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Vortex Patches

G.R. Baker1

Abstract: A vortex patch is a bounded region of uniform vorticity in two-
dimensional, incompressible, inviscid fluid flow. The streamfunction satisfies the
Poisson equation with the vorticity acting as a source term. The standard formu-
lation is to write the streamfunction as a convolution of the vorticity with the two-
dimensional free-space Greens function. A simple application of Greens theorem
converts the area integral to a boundary integral. Numerical methods must then ac-
count for the singular nature of the boundary integral, and high accuracy is difficult
when filamentation takes place, that is, when long, very thin filaments of vortic-
ity erupt from the main boundary. A new boundary integral is derived based on a
different viewpoint. A particular solution is readily known which represents solid
body rotation. To the particular solution must be added a homogeneous solution,
and the combination must satisfy the boundary conditions. A standard boundary
integral can be used to solve the Laplace equation with Dirichlet boundary con-
ditions. This approach leads to a boundary integral without singularity and easily
approximated by the trapezoidal rule that ensures spectral accuracy. Results indi-
cate that high accuracy is possible with even modest resolution. The method is used
to explore the mathematical properties of filamentation.
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1 Introduction

Given the challenges in numerically simulating fluid flow at high Reynolds num-
bers, researchers often turn to idealized models that contain simple distributions of
vorticity under the assumption that viscosity may be neglected. In two-dimensional
flow, the simplest distribution of vorticity is a vortex patch. It is a uniform distribu-
tion of vorticity bounded by a closed curve. The motion of the patch is determined
completely by the motion of its boundary and an evolution equation for the bound-
ary can be derived as a boundary integral with reference only to the location of the
boundary. This approach is referred to as contour dynamics, see Pullin (1992) for
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a review of the early work. More recently, there has been much effort placed in
extending the method to more complex flows, for example, in the presence of solid
boundaries as considered by Crowdy and Surana (2007).

Perhaps the biggest success of the method of contour dynamics is the revelation
of the phenomenon of filamentation by Deem and Zabusky (1978) and Dritschel
(1988) whereby thin streams of vorticity are shed from the boundary of the vor-
tex patch. The apparent consequence is that the vortex patch transforms into an
essentially circular patch with uniform rotation as any perturbations are shed off
as filaments. There is a companion phenomenon whereby a thin vortex layer (the
infinite open vortex patch) rolls up into a central almost circular core; the thin layer
takes the appearance of thin filaments that are attached to the core, see Baker and
Shelley (1990).

What is clear in numerical simulations of vortex patches and vortex layers is that
the curvature at the points of contact of the filaments and the main core becomes ex-
tremely high. While the boundary cannot become singular, a result first established
by Chemin (1991), the high curvature introduces very small length scales and these
small scales can dominate the energy spectrum. Thus it is worthwhile to examine
the formation of very high curvature and to understand when it occurs. There is a
natural mathematical perspective developed by Cowley, Baker, and Tanveer (1999)
during studies of the formation of curvature singularities in vortex sheets, the limit
of an infinitely thin vortex layer. By representing the boundary of the layer in
parametric form

(
x(p, t),y(p, t)

)
, it is possible to find branch-point singularities in

the complex p-plane that move towards the real axis and reach it in finite time, at
which moment the singularities becomes physically relevant. The question arises
naturally whether there are such singularities in the complex spatial plane for the
location of the boundary of a vortex patch.

From experience gained by Cowley, Baker, and Tanveer (1999) in studying such
singularities in vortex sheets and by Baker and Xie (2011) and Baker, Caflisch, and
Siegel (1993) in other free surface flow problems, we know that highly accurate
calculations of the motion of the boundary are needed to detect the presence of
singularities in the complex spatial plane. Indeed, spectrally accurate methods are
necessary and that in turn requires a suitable formulation of the evolution equa-
tions for the boundary. The standard formulation used in contour dynamics is not
completely suitable and an alternate approach, capable of further generalizations,
is presented here.
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2 Evolution equations for contour dynamics

Let (x,y) be the coordinates describing a plane of two-dimensional motion. As-
sume the vorticity points out of the plane with uniform strength ω and is contained
within a boundary given in parametric form by

(
x(p, t),y(p, t)

)
. The motion of the

vorticity is governed by the vorticity/streamfunction formulation:

∂ω

∂ t
+u

∂ω

∂x
+ v

∂ω

∂y
= 0 , (1)

where the velocity is (u,v) and the vorticity is

ω =
∂v
∂x
− ∂u

∂y
. (2)

The flow is assumed incompressible,

∂u
∂x

+
∂v
∂y

= 0 , (3)

which allows the introduction of the streamfunction ψ

u =
∂ψ

∂y
, v =−∂ψ

∂x
(4)

Upon substitution of (4) into (2), one obtains the Poisson equation for ψ given ω ,

∇
2
ψ =−ω . (5)

The solution to (5) must satisfy the kinematic constraints that the velocity is con-
tinuous at the boundary. The appropriate solution to (1) is found by requiring the
boundary to move with the velocity at the boundary, the standard definition of La-
grangian motion.

∂x
∂ t

(p, t) = u
(
x(p, t),y)p, t)

)
,

∂y
∂ t

(p, t) = v
(
x(p, t),y(p, t)

)
. (6)

The standard derivation of contour dynamics introduced by N. J. Zabusky and
Roberts (1979) starts with the solution to (5)

ψ(x,y) =−ω

∫∫
A

G(x−ξ ,y−η)dξ dη , (7)

where G(x,y) is the free space Greens function for the Laplacian and the integration
is over the area A of the vortex patch. Consequently the velocity is given by

u(x,y) =−ω

∫∫
A

∂G
∂y

(x−ξ ,y−η)dξ dη ,

v(x,y) = ω

∫∫
A

∂G
∂x

(x−ξ ,y−η)dξ dη . (8)
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Since

∂G
∂y

(x−ξ ,y−η) =−∂G
∂η

(x−ξ ,y−η) ,

∂G
∂x

(x−ξ ,y−η) =−∂G
∂ξ

(x−ξ ,y−η) , (9)

the integrals in (8) may be written as(
u(x,y),v(x,y)

)
=−ω

∫∫
A
(0,0,1)×∇G(x−ξ ,y−η)dξ dη . (10)

The integration can be reduced to integration around the boundary, and evaluating
the result on the boundary produces

(
u(p, t),v(p, t)

)
=−ω

∫
G
(
x(p, t)− x(q, t),y(p, t)− y(q, t)

)(
xq(q),yq(q)

)
dq .

(11)

The subscripts q refer to differentiation. Once the integral (11) has been performed,
the results may be used in (6) to advance the location of the boundary. The particu-
larly pleasing aspect of the result is that the evolution of the boundary depends only
on the location of the boundary and thus represents a reduction in spatial dimension.

Since G contains the natural logarithm, the integral is weakly singular and is not
conducive to highly accurate numerical integration. An alternate approach is to
pick a particular solution for (5) valid inside the patch and add a homogeneous
solution. The obvious choice is

ψi =−
ω

4
r2 + ψ̃i (12)

inside the patch, while

ψo =−
ωR2

2
lnr+ ψ̃o (13)

outside the patch. The area of the patch is written as A = πR2. Both ψ̃i and ψ̃o must
satisfy Laplace’s equation and the solutions are connected by the requirement that
ψ and its normal derivative are continuous at the boundary.

The continuity of ψ requires

ψ̃o(p)− ψ̃i(p) = ω

[
R2

2
ln
(
r(p)

)
− 1

4
r2(p)

]
(14)
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where r2(p) = x2(p)+y2(p). The continuity of the normal derivative of ψ requires

sp(p)
(

∂ψ̃o

∂n
(p)− ∂ψ̃i

∂n
(p)
)
=

ω

2
x(p)yp(p)− y(p)xp(p)

r2(p)

(
R2− r2(p)

)
(15)

where the subscripts p refer to differentiation and s2
p(p) = x2

p(p)+ y2
p(p).

Represent ψ̃ by a dipole distribution µ(p) and a source distribution σ(p) along the
boundary.

ψ̃ = ℜ

{
1

2πi

∫
µ(q)

z− z(q)
zq(q)dq+

1
2π

∫
σ(q) ln |z− z(q)|sq(q)dq

}
(16)

where z = x + iy is a location in complex form and z(p) = x(p) + iy(p) marks
the location of the boundary: zp(p) = xp(p)+ iyp(p). The complex form of the
boundary integrals proves useful for two-dimensional free surface flow in general as
noted by Baker (2010). This representation has the important following properties:
the dipole strength is given by

µ(p) = ψ̃o(p)− ψ̃i(p) (17)

and accounts for the jump in the stream function in (14), and the source strength is
given by

σ(p) =
∂ψ̃o

∂n
(p)− ∂ψ̃i

∂n
(p) . (18)

The combination is successful because the contribution from the dipole strength has
a continuous normal derivative while the contribution from the source distribution
is continuous across the boundary.

There is a further advantage to (16). The harmonic conjugate to ψ̃ is −φ̃ so that
Ψ̃ = ψ̃− iφ̃ is analytic and is given by

Ψ̃ =
1

2πi

∫
µ(q)

z− z(q)
zq(q)dq+

1
2π

∫
ν(q) ln(z− z(q))dq , (19)

where ν(p) = σ(p)sp(p).

We are now in a position to calculate the velocity at the boundary. Let w = u+ iv
be the complex form of the velocity with components (u,v). then

w∗ = i
dΨ

dz
(20)

where the star superscript indicates complex conjugation. While the stream func-
tion has been decomposed into two parts in each region, the velocity is unique at
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the boundary and can be calculated by taking the average value of the two repre-
sentations there. Thus

w∗(p) =−i
ω

4
z∗(p)− i

ωR2

4
1

z(p)
+

i
zp(p)

dΨ̃

dp
(p) (21)

where the derivative of Ψ̃(p) contains the principle value of the integrals that arise
from (19). This derivative may be rewritten as

1
zp(p)

dΨ̃

dp
(p) =− 1

2πi

∫
µ(q)zq(q)(

z(p)− z(q)
)2 dq+

1
2π

∫
ν(q)

z(p)− z(q)
dq

=
1

2πi

∫
µq(q)+ iν(q)
z(p)− z(q)

dq , (22)

where integration by parts has been used on the first integral.

From (14) and (15),

µp(p)+ iν(p) =
ωzp(p)

2

(
R2

z(p)
− z∗(p)

)
(23)

By the calculus of residues, the principle value of the integral

1
2πi

∫ 1
z(p)− z(q)

zq(q)
z(q)

dq =
1

2z(p)
. (24)

So the velocity becomes

w∗(p) =−i
ω

4
z∗(p)− ω

4π

∫ z∗(q)zq(q)
z(p)− z(q)

dq , (25)

which may be rewritten in a more convenient form

w∗(p) =
ω

4π

∫ z∗(p)− z∗(q)
z(p)− z(q)

zq(q)dq . (26)

This form is the same as that derived by Pullin (1981) by integration by parts of
(11).

The main advantage in the derivation presented here is that this approach can be
easily combined with methods to track free surface between fluids of different den-
sities and moving solid boundaries as described by Baker (2010).
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3 Numerical method and results

Because the boundary of the vortex patch is closed, the integrand is periodic. The
trapezoidal rule provides a spectrally accurate approximation but to apply it to (26),
the limiting form of the integrand must be calculated as q→ p. A simple calculation
provides the limit z∗p(p). On the other hand, it is easy to rewrite (26) in a form where
the limit proves to be zero:

∂ z∗

∂ t
(p) =

ω

4π

∫ ( zq(q)
z(p)− z(q)

−
z∗q(q)

z∗(p)− z∗(q)

)(
z∗(p)− z∗(q)

)
dq (27)

The boundary is partitioned into N points z j equally spaced in p and the derivatives
zp, j are obtained by analytic differentiation of the truncated Fourier series repre-
sentation of z(p). The Fourier coefficients are obtained through the use of the Fast
Fourier Transform. The trapezoidal rule is applied to (27). Thus the following
system of ordinary differential equations in time is obtained.

dz∗j
dt

=
ω

2N

N−1

∑
k=0

(
zq,k

z j− zk
−

z∗q,k
z∗j − z∗k

)(
z∗j − z∗k

)
(28)

The initial condition

z(p) = eip +δ e2ip (29)

is chosen because it leads to the formation of a single filament and makes the study
of the behavior of the curvature simpler. It also provides a challenging test case
of the method. The choice ω = 1 and δ = 0.35 is made and the evolution of the
boundary of the patch is shown in Fig. 1 as a series of snapshots at times t =
0,π,2π,3π . A time step of4t = π/160 is used with N = 2048 surface markers.

Clearly visible is the formation of a filament. Two regions of high curvature are
evident, one at the tip of the filament and the other where the filament joins the
main part of the patch. The profile of the curvature

κ(p) =
xp(p)ypp− yp(p)xpp(

x2
p(p)+ y2

p(p)
)3/2 , (30)

is shown in Fig. 2 at t = 3π . The very sharp spike is the curvature at the tip of
the filament, while the shallower dip in curvature occurs near the attachment point.
The profile of the curvature is well resolved by the number of markers used.

An interesting perspective on the behavior of the curvature comes from previous
studies of singularity or near singularity formation in free surface flows, for ex-
ample, by Baker and Xie (2011). They consider the analytic continuation of the
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Figure 1: Time sequences of the vortex patch boundary from left to right, top to
bottom: the times are t = 0,π,2π,3π .

curvature into the complex p-plane.

κ(p) =
−i

2
√

z∗pzp

(
zpp

zp
−

z∗pp

z∗p

)
. (31)

Singularities in the curvature may arise from singularities in the complex plane for
z(p) or from zeros in zp(p), and both have been found in several different studies of
free surface flows. For vortex sheets, the singularities are 3/2-power branch points;
see Cowley, Baker, and Tanveer (1999). These branch point singularities are also
present in studies of the two-fluid Rayleigh-Taylor instability; see Baker, Caflisch,
and Siegel (1993). For classical water waves, where the air is treated essentially as
a vacuum, the singularities in the curvature result from zeros in zp(p), in particular,
they occur very near to the tip of a plunging breaker; see Baker and Xie (2011).
For periodic vortex layers, the singularities are of 3/2-power branch point type, but
it is worth noting that the filaments that form in time join smoothly with the vortex
cores. In other words, the filaments do not have tips; see Baker and Shelley (1990).
In all these studies, both theory and numerical simulations support the presence
of 3/2-power branch point singularities and zeros of zp(p) that move about the
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Figure 2: The curvature of the vortex patch boundary at t = 3π .

complex p-plane while retaining their form. In some cases they reach the real axis
in finite time, when the singularity has physical relevance. In other cases, they
approach the real axis very closely, inducing places of high curvature. It is this case
that is of relevance for vortex patches.

Singularities in the complex plane can be detected through the behavior of the
Fourier series as described by Sulem, Sulem, and Frisch (1983). This method was
applied to detect the presence of a 3/2-power branch point. On the other hand,
zeros in zp(p) can be detected and traced by simply using Newton’s method on
the analytic continuation of the Fourier series. This works as long as the zeros are
within the strip of analyticity of the Fourier series, which is limited by the presence
of the 3/2-power branch points. The location of the zeros in z(p) and the 3/2-power
branch point are shown in Fig. 3. The location of the branch point is shown for
only two times, but it can be traced for later times; it is marked with4. The intent
is to show its location up to t = 2π for comparison with the location of the domi-
nant zero in zp(p). One of the zeros in zp(p), marked with �, is present initially
and approaches the real axis, but is overtaken by both the 3/2-power branch point
and the other zero. Its location is shown up to t = 3π/2 and no further because
the 3/2-power branch point has moved closer to the real axis and limits the strip of
analyticity of the Fourier series; the location of the zero can no long be determined
by the analytic continuation of the Fourier series. The dominant zero appears to
move in very quickly from infinity. It is marked with ©. It approaches the real axis
very closely and is the cause of the very high curvature at the tip of the filament,
while the 3/2-power branch point is associated with the high curvature that forms
where the filament attaches to the vortex core.
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Figure 3: The location of a 3/2-power branch point (4) at t = 7π/4,2π .
Also shown are the location of two zeros in zp(p): one (�) is shown
at t = 0,π/4,π/2,3π/4,π,5π/4,3π/2 and the other (©) is shown at t =
π/2,3π/4,π,5π/4,3π/2,7π/4,2π .

4 Conclusions

By restating the evolution equations for the boundary of a vortex patch, a spectrally
accurate method has been developed that allows highly accurate Fourier spectra to
be computed. These spectra are needed to detect singularities in the complex plane
of the parametrization variable for the boundary of the patch. Results indicate the
formation of a very thin filament that sheds from the vortex core with a very sharp
tip. The presence of a 3/2-power branch point is detected that approaches the real
axis where the filament attaches to the core, while a zero in zp(p) also approaches
the real axis very closely and is associated with the very sharp tip. It appears
likely that this behavior is typically in free surface flows that form regions of high
curvature.
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