1.18 1.25 1.29 1.31 1.32 1.32

45◦ 0.25 0.54 0.52 0.52 0.56 0.57 0.57 0.57 0.57
0.50 1.29 1.31 1.25 1.23 1.23 1.23 1.23 1.23
0.75 1.09 1.07 1.01 0.98 1.01 1.02 1.03 1.03

a Shu and Wu (2002)
b Shu, Yao, Yeo, and Zhu (2002)
c Le-Cao, Mai-Duy, and Tran-Cong (2011)
d Present

5 Concluding remarks

In this paper, we introduce compact integrated RBF approximations into the im-
mersed boundary and point-collocation framework to simulate viscous flows in
two dimensions. The direct forcing immersed boundary method is utilised for the
handling of inner boundaries, while high-order approximation schemes (Adams-
Bashforth/Crank-Nicolson and compact 3-point IRBFs) are employed to represent
temporal and spatial derivatives. The proposed method is verified successfully in a
series of fluid flow problems in multiply-connected domains. Very good results are
obtained using relatively coarse Cartesian grids.
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