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Arbitrary Stokes Flow About A Fixed or
Freely-Suspended Slip Particle

A. Sellier

Abstract: The rigid-body migration of a slip and arbitrary-shaped solid particle
freely suspended in a prescribed and arbitrary ambient Stokes flow is determined
after calculating the hydrodynamic force and torque exerted on the particle when
it either experiences a given rigid-body in a quiescent liquid or is held fixed in
the ambient Stokes flow. It is also shown how one can subsequently obtain the
velocity and surface traction on the particle boundary and thereafter, if necessary,
the flow about the particle in the entire liquid domain. The advocated procedure
extends a recent work (see Sellier (2012)) and consists in inverting at the most seven
boundary problems involving coupled and regularized boundary-integral equations
on the particle boundary. In addition to the numerical implementation, comparisons
against analytical results for a spherical particle and numerical results for spheroids
are given.

Keywords: Stokes flow, Ambient flow, Navier slip condition, Boundary-integral
equation, Boundary Element Method.

1 Introduction

Suspensions, consisting in solid particles immersed in a Newtonian liquid with
uniform viscosity µ and density ρ, are encountered in several fields of interest.
Accordingly, many works examine the macroscopic behaviour of either dilute or
concentrated suspensions with attention paid, for instance, to the settling of a sus-
pension in absence of ambient flow or the so-called effective viscosity of a flowing
suspension subject to a prescribed ambient linear shear flow. Such investigations
are tremendously involved if one solves the Navier-Stokes equations for a concen-
trated suspension.

Fortunately, for a dilute and unbounded suspension it is possible to confine the
analysis to the case of a single solid particle embedded in a (quiescent or flowing)
unbounded Newtonian liquid. Not surprisingly, the fluid flow past the solid par-
ticle surface S is strongly sensitive to the boundary conditions it satisfies there. Of
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course, such key conditions are dictated by the surface properties and ability to
let the liquid flow tangent to it. Although the usual no-slip condition (equal fluid
and surface velocities at the boundary S) is valid for most surfaces, it however
breaks down for surfaces (such as hydrophobic ones) allowing a tangent slip. In
most cases, one then resorts to the celebrated Navier (1823) slip condition in which
(see (1)) the surface ability to let the fluid flow tangent to it is characterized by a
so-called surface slip length λ ≥ 0. For a Newtonian fluid with uniform viscosity
µ, velocity u′ and stress tensor σ ′ flowing past the slip solid surface S moving
with the rigid-body velocity v and having unit normal n directed into the liquid,
this Navier slip condition reads

u′ = v+λ{ σ
′.n− (n. σ

′.n)n}/µ on S. (1)

In other words (1) stipulates that (u′− v).n = 0 (impermeable surface) whilst the
tangent velocity slip (tangent part of u′ − v) is a multiple of the tangent stress
(with coefficient λ/µ). Note that, as evidenced in Churaev, Sobolev, and Somov
(1994); Hutchins, Harper, and Felder (1995); Baudry, Charlaix, Tonck, and Ma-
zuyer (2001), the slip condition (1) proposed by Navier in 1823 is confirmed by
experiments.

For a particle with length scale a and a flow velocity with typical magnitude V the
Reynolds number Re = ρVa/µ compares in the Navier-Stokes equation the inertial
term with the viscous one. Whenever Re = ρVa/µ � 1 one can therefore neglect
all inertial effects and replace the Navier-Stokes equations with the linear (and thus
much more tractable) steady creeping (Stokes) flow equations. Within this latter
Low-Reynolds-Number flow convenient framework, a large body of literature has
been devoted to the case of a slip solid particle experiencing a given rigid-body
motion in a quiescent liquid. In that direction one can cite, among other works,
three types of particle shapes :

(i) Spherical or nearly-spherical slip particles. The migrating slip sphere has been
analytically treated by Basset (1961) while Palaniappan (1994); Ramkissoon (1997)
and later Senchenko and Keh (2006); Chang and Keh (2009) asymptotically solved
the case of a nearly-spherical slip particle.

(ii) Axisymmetric slip particles. Several different approaches have been employed
to treat some axisymmetric shapes.For instance, using toroidal coordinates Williams
(1987) treats the case of a slip torus translating or rotating parallel with its axis of
revolution. Loyalka and Griffin (1994) and also Loyalka (1996) proposed and im-
plemented a boundary approach to efficiently solve the case of a slip axisymmetric
particle rotating parallel with its axis of revolution and provided numerical results
for rotating slip torus and slip spheroid. Additional results for a slip spheroid expe-
riencing a given arbitrary translational and/or angular velocity can also be obtai-
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ned by combining several different works : Keh and Huang (2004); Keh and Chang
(2008); Chang and Keh (2009, 2011).

(iii) Arbitrary-shaped slip particles.

Recently Sellier (2012) proposed a new boundary formulation to accurately handle
the case of a slip and arbitrary-shaped solid particle experiencing a rigid-body mi-
gration in a quiescent liquid. The approach rests on the treatment of six boundary-
integral equations on the particle surface which have been numerically inverted by
implementing a boundary element technique. New results for different slip tori and
non-spheroidal slip ellipsoids have then been obtained and discussed.

The previous works may be employed to predict the settling motion of a slip par-
ticle in a quiescent liquid. However, the case of a slip particle immersed in a pres-
cribed ambient flow is also of the utmost importance for other applications such
as, for instance, the evaluation of the effective viscosity of a dilute suspension in
an unbounded liquid. For this latter example one indeeds might need to calculate
other quantities such as the stresslet tensor exerted on a freely-suspended particle
embedded in a given linear shear ambient flow. Despite such key applications, the
interesting case of a slip particle held fixed or freely moving in a given and arbitrary
ambient Stokes flow has not yet attracted so much attention. Moreover, the relevant
literature actually solely deals with a spherical slip particle held fixed either in a
Stokes flow with linear rate of strain (see Felderhof (1976)) or in an arbitrary Stokes
flow (see Keh and Chen (1996)). Observe that Keh and Chen (1996) actually nicely
extends to the case of a slip sphere (λ > 0) the famous Faxen relations (Faxen
(1922-1923)) derived for a no-slip (λ = 0) sphere.

To the author’s very best knowledge, there is currently no work dealing with the
challenging case of a slip and arbitrary-shaped solid particle held fixed or freely-
suspended in a given and arbitrary ambient Stokes flow. The present paper fills
the gap by introducing a suitable boundary approach to accurately solve this issue.
As in Sellier (2012), it actually rests on the treatment of a few boundary-integral
equations on the slip particle surface. More precisely, it is organized as follows.
Challenging problems are introduced together with analytical solutions for a slip
sphere in §2 while two different boundary approaches resulting in a few relevant
boundary-integral equations on the particle surface are presented in §3 and §4. A
possible numerical strategy together with numerical benchmarks and results are
displayed in §5 whereas another interesting issue postponed to a future work is
mentioned in §6.
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2 Governing equations and analytical results for a slip sphere

This section introduces the adopted notations and the governing equations. It also
shows how it is possible, by superposition, to reduce the task to the treatment of
two problems when looking at the incurred rigid-body migration of a slip particle
freely immersed in a prescribed ambient Stokes flow.

2.1 Key problems

As shown in Fig. 1, we consider a solid slip particle P immersed in a Newtonian
and unbounded liquid with uniform density ρ and viscosity µ.
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Figure 1 – A solid slip particleP experiencing a rigid-
body migration(U,Ω) and immersed in a prescribed ar-
bitrary ambient Stokes flow(ua, pa).

Table 1 – Computed coefficientscs, fq,ωs anduq for a
sphere with radiusa versus the numberN of nodal points
for λ/a= 0.5,2. The values computed after solving (36)-
(37) ford′ are indicated with overlined symbols while the
values given by (30)-(31) are indicated by symbols.

N λ/a cs fq ωs uq cs f q ωs uq

74 0.5 0.39758 0.39973 0.49926 0.16596 0.39685 0.38526 0.498343 0.15995
242 0.5 0.39992 0.39972 0.50006 0.16651 0.39977 0.39584 0.499864 0.16490
1058 0.5 0.40001 0.39997 0.50002 0.16665 0.39999 0.39967 0.499996 0.16652
exact 0.5 0.4 0.4 0.5 0.16667 0.4 0.4 0.5 0.16667

74 2 0.14355 0.15021 0.50588 0.06950 0.14146 0.13915 0.49852 0.06438
242 2 0.14280 0.14303 0.50005 0.06670 0.14276 0.13927 0.49992 0.06494
1058 2 0.14285 0.14285 0.49999 0.06666 0.14285 0.14252 0.5 0.06651
exact 2 0.14286 0.14286 0.5 0.06667 0.14286 0.14286 0.5 0.06667

Table 2 – Computed coefficientscs, fq,ωs anduq for one
oblate (ob) spheroid withb= 0.8a and one prolate (pro)
spheroid withb= 1.2a. Those results have been obtained
by using the first boundary approach, i. e formulae (30)-
(31).

λ/a cs(ob) fq(ob) ωs(ob) uq(ob) cs(pro) fq(pro) ωs(pro) uq(pro)
0 0.61483 0.58828 0.39016 0.21338 1.49872 1.55486 0.59034 0.48039

0.2 0.32776 0.31031 0.33912 0.13029 1.02335 1.06734 0.62285 0.37307
0.5 0.14987 0.13647 0.23998 0.06326 0.74875 0.78707 0.68911 0.29857
0.8 0.06602 0.05357 0.14092 0.02611 0.62052 0.65709 0.75785 0.25967

Figure 1 – A solid slip particle P experiencing a rigid-body migration (U,Ω) and
immersed in a prescribed arbitrary ambient Stokes flow (ua, pa).

This particle has attached point O and smooth slip surface S with unit normal n di-
rected into the liquid domain D . Moreover, it is embedded in a steady and arbitrary
Stokes flow with prescribed velocity field ua, pressure field pa and stress tensor σa.
For a Stokes flow these quantities obey

µ∇
2ua = ∇pa and ∇.ua = 0 in IR3. (2)

The particle rigid-body motion has translational velocity U (the velocity of O) and
angular velocity Ω. In addition, the disturbed flow about P has velocity ua+u and
pressure pa + p in the liquid domain D . All inertial effects are neglected, i. e. the
particle length scale a and the typical magnitude V > 0 of the disturbed velocity
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ua +u satisfy Re = ρVa/µ � 1. Accordingly, the flow (u, p) with stress tensor σ

fulfills the following boundary-value problem

µ∇
2u = ∇p and ∇.u = 0 in D , (3)

(u, p)→ (0,0) as |x| → ∞, (4)

u(M)−λ{ σ .n− (n. σ .n)n}/µ =

−ua(M)+λ{σa.n− (n.σa.n)n}/µ

+U+Ω∧OM on S

(5)

where x = OM and (5) is the Navier (1823) slip condition for the disturbed flow
and λ ≥ 0 the particle surface slip length.

Because (ua, pa) is a Stokes flow inside the particle (remind (2)) it exerts zero force
and torque on it. Consequently, the hydrodynamic force F and torque T (about O)
experienced by the slip particle read

F =
∫

S
[σa + σ ].ndS =

∫
S

σ .ndS, (6)

T =
∫

S
x∧ [σa + σ ].ndS =

∫
S

x∧ σ .ndS. (7)

In practice, when solving the problem (3)-(5) one may either know the particle
rigid-body migration (U,Ω) (prescribed motion of the particle) or not (case of the
freely-suspended particle) ! As will be shown in §3.2, one can however find in this
latter case the motion (U,Ω) by solely appealing to the solution proposed in Sel-
lier (2012) for the prescribed rigid-body migration of a slip particle in a quiescent
liquid. Now, once (U,Ω) is prescribed one may think about first determining the
perturbation flow (u, p) about the slip and arbitrary-shaped particle in the entire
liquid domain D and then subsequently calculate the resulting traction σ .n on the
particle surface. This permits one to obtain the previous vectors F,T together with
other moments of the vector ft = (σa + σ).n. For instance, in predicting the effec-
tive viscosity of a dilute suspension the following so-called stresslet tensor S (here
with respect to the point O attached to the particle) defined as (Brenner and Happel
(1958); Pozrikidis (1992))

S =
1
2

∫
S

{
x⊗ ft + ft ⊗x− 2

3
(x.ft)I

}
dS, (8)

with x = OM and I the usual identity tensor, is very likely to be needed.

By superposition, it is possible to reduce the task to the treatment of two different
cases (i)-(ii) :
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(i) Slip particle experiencing a prescribed rigid-body migration (U,Ω) in a quies-
cent liquid.

The resulting flow, obtained here for ua = 0 and pa = 0, exerts on the moving
particle hydrodynamic force Fh and torque Th given by (6)-(7). By linearity, one
gets

Fh =−µ{A.U+BΩ}, Th =−µ{C.U+D.Ω} (9)

with second-rank resistance tensors A,B,C and D depending upon the particle geo-
metry and slip length λ (in addition, tensors B and C are transposed while A and D
are symmetric).

(ii) Particle held fixed in the arbitrary ambient Stokes flow (ua, pa).

Here, U = Ω = 0 and one seeks the flow (u, p) and the force and torque it exerts on
the fixed particle given by (6)-(7) and further denoted by Fa and Ta, respectively.

Or course, once cases (i)-(ii) have been solved it is then straightforward to gain the
rigid-body motion (U,Ω) of the slip particle when freely-suspended in the ambient
Stokes flow (ua, pa). Indeed, requiring the particle with negligible inertia to be
force-free and torque-free immediately yields for (U,Ω) the linear system

µ{A.U+B.Ω}= Fa, µ{C.U+D.Ω}= Ta. (10)

Therefore, it one contents oneself with obtaining the migration of the freely-sus-
pended particle (i. e. solve problem (3)-(5) together with the additional conditions
F = T = 0) it is sufficient to solve cases (i) and (ii). In contrast, if the flow (u, p)
and/or the surface traction σ .n are required it becomes necessary to solve this time
(3)-(5) in which one prescribes on the right-hand side of (5) the value of (U,Ω)
provided by solving the linear system (10). Actually, it will be shown in §4 how it
is possible to gain the traction σ .n without determining the flow (u, p) in the entire
liquid domain D .

2.2 Analytical results for a spherical particle

For a spherical particle with radius a it is possible to gain analytical results. For
case (i) the sphere experiences the rigid-body motion (U,Ω) in a quiescent liquid
and Basset (1961) gets

Fh =−6πµa[
1+2λ/a
1+3λ/a

]U, (11)

Th =−8πµa3[
Ω

1+3λ/a
]. (12)
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Furthermore, one also analytically determines whatever (U,Ω) the flow (u, p) about
the moving sphere by putting at its center a Stokeslet, a potential dipole and a rotlet
with strengths given in Sellier (2012). The case of a slip sphere immersed in a pres-
cribed arbitrary ambient Stokes flow (ua, pa) has been treated by Keh and Chen
(1996) and the results read, for a sphere with center O,

Fa = 6πµa[
1+2λ/a
1+3λ/a

]ua(O)+πµa3[
1

1+3λ/a
]∇2ua(O), (13)

Ta = [
4πµa3

1+3λ/a
](∇∧ua)(O). (14)

Accordingly, the migration of a sphere freely suspended in a Stokes flow (ua, pa)
is given by

U = ua(O)+ [
a2

6(1+2λ/a)
]∇2ua(O), (15)

Ω =
1
2
(∇∧ua)(O). (16)

Note that Keh and Chen (1996) also gives the stresslet tensor S when the Stokes
flow (ua, pa) is arbitrary (therefore extending to the case λ > 0 the formula obtained
in the λ = 0 no-slip case by Batchelor and O’Neill (1972)) while Felderhof (1976)
provides results analogous to (13)-(16) but restricted to a flow (ua, pa) having a
linear rate of strain [∇ua +(∇ua)

t ]/2.

3 Auxiliary Stokes flows and resulting first boundary approach

This section introduces six auxiliary Stokes flows about the slip particle and also
recalls the boundary-integral equation on the particle surface S obtained in Sellier
(2012) which governs on S the traction for each of those flows. It also shows how
the knowledge on S of the surface traction exerted by each auxiliary flow permits
one to calculate the hydrodynamic force Fa and torque Ta applied by the Stokes
flow (ua, pa) on a fixed particle without solving the associated problem (2)-(5) with
U = Ω = 0.

3.1 Auxiliary Stokes fows and associated boundary-integral equations

Henceforth, we use Cartesian coordinates (O,x1,x2,x3) with the notations x =
OM,xi = x.ei for i = 1,2,3 and r = |x| = {x2

1 + x2
2 + x2

3}1/2. For convenience we
shall also use the usual tensor summation convention with, for instance, x = xiei

and n = n je j.
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At that stage it is useful to introduce (for i = 1,2,3) six auxiliary Stokes flows
(u(i)

t , p(i)t ), with stress tensor σ
(i)
t , and (u(i)

r , p(i)r ), with stress tensor σ
(i)
r , solution

to (3)-(5) for (ua, pa) = (0,0) and (U,Ω) = (ei,0) or (U,Ω) = (0,ei), respectively.
In other words, those flows are produced by a migrating slip particle when it either
translates or rotates at the velocities e1,e2 or e3 in a quiescent liquid. As shown in
Sellier (2012), the resulting tractions f(i)t = σ

(i)
t .n and f(i)r = σ

(i)
r .n on the particle

surface S are governed by a boundary problem involving coupled and regularized
boundary-integral equations. More precisely, consider the Stokes flow (u, p), with
stress tensor σ , about the particle when it experiences a given rigid-body motion
(U,Ω) in a quiescent fluid. For such a flow fulfilling (3)-(5) one introduces the
surface quantities

d = n. σ .n/µ,d = [ σ .n− (n. σ .n)n]/µ = diei (17)

here obtained by solving the boundary problem (see details in Sellier (2012))

Li[d,d] = [U+Ω∧OM].ei for x on S(i = 1,2,3), (18)

d.n = 0 for x on S (19)

with linear operators Li defined (for i = 1,2,3) as

8πLi[d,d] =−8πλdi(x)−
∫

S
Gki(y,x)dk(y)dS(y)−

∫
S

Gki(y,x)nk(y)d(y)dS(y)

+λ

∫
S
[dk(y)−dk(x)]Tkil(y,x)nl(y)dS(y)

(20)

where, denoting by δ the Kronecker delta symbol,

Gi j(x,y) =
δi j

|x−y| +
[(y−x).ei][(y−x).e j]

|x−y|3 , (21)

Ti jk(y,x) =−
6[(y−x).ei][(y−x).e j][(y−x).ek]

|x−y|5 . (22)

Once d and d are gained by inverting (18)-(19) it is straightforward to get the velo-
city on the particle surface S from the Navier slip boundary condition (5), i. e. from
the equality

u = U+Ω∧OM+λ{ σ .n− (n. σ .n)n}/µ on S. (23)
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3.2 Use of the reciprocal identity

As outlined in §2.1, one key step consists in calculating the net force Fa and torque
Ta exerted by a Stokes flow (ua, pa) on a fixed slip particle. The perturbation flow
(u, p) with stress tensor σ obeys (3)-(5) with U = Ω = 0 in (5). Exploiting (6)
easily gives

Fa.ei =
∫

S
(ei.n)(n. σ .n)dS+

∫
S
[ σ .n− (n. σ .n)n].eidS. (24)

By definition, remind that one has the following boundary conditions

u(i)
t = ei +λ{ σ

(i)
t .n− (n. σ

(i)
t .n)n}/µ on S, (25)

u(M)−λ{ σ .n− (n. σ .n)n}/µ =−ua(M)+λ{σa.n− (n.σa.n)n}/µ on S. (26)

Furthermore, the usual reciprocal identity (Happel and Brenner (1991); Kim and
Karrila (1991)) gives the additional relation∫

S
u(i)

t . σ .ndS =
∫

S
u. σ

(i)
t .ndS (27)

which, exploiting the normal component of (25)-(26), becomes∫
S
(ei.n)(n. σ .n)dS+

∫
S

u(i)
t .[ σ .n− (n. σ .n)n]dS

=−
∫

S
(ua.n)(n. σ

(i)
t .n)dS+

∫
S

u.[ σ
(i)
t .n− (n. σ

(i)
t .n)n]dS.

(28)

Combining (24) with (28) then yields

Fa.ei =−
∫

S
(ua.n)(n. σ

(i)
t .n)dS−

∫
S
[u(i)

t − ei].[ σ .n− (n. σ .n)n]dS

+
∫

S
u.[ σ

(i)
t .n− (n. σ

(i)
t .n)n]dS

(29)

Appealing again to (25)-(26) several terms on the right-hand side of (29) cancel
and one finally easily ends up with the key relation

Fa.ei =−
∫

S
ua. σ

(i)
t .ndS+

λ

µ

∫
S
(σa.n).[ σ

(i)
t .n− (n. σ

(i)
t .n)n]dS. (30)

In a similar fashion, using this time the flow (u(i)
r , p(i)r ) also gives for the applied

hydrodynamic torque (about point O)

Ta.ei =−
∫

S
ua. σ

(i)
r .ndS+

λ

µ

∫
S
(σa.n).[ σ

(i)
r .n− (n. σ

(i)
r .n)n]dS. (31)
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According to the formulae (30)-(31) and (9)-(10) it is sufficient to solve for the
auxiliary Stokes flows the boundary problems (18)-(20) in order to obtain the force
Fa and torque Ta exerted on a slip particle held fixed in the ambient flow and the
resulting incurred particle rigid-body migration (U,Ω) when it is freely-suspended
in the ambient flow. This task, termed the first boundary approach in the present
work, actually solely appeals to the material detailed in Sellier (2012) plus the new
relations (30)-(31). These relations may be cast into the more convenient forms
(13)-(14) for a spherical slip particle and hold for a solid and arbitrary-shaped slip
particle.

4 Second boundary approach

As outlined before giving the definition (8), it is sometimes also necessary to com-
pute the traction ft = (σa + σ).n arising on the slip particle when the flow (u, p)
obeys (3)-(5). This section shows how such a task can also been done by solving
another boundary problem.

4.1 Velocity integral representations

By superposition, we can confine the analysis to the obtention of ft when the par-
ticle is held fixed in the quiescent liquid, i. e. when the perturbation flow (u, p) with
stress tensor σ satisfies (26). Reminding the usual tensor summation convention
and setting u = uiei, we then have the following integral representation (see Sellier
(2012) for further details) in the entire liquid domain

8πµu j(x) = µ

∫
S
[u(y)−u(x)].eiTi jk(y,x)nk(y)dS(y)

−
∫

S
[ei. σ .n](y)Gi j(y,x)dS(y) for x in D .

(32)

Because the ambient flow (ua, pa) is a Stokes flow inside the particle P one can
also prove (use the material in Pozrikidis (1992)) the additional integral represen-
tation

0 =µ

∫
S
[ua(y)−ua(x)].eiTi jk(y,x)nk(y)dS(y)

−
∫

S
[ei.σa.n](y)Gi j(y,x)dS(y) for x in P.

(33)

The second boundary approach developed in this section rests on the integral re-
presentations (32) and (33).
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4.2 Resulting boundary-integral equations for a slip particle held fixed in a
prescribed ambient Stokes flow

This time the unknown quantities on the particle surface S are the quantity d′ and
vector d′ defined as

d′ = n.[σa + σ ].n/µ, (34)

d′ = {[σa + σ ].n− (n.[σa + σ ].n)n}/µ. (35)

These quantities are found to satisfy a boundary problem on the surface S. This
is established by noting that both (32) and (33) still hold when x is located on
the particle surface S (see definitions (21)-(22)), combining (32) and (33) there
and exploiting the boundary condition (26). Recalling the definition (20), one then
immediately arrives at the following boundary problem

Li[d′,d′] =−ua.ei for x on S(i = 1,2,3), (36)

d′.n = 0 for x on S. (37)

Accordingly, the traction (σa + σ).n is obtained by inverting a boundary problem
similar to the one previously encountered for the auxiliary Stokes flows. Our second
boundary approach consists in directly solving the problem (36)-(37). Once this is
done, the force Fa and the torque Ta are evaluated by the relations (recall (6)-(7))

Fa =
∫

S
[σa + σ ].ndS, Ta =

∫
S

x∧ [σa + σ ].ndS. (38)

Before closing this subsection, one should also note that once the traction σ .n and
also (use (26)) the velocity u are known on the particle surface S it is subsequently
straightforward to determine the flow velocity u also in the entire liquid domain D
by appealing to the integral representation (32).

5 Numerical implementation and results

This section briefly describes the implemented numerical treatment and also gives
numerical results for spheroidal slip particles immersed in pure linear or quadratic
ambient shear flows.

Numerical strategy
Since it is detailed in Sellier (2012), we briefly present the boundary element tech-
nique employed to numerically invert the encountered regularized boundary pro-
blems (18)-(19) and (36)-(37) and refer the reader to Brebbia, Telles, and Wrobel
(1984); Beskos (1998); Bonnet (1999) and also Sellier (2011) for more general is-
sues related to the Boundary Element Technique. As in Sellier and Pasol (2006) or
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Sellier (2007, 2008), we use on the particle surface S a N−node mesh consisting of
6-node curvilinear and triangular boundary elements. At each nodal point, where
the unit normal n and two unit vectors t1 and t2 tangent to the particule surface S
such that t1.t2 = 0 are calculated, one then (for instance for the problem (18)-(19))
ends up with three unknown quantities : d and also dt

1 such dt
2 that d = dt

1t1 +dt
2t2.

This choice ensures the property (19) and the unknown triplet (d,dt
1,d

t
2) at each

nodal point is found by inverting the discretized counterpart of the coupled and re-
gularized boundary-integral equations (18). Those equations result in a linear sys-
tem with 3N×3N non-symmetric and dense matrix A. Such a linear system is then
solved by Gaussian elimination.

5.1 Numerical benchmarks and results

We consider spheroidal slip particles, with surface having equation(x1/a)2+(x2/a)2

+(x3/b)2 = 1, immersed in linear or quadratic shear flows (ua, pa) = (ksx3e1,0) or
(ua, pa) = (kqx2

3e1,2µkqx1) shear flows. For such slip particles and flows symmetry
easily show that U =U1e1,Ω = Ω2e2 and also that

Fh =−6πµa f1U1e1, Th =−8πµa3c2Ω2e2, (39)

Ta = 4πµa3kscse2, Fa = U = 0 (linear shear), (40)

ws = Ω2/ks = cs/(2c2) for linear shear, (41)

Fa = 2πµa3kq fqe1, Ta = Ω = 0 (quadratic shear), (42)

uq =U1/(kqa2) = fq/(3 f1) for quadratic shear (43)

with dimensionless force factors f1, fq, torque factors c2,cs and translational and
angular velocities uq and ωs.

For a sphere (b = a) the analytical results (13)-(16) give f1 = (1+ 2λ/a)/(1+
3λ/a), fq = cs = c2 = 3uq = (1+3λ/a)−1 and ω = 1/2. As shown in Table 1, our
computations converge to those results as the number N of nodes put on the sphere
boundary increases. Note that results obtained using either the relations (30)-(31)
or solving the boundary problem (36)-(37) and appealing to (38) are reported for
comparison purposes. Clearly, numerical and analytical results perfectly match and
the results provided by the two boundary approaches nicely agree.

Note that for a sphere ws does not depend upon λ/a. This is not the case any more
for spheroidal particles as illustrated in Table 2 for two oblate (b/a = 0.8) and
prolate (b/a = 1.2) spheroids. Note that ωs increases or decreases as λ/a increases
for the prolate or oblate spheroid, respectively.

We plot in Fig. 2-5 versus the normalized slip length s = λ/a the friction coeffi-
cients cs, fq and the dimensionless velocities ws and us for a slip sphere with radius
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a and those oblate (b/a = 0.8) and prolate (b/a = 1.2) spheroids. It is seen that
fq,cs and uq decrease as the slip length increases. By contrast, the angular velocity
ws for a slip spheroid immersed in the linear shear flow increases (oblate spheroid)
or decreases (prolate spheroid) as the slip increases.
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Figure 2 – Torque friction coefficientcs versuss= λ/a
for the linear shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.
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Figure 3 – Force friction coefficientfq versuss= λ/a
for the quadratic shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.
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Figure 4 – Normalized angular velocityωs versuss=
λ/a for the linear shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.

Figure 2 – Torque friction coefficient cs versus s = λ/a for the linear shear flow.
Solid line for the sphere, (◦) for the prolate (b/a = 1.2) spheroid, (•) for the oblate
(b/a = 0.8) spheroid.
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Figure 3 – Force friction coefficientfq versuss= λ/a
for the quadratic shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
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Figure 4 – Normalized angular velocityωs versuss=
λ/a for the linear shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.

Figure 3 – Force friction coefficient fq versus s = λ/a for the quadratic shear flow.
Solid line for the sphere,(◦) for the prolate (b/a = 1.2) spheroid, (•) for the oblate
(b/a = 0.8) spheroid.
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Figure 3 – Force friction coefficientfq versuss= λ/a
for the quadratic shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.

0 0,2 0,4 0,6 0,8 1
0

0,2

0,4

0,6

0,8

1

s

Figure 4 – Normalized angular velocityωs versuss=
λ/a for the linear shear flow. Solid line for the sphere,(◦)
for the prolate(b/a = 1.2) spheroid,(•) for the oblate
(b/a= 0.8) spheroid.

Figure 4 – Normalized angular velocity ωs versus s = λ/a for the linear shear flow.
Solid line for the sphere, (◦) for the prolate (b/a = 1.2) spheroid, (•) for the oblate
(b/a = 0.8) spheroid.
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Figure 5 – Normalized translational velocityuq versus
s= λ/a for the quadratic shear flow. Solid line for the
sphere,(◦) for the prolate(b/a = 1.2) spheroid,(•) for
the oblate(b/a= 0.8) spheroid.

Figure 5 – Normalized translational velocity uq versus s = λ/a for the quadratic
shear flow. Solid line for the sphere,(◦) for the prolate (b/a = 1.2) spheroid, (•)
for the oblate (b/a = 0.8) spheroid.

6 Conclusions

A relevant boundary approach has been proposed to accurately compute the force
and torque applied on a slip solid particle held fixed in an arbitrary Stokes flow
and, if necessary, not only the resulting rigid-body migration of a slip particle but
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also the surface traction arising on the slip particle surface when the particle is
freely-suspended in a given ambient Stokes flow. It has been possible to confine the
task to the treatment of at the most seven boundary problems involving regularized
boundary-integral equations on the particle boundary. Accordingly, it is sufficient
to mesh the particle boundary when solving the problem. The advocated boundary
element and collocation point technique implemented to accurately invert those
boundary problems has been nicely tested against the analytical results established
elsewhere for a spherical particle and new numerical results have been given for slip
spheroidal particles immersed in a linear or quadratic ambient shear flow. Amazin-
gly, the angular velocity of a prolate or oblated spheroid freely suspended in the
linear shear flow is seen to increase or decrease with the slip, respectively.

Finally, the proposed second boundary method which provides the surfce traction
exerted by the disturbed flow about a slip particle held fixed in a prescribed and
arbitrary Stokes flow opens the way to the evaluation of the effective viscosity of a
dilute suspension of slip and either spherical or non-spherical particles. Such a key
issue however requires further investigations. It will be the subject of another work.
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