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Multidomain Formulation of BEM Analysis Applied to
Large-Scale Polycrystalline Materials
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Abstract: Polycrystalline structures are present on metal alloys. Therefore, it is
necessary to understand and model the mechanical behavior of this media. Usu-
ally, this is accomplished by the use of different numerical methods. However,
the analysis of polycrystalline materials leads to other type of problems, such as
high computational requirements generated in order to get an efficient solution. In
this work, the 2D polycrystalline structure is generated using an average grain size
through the Voronoi tessellation method and discretized through simulations with
random material, crystalline orientation and orthotropic behavior [Sfantos and Ali-
abadi (2007a)]. BEM discretization requires multidomain analysis and large-scale
degrees of freedom [Katsikadelis (2002);Kane (1994)]. This technique demands
a different strategy in order to get a faster response. Numerical examples were
carried out to demonstrate the feasibility of the application of the method to large-
scale polycrystalline problems. Results were compared with the conventional BEM
solution for several set of loads. The analysis of the structure is performed using
the proposed anisotropic multidomain BEM formulation [Katsikadelis (2002);Kane
(1994)].
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1 Introduction

The Boundary Element Method (BEM) is a powerful numerical method for the so-
lution of different problems in engineering [Rodriguez, Sollero, and Alburquerque
(2012)]. However, the BEM has some disadvantages when compared with other
methods, mainly due to the fully populated matrices that are generated and the high
computational load required during its process. [Sfantos and Aliabadi (2007a)]
used the BEM for polycrystalline structure analysis, they investigated 2D crack
propagation along grain boundaries through a linear cohesive law, and mixed mode
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failure conditions. [Dong and Atluri (2013)] developed the symmetric-Galerkin
boundary element method (SGBEM) with SGBEM Voronoi Cells (SVC) for direct
two-dimentional micromechanical numerical modeling of heterogeneous compos-
ites where each SVC can include micro-inhomogeneities such inclusions, voids and
cracks. [Benedetti and Aliabadi (2013)] applied techniques for homogenization of
a three dimensional model of cubic polycrystalline material. [Dong and Atluri
(2012)] used three-dimensional Trefftz Voronoi Cells with ellipsoidal voids /inclu-
sions which are developed for micromechanical modeling of heterogeneous materi-
als. [Sfantos and Aliabadi (2007b)] proposed a multi-scale BEM modellig for ma-
terial and degradation fracture. Molecular dynamics simulation was carried out by
[Nishimura and Miyazaki (2001)] to determinate the crack propagation in polycrys-
talline materials. [Dong and Atluri (2011)] used three different approaches to derive
T-Trefftz Voronoi Cell Finite Elements for micromechanical analysis of heteroge-
neous materials. [Kokaly, Tran, Kobayashi, Dai, Patel, and White (2000)] used the
implementation of another numerical method to generate a two-dimensional finite
element (FE) model of assembly with idealized microstructure and uniform grain
size of polycrystalline alumina. [Dawson, Boyce, and Rogge (2005)] employed
multiscale approaches to modeling evolution of the material structure during defor-
mation processes.

Large-scale polycrystalline material modeling requires the use of muldomain BEM
that is widely explained by [Kane (1994);Katsikadelis (2002)], both suggested a
different strategy to generate the array of hypermatrices. Recently, several numer-
ical methods for solving these large systems of equations have been developed in
order to reduce the time of execution. The Adaptive Cross Approximation (ACA)
was used by [Grytsenko and Peratta (2008)] as a solver for three-dimension singular
domain BEM application. An OUT-CORE solver for large, multi-zone boundary
element matrices is presented by [Rigby and Aliabadi (1995)] and Block Equation
Solver (BES) are developed by [Kane (1994);Crotty (1982)] that uses the Gaussian
Elimination by blocks for linear elasticity BEM problems.

In this paper the implementation of multidomain formulation of BEM by [Kane
(1994)] is performed over polycrystalline structure generated with anisotropic fun-
damental solution and the application of Blocked Equation Solver is proposed. Fi-
nally, conclusions are pointed out.

2 Polycrystalline Structure Modeling

The material modeling used in this work is the generation of a random artificial
structure with the Voronoi tessellation method as in [Sfantos and Aliabadi (2007a)];
this approach defines the behavior of the structure with random orthotropic material
and crystalline orientation. The simulation was performed as shown in Fig. 1.
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Figure 1: Artificial structure generated with randomly distributed material orienta-
tion for each grain

Due to the formulation used in this paper, the material orientation coordinated axes
123 coincides with the geometrical coordinate system xyz, that means θ = 0. Dif-
ferent cases are taken into consideration when each axis coincides with the axis z
of the geometry coordinated system; thus case 1 ≡ z, case 2 ≡ z and case 3 ≡ z.
These cases are presented in three different colors in Fig. 1.

Grain material properties are modeled for plain strain and plain stress analysis with
the following constitutive relations Eq. 1.

σi j = ci jklεkl, εi j = si jklσkl (1)

where ci jkl is the stiffness tensor and si jkl is the compliance tensor using the Voigt
notation Eq. 2 that is defined by [Sfantos and Aliabadi (2007a);Rousselier, Barlat,
and Yoon (2009)].

s = [si j] ,(i, j = 1,2, ...,6) (2)

For the case of orthotropic material with three mutually perpendicular symmetry
planes, the compliance tensor is reduce to 9 components, since s14 = s15 = s16 = 0,
s24 = s25 = s26 = 0, s34 = s35 = s36 = 0 and s45 = s46 = s56 = 0.

In polycrystalline structure, three abovementioned cases are considered for model-
ing. The compliance tensor takes the following form:
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s′ =

 s′11 s′12 s′16
s′22 s′26

sym s′66

 (3)

In Tab. 1 is shown the compliance tensor for the case of plane stress and in Tab. 2
the compliance tensor for the case of plane strain is presented.

Table 1: Compliance tensor components for two-dimensional plane stress case

s′ij 1≡ z 2≡ z 3≡ z
s′11 s22 s11 s11
s′22 s33 s33 s22
s′12 s23 s13 s12
s′66 s44 s55 s66

Table 2: Compliance tensor components for two-dimensional plane strain case

1≡ z 2≡ z 3≡ z

s′i j = skl− sk1sl1
s11

s′i j = skl− sk2sl2
s22

s′i j = skl− sk3sl3
s33{

i, j
k, l

}
=

{
1,2,6
2,3,4

} {
i, j
k, l

}
=

{
1,2,6
1,3,5

} {
i, j
k, l

}
=

{
1,2,6
1,2,6

}

3 Anisotropic Fundamental Solution

The displacement fundamental solution Eq. 4 and traction fundamental solution
Eq. 5 for two-dimensional elastostatic problems are given by [Sollero and Aliabadi
(1993)].

Ui j
(
z′k,zk

)
= 2Re

[
p j1Ai1 ln

(
z1− z′1

)
+ p2Ai1 ln

(
z2− z′2

)]
(4)

Ti j
(
z′k,zk

)
= 2Re

[
1

(z1− z′1)
q j1 (µ1n1−n2)Ai1−

1
(z2− z′2)

q j2 (µ2n1−n2)Ai2

]
(5)
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where z′k, is the source point Eq. 6

z′k = x′1 +µkx′2 (6)

and zk, is the field point Eq. 7

zk = x1 +µkx2 (7)

µk are the complex roots of the characteristic polynomial Eq. 8 and always are pure
imaginary or conjugate pair.

s′11µ
4−2s′16µ

3 +
(
2s′12 + s′16

)
µ

2−2s′26µ + s′22 = 0 (8)

the terms pi j and qi j are given by

pik =

[
s′11µ2

k + s′12− s′16µk
s′11µk + s′22

/
µk− s′16

]
(9)

and

qik =

[
µ1 µ2
−1 −1

]
(10)

The complex coefficients Ai j are obtained with the solution of the following com-
plex linear system of equations


1 −1 1 −1
µ1 µ̄1 µ2 µ̄2
p11 −p̄11 p12 −p̄12
p21 −p̄21 p22 −p̄22




A j1
Ā j1
A j2
Ā j2

=


δ j2
/

2πi
−δ j1

/
2πi

0
0

 (11)

where δi j is the Kronecker delta.
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4 Multidomain Boundary Element Method

The application of BEM over polycrystalline structure problems demands the use of
multidomain formulation [Kane (1994);Katsikadelis (2002)]. As mentioned before,
the material structure has different properties of elasticity and orientation cases per
grain. BEM is applied for each grain using the Somigliana′s identity [Kane (1994)]
Eq. 12 and constant boundary elements.

∫
Γ

tiU∗i jdΓ =
∫

Γ

T ∗i juidΓ+ cikui (d) (12)

where U∗i j and T ∗i j are the displacement and traction fundamental solution respec-
tively. The Eq. 12 is applied over the boundary Γ with the source point located in
d.

In multidomain formulation, there are two kind of grains, when the grain is in the
boundary and when it is an internal grain [Sfantos and Aliabadi (2007a)]. However,
only a portion of boundary grains have defined boundary conditions. Therefore, the
number of unknowns belonging to internal grains and part of the boundary grains
exceeds the number of equations, [Kane (1994);Katsikadelis (2002)]. In order to
get a feasible system for the solution, traction equilibrium and displacement com-
patibility Eq. 13 are applied at the interfaces [Kane (1994)].

t i
i j =−t j

ji ui
i j = u j

ji (13)

In order to illustrate the multidomain formulation, Fig. 2 shows a three-zone BEA
model and then the description of the formulation is performed.

zone 1

zone 2 zone 3

Figure 2: Three-Multidomain model
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Initiating with the boundary integral equation applied in the zone 1

[H]1{u}1 = [G]1{t}1 (14)

Dividing both matrices H and G by their respective counterparts matrices corre-
sponding to the boundary and the interface

[
[H]11 [H]112 [H]113

]
{u}1

1
{u}1

12
{u}1

13

=
[
[G]11 [G]112 [G]113

]
{t}1

1
{t}1

12
{t}1

13

 (15)

applying equation Eq. 13 and boundary conditions of external part of the zone 1

[
[A]11 [H]112 [H]113

]
{x}1

1
{u}1

12
{u}1

13

= {b}1
1 +
[
− [G]112 [G]113

]{ {t}1
12

{t}1
13

}
(16)

In Eq. 15, matrices [H]11 and [G]11 are only for the zone 1 before the application
of boundary conditions, matrices [H]112 and [H]113 are the terms of the interface be-
tween the zones 1 and zone 2 and between zone 1 and zone 3, respectively, vectors
{x}1

1 and {b}1
1, Eq. 16 contains all the unknown and known boundary quantities

of zone 1, respectively, the matrix [A]11 resulting after the application of the known
boundary conditions.

Following the same scheme to generate the equation for the zone 2

[
[H]22 [H]212 [H]223

]
{u}2

2
{u}2

12
{u}2

23

=
[
[G]22 [G]212 [G]223

]
{t}2

2
{t}2

12
{t}2

23

 (17)

applying equation Eq. 13 and boundary conditions of external part of the zone 2

[
[A]22 [H]212 [H]223

]
{x}2

2
{u}1

12
{u}2

23

= {b}2
2 +
[
− [G]212 [G]223

]{ {t}1
12

{t}2
23

}
(18)
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similarly for the zone 3

[
[A]33 [H]313 [H]323

]
{x}3

3
{u}1

13
{u}2

23

= {b}3
3 +
[
− [G]313 − [G]323

]{ {t}1
13

{t}2
23

}
(19)

with Eq. 16, Eq. 18 and Eq. 19 is possible to obtain the general matrix system array
for the problem with the form [A]{x}= {b}, combining the above equations:

[A] =

 [A]11 [H]112 [H]113
[0] [H]212 [0]
[0] [0] [H]313

− [G]112 [0] [0]
[G]212 [A]22 [H]223
[0] [0] [H]323

− [G]113 [0] [0]
[0] − [G]223 [0]

[G]313 [G]323 [A]33


(20)

The {x} Eq. 21 is the vector that contains the unknown values of the external
boundary and interfaces and {b} Eq. 22 is the known vector.

{x}=
{
{x}1

1 {u}1
12 {u}1

13 {t}1
12 {x}2

2 {u}2
23 {t}1

13 {t}2
23 {x}3

3

}T

(21)

{b}=
{
{b}1

1 {b}2
2 {b}3

3

}T
(22)

5 Blocked Equation Solver

The Multidomain BEM formulation generates a general system of equations where
matrix [A] is a hypermatrix like Eq. 20, and its entries are smaller matrices [Kane
(1994)]. These kind of matrices are sparse. For the polycrystalline structures that is
large-scale problem, a big percentage of the matrix will be zero due to the majority
of subdomains are internal grains with unknown boundary conditions. In order
to solve the equation system, the use of conventional methods can be inefficient.
Thus the Blocked Equation Solver [Kane (1994)] is proposed as another way to
obtain the solution. The strategy treats the hypermatrix as a division per blocks and
has three different phases the BlockFactorization, Black− f orward Reduction and
Block−BackSubstitution.
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The division of the matrix in blocks depends on the problem; and appropriated hy-
permatrix is required in order to apply this method. Therefore is strongly necessary
to have nonzero blocks in the main diagonal. This is possible using the presented
array matrix Eq. 20 proposed by [Kane (1994);Crotty (1982)]. However, its imple-
mentation can be more complex than the suggested by [Katsikadelis (2002)], where
part of the diagonal blocks are zero leading the method fail. the proposed method
in this work is determined with the size of the overall matrix Eq. 20 and the size of
the square matrix [H] for each subdomain located it in the main diagonal of the of
the overall matrix. Completed system of equations divided per blocks is shown in
Eq. 23 [Kane (1994)].

 [A11] [A12] [A13]
[A21] [A22] [A23]
[A31] [A32] [A33]


{x1}
{x2}
{x3}

=


{b1}
{b2}
{b3}

 (23)

The method is based on the [L][U] factorization on the main diagonal and used
matrix multiply and subtract operation between different matrices and vectors from
the overall system. The iterative process is shown in [Kane (1994)], and is used
to develop a general algorithm for random polycrystalline structure in which the
matrix has a random block division in the diagonal. An advantage of this method is
that the only extra memory needed for the alterations of the blocks from the overall
matrix is when the matrix [D] is calculated, for more details see [Kane (1994)].

6 Numerical Results

Simulation performed in this work is for 2090-T3 aluminum lithium alloy [Rousse-
lier, Barlat, and Yoon (2009)]. The components of the stiffness tensor are presented
in Tab. 3 for plane strain analysis and the material is generated with a virtual poly-
crystalline structure as abovementioned with random orientation and orthotropic
behavior is shown in Fig. 1.

Table 3: Stiffness tensor of 2090-T3 aluminum lithium alloy (GPa)

C11 C12 C13 C21 C22 C32 C33 C44 C55 C66
981.19 7.06 3.15 40.76 592.23 422.67 1018.80 1.28 368.22 834.81

The boundary conditions of the analyzed numerical example are shown in Fig. 3

In Fig. 4 is shown the pre-processing, in this paper constant boundary elements and
anisotropic fundamental solution were used, six different polycrystalline structures
were generated for 10, 20, 50, 100 and 300 grains and load of 10 N
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Figure 3: Boundary Conditions for the polycrystalline structure

Figure 4: Pre-processing examples for 10 grains (430 elements) and 100 grains
(2515 elements)

Time results of the six simulations performed are given in Tab. 4.

Table 4: Time require for different methods to solve the system

Grains Unkowns
Time (s)

Inverse LU Fractorization Gauss BES
10 860 0.0486 0.0243 0.0248 0.0411
20 1352 0.1692 0.07165 0.07122 0.07182
50 2884 1.495 0.4785 0.4814 0.4161
100 5030 7.2055 2.0185 2.0477 1.789
150 9828 51.028 13.923 13.046 7.6177
300 15970 205.554 52.032 52.283 39.072
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Comparisons between the Block Equation Solver and different Matlab Solvers like
inverse, LU factorization and Gauss are given in Fig. 5, where is possible to observe
the differences between the methods.
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Figure 5: Time comparison between the Block Equation Solver and Matlab Solver

7 Conclusions

In this work, a Block Equation Solver (BES), based on [Kane (1994)], was adapted
to multidomain Polycrystalline large-scale problems. This methodology showed to
be efficient when compared with the conventional Matlab solver in Fig. 5. This
is mainly because a multidomain problem can be easily adapted to a block solver.
However, the collocation matrix structure could be assembled by several approaches,
such as [Katsikadelis (2002);Kane (1994)], and this fact affects directly the pro-
posed strategy. The BES works better where more than 40 grains are analyzed.
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