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The Use of the BE SBS Algorithm to Evaluate Boundary
and Interface Stresses in 3D Solids
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Abstract: In this paper, the BE SBS (subregion-by-subregion) algorithm, a generic
substructuring technique for the BEM, is applied to evaluate stresses at boundary
and interfacial points of general 3D composites and solids. At inner points, reg-
ular boundary integration schemes may be employed. For boundary or interfacial
points, the Hooke’s law along with global-to-local axis-rotation transformations is
directly applied. In fact, in thin-walled domain parts, only boundary stresses are
needed. As the SBS algorithm allows the consideration of a generic number of
subregions, the technique applies to the stress analysis in any composite and solid,
including the microstructural (grain-by-grain) modeling of materials. The indepen-
dent assembly and algebraic manipulation of the BE matrices for the many sub-
structures involved in the model, makes the formulation very suitable for dealing
with large-order models, as it typically happens in the 3D microstructural analysis
of general composites. For that, Krylov solvers were incorporated into the SBS
algorithm. To show the performance of the technique, stresses are calculated in
beams, and 3D representative volume elements (RVEs) of carbon-nanotube (CNT).

Keywords: 3D boundary-element models, subregion-by-subregion algorithm, gen-
eral composites, stress analysis, Krylov solvers.

1 Introduction

In Araújo and Gray (2008), and Araújo, d’Azevedo, and Gray (2011), all the for-
mulation details involved in the development of the subregion-by-subregion (SBS)
algorithm considered for the analyses in this paper are shown. This algorithm is
essentially a Domain Decomposition Method (DDM), wherein the definition do-
main of a certain problem is subdivided into a given number of subdomains or sub-
structures, which are independently modeled and solved along with the available
coupling conditions by means of the use of iterative solvers. Notice that subre-
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gioning strategies are fundamental for the BEM either for solving heterogeneous
problems or developing parallel-computing codes or for combining the BEM with
other methods, e.g. for developing BE-FE hybrid formulations [Araújo (1994);
Araújo, d’Azevedo, and Gray (2010)]. The SBS strategy may be especially rele-
vant for the grain-by-grain modeling of pollycrystalline materials [Benedetti and
Aliabadi (2013)], and for analyzing engineering systems involving nanomaterials
as CNT-reinforced polymers [Srivastava1 and Atluri (2002)]. In fact, as in the
case of nanosysytems, more adequate molecular-dynamics-based (MD) formula-
tions [Ghoniem and Cho (2002)] are, even for present-day computers, very time-
consuming or prohibitive [Namilae, Chandra, Srinivasan, and Chandra (2007)],
continuums-mechanics-based (CM) formulations have been successfully consid-
ered instead (Kitipornchai, He, and Liew 200; Pantano, Parks, and Boyce 200;
Wang, Ma, Zhang, and Ang 2006, and the BE-SBS strategy may be a very promis-
ing technique to deal with this kind of analysis [Araújo and Gray (2008); Araújo,
d’Azevedo, and Gray (2011)].

In the particular case of the SBS algorithm, a very interesting point is the use of
Krylov solvers, which, besides allowing the independent treatment of the substruc-
tures involved in the problem, also embeds a spontaneous parallelism to the tech-
nique. In fact, these characteristics of the SBS algorithm make it very convenient
for dealing with very large models, including those resulting from the microstruc-
tural analysis of composites and other materials [Benedetti and Aliabadi (2013);
Dong and Atluri (2012); Dong and Atluri (2013)]. In general, direct solvers present
the following disadvantages: they may be exceedingly CPU time-consuming and
memory-consuming for large-order models, and their parallel implementation is
awkward. However, devising reliable efficient iterative solvers for non-symmetric
systems of equations, as BEM systems typically are, has been a truly tough prob-
lem, and, despite the number of outstanding up-to-date works in this area, iterative
solvers for general non-symmetric matrices are a still open question concerning
convergence reliability [Barrett et al., (1996)]. In general, Krylov solvers [van
der Vorst (2003)] are virtually the only possible alternatives for dealing with non-
Hermitian systems, and among them, the short-recurrence ones (Bi-CG and vari-
ants) remain the most attractive options as much less memory compared to long-
recurrence algorithms (GMRES and variants) is required.

Concerning the Bi-CG method, the most serious problem associated with it is its er-
ratic convergence behavior, sometimes leading to non-convergence of the iterative
solution process. To fix this disadvantage of the method, modified hybrid solvers
have been derived by combining the Bi-CG solver with residual-minimization meth-
ods, as the GMRES. Thus, solvers as the Bi-CGSTAB(l) [Sleijpen and Fokkema
(1993)], and the generalized product Bi-CG [GPBi-CG, Zhang (2002)] have been
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devised. Additionally, preconditioners may be employed to accelerate the iterative
process (van der Vorst 2003; Chen 2005). In recent works, the SBS technique it-
self has been used to construct efficient general preconditioners for BEM systems
[Araújo, d’Azevedo, and Gray (2011)]. In the applications here, not especially fo-
cused on the performance assessment of the iterative solver, the BiCG solver with
or without the SBS-based preconditioning is applied.

In this paper, techniques for calculating the stresses in solids and general compos-
ites are incorporated into the SBS-based computational code. For non-thin-walled
solids or for internal points relatively far to the boundary, regular techniques based
on boundary-integral stress representations with the use of special integration tech-
niques are considered. For boundary nodes and for thin-walled solids, a special
technique based on the direct application of the Hooke’s law is implemented. In
this technique, the strain and corresponding stress tensors are calculated with re-
spect to a local coordinate system wherein one of the axes is the outward normal
vector to the boundary. All the necessary expressions for calculating theses quan-
tities are shown in the paper. Beams and representative volume elements (RVEs)
of carbon-nanotube (CNT) composites are simulated to show the relevance of the
technique for calculating stresses.

2 The preconditioned BE-SBS algorithm

In fact, the boundary-element substructuring-by-substructuring (BE-SBS) algorithm
consists of a totally generic technique to decompose a problem domain into any
number of subdomains or substrucures. Roughly speaking, this technique is com-
parable to the element-by-element (EBE) technique, developed to finite-element
(FE) analyses [Hughes, Levit, Winget (1983)], wherein a subdomain corresponds
to a finite element. Thus, if needed, we can have a subregion mesh as fine as a FE
mesh, and if the BE global system matrix were explicitly assembled, it would be
highly sparse as well. As explained in previous papers [Araújo and Gray (2008);
Araújo, d’Azevedo, and Gray (2011)], the BE-SBS algorithm embeds Krylov iter-
ative solvers, and the global response for a problem is obtained by working exclu-
sively with its local full-populated subsystems of equations with no global explicit
assembly of system matrix; no zero blocks are stored or handled at all. The bound-
ary conditions are introduced during the matrix assembly for each subsystem, and
the interface conditions (between the subdomains), given by{

ui j = u ji

pi j =−p ji
at Γi j (1)

are directly (not iteratively) imposed in the matrix-vector products during the itera-
tive solution process. For ns subregions, after introducing the boundary conditions,
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the BE global system of equations is then given by

i−1

∑
m=1

(Himumi−Gimpim)+Aiixi +
ns

∑
m=i+1

(Himuim +Gimpmi) = Biiyi, i = 1,ns, (2)

where Hi j and Gi j denote the regular BE matrices obtained for source points per-
taining to subregion Ωi and associated respectively with the boundary vectors ui j

and pi j at Γi j. Note that if i 6= j, Γi j denotes the interface between Ωi and Ω j; Γii is
the outer boundary of Ωi. The ns systems in (2) are the independent systems asso-
ciated with each subregion of the problem, and which are separately considered in
the calculations of the matrix-vector products needed for the iterative solver.

Additionally, to accelerate the iterative solver, a global SBS-based block-diagonal
preconditioner, constructed by taking the diagonal blocks of the coupled system is
considered, Qi, which for a generic number of subregions are given by

Qi =
[
−Gi1 · · · −Gi,i−1 Aii Hi,i+1 · · · Hin

]
, i = 1, ns (3)

where the Qi matrices are straightforwardly formed from the subregion matrices
of the model at hand. To store this preconditioner, an additional memory space of
the size (nno× ndo f n)× (nno× ndo f n) should be allocated, where ’nno’ is the
number of nodes of the model, and ’ndofn’ is the number of degrees of freedom per
node.

3 The calculation of stresses

Considering the O(r−3) and O(r−2) singularities of the fundamental kernels in-
volved in the boundary integral expressions for evaluating the strain and stress ten-
sors at a given point of a solid, the calculation of these quantities is a tough problem
to deal with as special integration algorithms for dealing with the singularities at
hand have to be devised. This is particularly difficult in case of the calculation of
stresses at boundary nodes or in case of general thin-walled solids, wherein all the
points of the solid are either at the boundary or very close to it (Fig. 1). To avoid
directly facing the singular integrals appearing in the stress integration kernels, the
stress tensor at boundary nodes can be directly determined from the boundary dis-
placement field by means of the Hooke’s law referred to a local system (Brebbia,
Telles, and Wrobel 1984). In the procedure presented in Brebbia, Telles, and Wro-
bel (1984), one takes a local, mutually orthogonal x̄1-x̄2-x̄3 coordinate system cen-
tered at the point where the boundary stresses should be calculated, and wherein the
x̄3 axis is defined by the outward normal vector, and the x̄1 and x̄2 axes by two tan-
gential vectors at the boundary point (Fig. 2). In the code, stresses are particularly
calculated at the element nodes. After the boundary solution has been completely
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determined, the stress components referred to the local system shown in Fig. 2 are
then given by:

σ̄13 = σ̄31 = p̄1

σ̄23 = σ̄32 = p̄2.

σ̄33 = p̄3

(4)

Figure 1: Thin-walled domain discretized with boundary elements
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Figure 2: Local (node-based) reference system
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Thus, only three more stress components have to be calculated, namely, those re-
lated to the tangential x̄2-x̄3 plane, σ̄11,σ̄22, and σ̄12, which are given by

σ̄11 =
1

(1−ν)
[ν p̄3 +2G(ε̄11 +νε̄22)]

σ̄22 =
1

(1−ν)
[ν p̄3 +2G(ε̄22 +νε̄11)] ,

σ̄12 = 2Gε̄12

(5)

wherein the local strain components ε̄i j, i, j = 1,2, in (5) are calculated by

ε̄i j =
1
2

(
∂ ūi (x1,x2,x3)

∂ x̄ j
+

∂ ū j (x1,x2,x3)

∂ x̄i

)
, (6)

wherein

∂ ūi(x)
∂ x̄1

=
λik

J(r)
∂uk(x)

∂ r
=

λik

J(r)

(
nnoel

∑
q=1

∂hq(r,s)
∂ r

ukq

)
, (7)

∂ ūi

∂ x̄2
=

1
m̄′22

(
∂ ūi

∂ x̄′2
− ∂ ūi

∂ x̄1
m̄′12), (8)

with

∂ ūi(x)
∂ x̄′2

=
λik

J(s)
∂uk(x)

∂ s
=

λik

J(s)

(
nnoel

∑
q=1

∂hq(r,s)
∂ s

ukq

)
. (9)

Above, hq(r,s) denotes the isoparametric shape function associated with the q-th
element node, J(s) is the Jacobian corresponding to its geometrical mapping into
the natural coordinates, and nnoel is the number of nodes per element. The expres-
sion (8) is needed for x̄′2 is not necessarily perpendicular to x̄1. The m̄′2 vector is the
unit tangent vector given by m̄′2 = dl2/||dl2||, where dl2 = dx/||ds|| is expressed
in relation to the local system. All the boundary stresses are calculated at the geo-
metrical contour of the boundary elements, which are always continuous. In case
of discontinuous elements, the displacement fields at the geometrical contour of
the boundary elements are first determined via the interpolation functions for the
discontinuous elements, before the stress calculation procedure described above be
applied. The global stress tensor is obtained by rotating the local stress tensor, σ̄ , to
the global coordinate system via σ = Rσ̄RT . By taking then, say, the global stress
tensor, σ , at any boundary point, the corresponding principal stresses can be easily
obtained by solving the eigenvalue problem σxi = σixi, wherein σi andxi, i=1,2,3
are the principal stresses and corresponding principal directions
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4 Applications

To show how the strategy for stress calculation on boundary nodes performs, a thin-
walled steel beam under shear load, a thick rectangular-cross-section beam, and a
carbon-nanotube-reinforced composite (CNT composite) under axial deformation
are analyzed. In the graph legends, the results calculated with the formulation
presented in this paper are identified by NAESY acronym, which stands for the
computational code name into which the formulation has been incorporated. In
general, the NAESY results have been compared to the corresponding ANSYS-13
ones. In all BE analyses (with the NAESY code), the quadratic 8-node (continuous
or discontinuous) boundary element is employed, and in all FE analyses (with the
ANSYS-13 code), the 20-node SOLID-186 brick finite element is used.

4.1 Thin-walled steel beam under uniform load

 
a) W-shape beam 

b) BE mesh    c) Deformed aspect 

Figure 3: Thin-walled steel beam under load q
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In this example, the thin-walled steel beam shown in Fig. 3, 4m long, clamped at
both ends and subjected to a uniformly distributed load q=15kN/m2 ( Fig. 3a), is an-
alyzed. Its W- shape cross section has the following measures: b f =140mm (flange
width), t f =9.5mm. (flange thickness), hw=381mm (web height), and tw=4.75mm
(web thickness). The steel parameters considered are E=200GPa (elasticity mod-
ulus), and ν=0.3 (Poisson’s ratio). Three subregions are employed to model this
beam (two subregions for the flanges and one for the web), and the corresponding
BE mesh (see Fig. 3b) has a total of 1092 boundary elements (4704 nodes and
14.112 degrees of freedom). In Fig. 3c, the global deformed aspect of the beam is
presented, and to more precisely verify the correctness of the NAESY results, the
same problem has been analyzed with the ANSYS-13 software employing a mesh
with 5394 SOLID-186 finite elements (38,786 nodes, 116,358 degrees of freedom),
and the σzz normal stress component and von Mises stresses along the beam axis
obtained with both codes have been contrasted.

Figure 4: σzz along the central cross-section

Particularly for the middle-span cross-section of the beam, the results are shown in
Fig. 4 (σ22 normal stress component), and in Fig. 5 (von Mises stresses, σv).

4.2 Cantilever beam under uniform load

In this problem, the cantilever beam shown if Fig. 6, with length l = 3m, under a
uniformly distributed load q=15kN/m2, is analyzed. The geometric details of the
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Figure 5: von Mises stresses, σv, at the central cross section

beam cross-section are: b = 0.2m, and h = 0.3m The BE mesh and corresponding
deformed aspect are given in Fig. 7a and Fig. 7b respectively.

Figure 6: Cantilever beam under uniform load q

The material parameters adopted for the beam are E=21.7GPa (elasticity modulus),
andν=0.2 (Poisson’s ratio). The BE beam model (NAESY model) considered con-
sists of only one subregion with 176 8-node boundary elements (corresponding to
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(a) BE mesh (b) Deformed aspect

Figure 7: Cantilever beam under load q

802 nodes and 2406 degrees of freedom). On the other hand, 360 20-node finite
elements (SOLID 186) are employed to construct the ANSYS model (with 2013
nodes and 6039 degrees of freedom). To show the accuracy of the BE responses,
the σzzstress component, and the largest and smallest principal stress components,
σ1 and σ3, are plotted at the clamped end of the cantilever (Fig. 8). As observed
from the stress curves in Fig. 8, the BE (NAESY) and FE (ANSYS) stress val-
ues close to the superior and inferior beam surfaces considerably differ from each
other, with the BE stress values much higher than the corresponding FE ones. In
fact, the stresses values in these points theoretically go to infinity, and these results
just confirm the ability the BEM has to appropriately describe this behavior.

4.3 CNT-based composite

In this application, the CNT-fiber reinforced composite shown in Fig. 9 under
δ̄z=-1.0 (shortening in z direction) is analyzed. The long CNT fibers are geo-
metrically defined by cylindrical tubes having outer radius r0=5.0nm and inner ra-
dius ri=4.6nm, and length l f =10nm. Its material properties are ECNT = 1,000nN ·
nm−2(GPa), and vCNT = 0.3, and for the host material (polymeric matrix), Em =
100nN · nm−2(GPa), and vm = 0.3. The BE model employed consists of 8 subre-
gions with 7980 degrees of freedom (Fig. 9a). This problem has been considered in
Araujo and Gray (2008) to characterize CNT composites with various fiber-packing
patterns. In Araujo, d’Azevedo and Gray (2011) all the details of the loadings con-
sidered for determining the equivalent material properties are given. Here, just a
sample of response, namely the σzz component, is shown (Fig. 9b). Here, the
block-diagonal SBS-based preconditioned BiCG with tolerance number ζ = 10−8

is applied. The boundary stress values calculated are compatible with those ob-
tained in previous papers (Araujo and Gray 2008; Araujo, d’Azevedo and Gray
2011; Chen and Liu 2004). In this model, discontinuous boundary elements with
d = 0.10 are employed when needed.
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(a) 

 
as a function of the height 

 
(b)  ( largest principal stress) as a function of the height 

 
(c)  (smallest principal stress) as a function of the height 

Figure 8: Stress components at the clamped end of the beam
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(a) BE mesh (8 subregions, 7980 degrees of freedom) 
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Figure 9: CNT-based composite

5 Conclusions

In this paper, the BE SBS technique proposed in previous papers [Araujo and Gray
2008; Araujo, d’Azevedo and Gray (2011)] is incremented with routines for the
calculation of stresses at the boundary nodes. As shown at the light of the intricate
problems analyzed in this paper, the stress-calculation technique employed, based
on the direct application of Hooke’s law, allows accurately and efficiently calcu-
lating strain and stress at boundary element nodes without evaluating the strongly
singular and hypersingular boundary integrals involved in standard BEM formula-
tions. This is very important for determining the stress-tensor fields in thin-walled
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domains, wherein in fact only the boundary stress fields are needed. Along with
the whole boundary- element SBS technique, including its straightforward parallel-
computing implementation, the strategy proposed in this paper may be fundamental
for analyzing general composites, and for the microstructural analysis of materials.
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