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Two Dimensional Nonlocal Elasticity Analysis by Local
Integral Equation Method

P.H. Wen1, X.J. Huang1 and M.H. Aliabadi2

Abstract: In this paper, a Local Integral Equation Method (LIEM) is presented
for solving two-dimensional nonlocal elasticity problems . The approach is based
on the Eringen’s model with LIEM and the interpolation using the radial basis func-
tions to obtain the numerical solutions for 2D problems. A weak form for the set
of governing equations with a unit test function is transformed into the local inte-
gral equations. The meshless approximation technique with radial basis functions
is employed for the implementation of displacements. A set of the local domain
integrals is obtained in analytical form for the local elasticity and by using a stan-
dard integral scheme for the nonlocal elasticity. Three examples are presented to
demonstrate the convergence and accuracy of LIEM including a rectangular plate,
disk and a plate containing a circular hole subjected to a uniformly distributed dis-
placement or tensile load. Comparisons have been made with the solutions of one
dimension problems and other numerical techniques including the finite integration
method, the finite/boundary element methods.

Keywords: Two dimensional nonlocal elasticity, Eringen’s model, local integral
equation method, weak form, radial basis functions.

1 Introduction

It is well known that the classical continuum theories such as the linear theory of
elasticity are intrinsically size independent. Although the development of classical
theories of linear elasticity has been quite successful for solving most engineering
problems at intrinsically size independent, the need for efficient and accurate nu-
merical method is increasingly sought for problems with nonlocal elasticity. Nowa-
days, it is believed that the physical nature of materials is discrete if atoms are re-
garded to be the basic constituents. Inter atomic forces are long range in character
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while quantum mechanics, molecular dynamics, and lattice dynamics are the fun-
damental theory and supporting methods of approach. According to the classical
theories, the elastic strains and stresses are singular at the tips of crack (disloca-
tion) and at the corner of the notch. The continuum damage mechanics has been
established to fill the gap between the classical continuum mechanics and fracture
mechanics [see the works by Sudak (2003); Wang and Varadan (2008); Filiz and
Aydogdu (2010); Hu et al (2008)]. A continuum model for micro-cracking in these
materials leads inevitably to strain softening. It is causes a loss of positive defi-
niteness of the elastic modulus matrix and results as an ill-posed boundary value
problem, see Bazant (1976), Sandler (1984). The finite elements calculations using
elasto-plastic models with yield limit degradation in the framework of the classical
theory of plasticity give very different results for different discretization meshes by
Bazant and Lin (1988). In other words, the finite elements results are not indepen-
dent with respect to the mesh refinements and converge at infinite mesh refinement
to a solution with zero energy dissipation during failure. To prevent such physi-
cally unrealistic behavior, the mathematical models with localization require that
force and strain-softening region to have certain minimum finite size [see Bazant
et al (1984) and Sladek et al (2003)]. A nonlocal elastic model proposed by Eri-
gen (1983,1987) and reviewed by Altan (1989) is based on the key idea that the
long-range forces are adequately described by a constitutive relation. A theory of
nonlocal elasticity of bi-Helmholtz type is suited based on the Erigen’s model by
Lazar et al (2006). A comprehensive review on the nonlocal elasticity theory can
be found in Pisano et al (2009).

In recent years, the computational mechanics community has turned its attention
to so-called mesh reduction methods, see Zhang et al (2003), Zhang et al (2006),
Xiaolin and Shuling (2011), Barbieri and Meo (2011), Ferronato and Pini (2010),
Hao-Soo et al (2011), Khosravifard et al (2011), Li and Atluri (2008), Miers and
Telles (2006), Sellountos et al (2012), Sfantos and Aliabadi (2007), Shariati et al
(2010), Skouras et al (2011), Sladek et al (2013, 2006, 2010a, 2010b), Wen and
Aliabadi (2009, 2007, 2008a, 2010, 2011, 2008b). These mesh reduction methods
(commonly referred to as Meshless or Meshfree) have received much interest since
Nayroles et al (1992)proposed the diffuse element method. Later, Belyschko et al
(1994) and Liu et al (1995) proposed element-free Galerkin method and reproduc-
ing kernel particle methods, respectively. One key feature of these methods is that
meshless methods do not require any grid and are hence meshless. More recently,
a family of Meshless methods, based on the Local weak Petrov-Galerkin formula-
tion (MLPGs) for arbitrary partial differential equations with moving least-square
(MLS) approximation has been developed (Atluri (2004)). MLPG is reported to
provide a rational basis for constructing meshless methods with a greater degree
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of flexibility. Local Boundary Integral Equation method (LBIE) with moving least
square and polynomial radial basis function (RBF) has been developed by Sladek et
al (2006). Both methods (MLPG and LBIE) are meshless, as no domain/boundary
meshes are required in these two approaches. However, Galerkin-base meshless
methods, except MLGP presented by Atluri (2004) still include several awkward
implementation features such as numerical integrations in the local domain. More
recently, an enriched meshfree method has been developed for advanced compos-
ites [see Wen and Aliabadi (2012); Li et al (2011); Wen and Aliabadi (2010)].

In this paper, two-dimensional local boundary integral method (LIEM) is developed
for the nonlocal elasticity theory with 2D Eringen’s model. With the use of radial
basis functions, the analytical solutions for the domain integrals in the weak form
are derived for local elasticity. For the nonlocal elasticity, as there no singularity in
the integral kernels, the domain integrals are obtained numerical by standard inte-
gration scheme. To compare with a high accuracy solution, two-dimension problem
of a disk subjected to inner pressure load is transformed to a one-dimension prob-
lem with a second order differential equation in terms of displacement, which is
solved numerically using the point collocation method by Li et al (2013). Three
numerical examples demonstrate the accuracy and efficiency of LIEM.

2 Local integral equation method

A nonlocal elastic model proposed by using nonlocal elasticity by Eringen (1983,
1987) is based on the key idea that the long-range forces are adequately described
by a constitutive relation of the form, for two-dimension isotropic medium, as

σi j, j + fi = 0
σσσ(x) =

∫
V

α(x,x′, l)Dε(x′)dV (x′) =
∫
V

α(x,x′, l)σ̄σσ(x′)dV (x′)

σσσ = {σ11,σ22,σ12}T , εεε = {ε11,ε22,ε12}T , σ̄σσ = Dε, εi j = (ui, j +u j,i)/2

(1)

where V represents the volume of domain, fi body forces, α a nonlocal kernel
defined as the influence coefficient, l the characteristic length or influence distance;
x, x′ are collocation and domain integration points and ui displacements; σσσ , σ̄σσ and
εεε are vectors of nonlocal stress, local stress (classical stress) and strain; D denotes
the elastic moduli matrix. The nonlocal kernel α(x,x′, l) = α(|x−x′|/l) has to
satisfy the normalization condition as∫

V∞

α
(∣∣x−x′

∣∣/l
)
dV ′ = 1 (2)

in which V∞ indicates the infinite domain embedding V .
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An improvement of nonlocal elasticity model considers the nonlocal elastic ma-
terial as a two-phase elastic material which includes phase 1 material complying
with local elasticity and phase 2 material with nonlocal elasticity. The constitutive
relation in (1) is then modified by Eringen (1983, 1987) to

σσσ(x) = ξ1σ̄σσ(x)+ξ2

∫
V

α(x,x′, l)σ̄σσ(x′)dV (x′) (3)

where ξ1 and ξ2 are portion factors and ξ1 + ξ2 = 1. By Hook’s law, one has
following components of stress, for two-dimensional plane-stress problem, as

σ11(x) = ξ1E ′
(

∂u1(x)
∂x1

+ν
∂u2(x)

∂x2

)
+ξ2E ′

∫
V

α(x,x′, l)

(
∂u1(x′)

∂x′1
+ν

∂u2(x′)
∂x′2

)
dV (x′)

(4a)

σ22(x) = ξ1E ′
(

ν
∂u1(x)

∂x1
+

∂u2(x)
∂x2

)
+ξ2E ′

∫
V

α(x,x′, l)

(
ν

∂u1(x′)
∂x′1

+
∂u2(x′)

∂x′2

)
dV (x′)

(4b)

σ12(x) = ξ1µ

(
∂u1(x)

∂x2
+

∂u2(x)
∂x1

)
+ξ2µ

∫
V

α(x,x′, l)

(
∂u1(x′)

∂x′2
+

∂u2(x′)
∂x′1

)
dV (x′) (4c)

where E ′ = E/(1−ν2), E is Young’s modulus, ν is the Poisson’s ratio and shear
modulus µ = E/2(1+ ν). Two kinds of boundary conditions are considered for
nonlocal elasticity, namely, for nonlocal traction boundary

σi jn j = t0
i (5)

and for displacement boundary

ui = u0
i (6)

in which u0
i and t0

i are the prescribed displacements and tractions respectively on
the displacement boundary ΓD and on the traction boundary ΓT , and ni is the unit
normal outward to the boundary Γ.

In the nonlocal integral equation approach, the weak form of differential equation
over a local integral domain Ωs can be written, from Eq.(1), as∫
Ωs

(σi j, j + fi)u∗i dΩ = 0 (7)
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where u∗i is test function. By use of the divergence theorem, Eq.(7) above can be
rewritten in a symmetric weak form as∫

∂Ωs

σi jn ju∗i dΓ−
∫
Ωs

(σi ju∗i, j− fiu∗i )dΩ = 0 (8)

If there is an intersection between the local boundary and the global boundary, a
local symmetric weak form in linear elasticity may be written as∫
Ωs

σi ju∗i, jdΩ−
∫
Ls

tiu∗i dΓ−
∫

ΓD

tiu∗i dΓ =
∫
ΓT

t0
i u∗i dΓ+

∫
Ωs

fiu∗i dΩ (9)

in which, Ls indicates the other part of the local boundary inside the local integral
domain Ωs; ΓD is the intersection between the local boundary Γs and the global
displacement boundary; ΓT is a part of the traction boundary as shown in Figure 1.

The local weak forms in Eq.(8) and Eq.(9) are a starting point to derive local bound-
ary integral equations if appropriate test functions are selected. A step functions can
be used as the test functions u∗i in each integral domain

u∗i (x) =
{

ϕi(x) at x ∈ (Ωs∪Γs)
0 at x /∈Ωs

. (10)

where ϕi(x) is arbitrary function. For ϕi(x) = 1 and zero body force fi = 0, the
local weak forms Eq.(8) and Eq.(9) are transformed into simple local boundary
integral equations (equilibrium of local integral domain) as∫

∂Ωs

tidΓ = 0 (11)

and∫
Ls+ΓD

tidΓ =−
∫
ΓT

t0
i dΓ (12)

3 Radial basis function approximation

Consider a local domain ∂Ωs shown in Figure 1, which is the neighbourhood
of a point x [= (x1,x2)] and is considered as the domain of definition of the
RBF approximation for the trail function at x and also called as support do-
main to an arbitrary point x. Generally the support domain is chosen as a circle
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Figure 1: Arbitrary distributed node, support domain of x, local integral domain for
weak formulation.

R centred at x as shown in Figure 1. To interpolate the distribution of func-
tion u in the local domain ∂Ωs over a number of randomly distributed nodes, i.e.
{y1,y2, ...,yK} , yk[= (yk

1,y
k
2)], k = 1,2,...,K, the approximation of function u at the

point x can be expressed by

ui(x) =
K

∑
k=1

Rk(x,yk)αk +
T

∑
t=1

Pt(x)βt = R(x)ααα +P(x)βββ (13)

where R(x) = {R1(x,y1),R2(x,y2), ...,RK(x,yK)} is the set of radial basis func-
tions centred around the point x, {αk}K

k=1 and {βt}T
t=1 are unknowns to be deter-

mined, and {Pt}T
t=1 is a basis for PT−1, the set of d-variate polynomials of degree

≤ T −1. The radial basis function selected multi-quadrics as

Rk(x,yk) =

√
c2 +

[
x1− yk

1

]2
+
[
x2− yk

2

]2 (14)

where c is a free parameter and along with the constraints

K

∑
k=1

Pt(yk)αk = 0, 1≤ t ≤ T (15)

In this paper, following polynomials are considered if T = 6

P =
{

1,x1,x2,x2
1,x1x2,x2

2
}

(16)
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A set of linear equations can be written in the matrix form as

R0ααα +Pβββ = û, PT
ααα = 0 (17)

where the coefficient matrices are defined as

R0 =



R1(y1,y1) R2(y1,y2) ... RK(y1,yK)
R1(y2,y1) R2(y2,y2) ... RK(y2,yK)

. . ... .

. . ... .

. . ... .
R1(yN ,y1) R2(yN ,y2) ... RK(yK ,yK)

 ,

P =



P1(y1) P2(y1) ... PT (y1)
P1(y2) P2(y2) ... PT (y2)

. . ... .

. . ... .

. . ... .
P1(yK) P2(yK) ... PT (yK)



(18)

and û denotes the vector of nodal values. Solving equation (18) gives

βββ =
(
PTR−1

0 P
)−1 PTR−1

0 û, ααα = R−1
0

[
I−P

(
PTR−1

0 P
)−1 PTR−1

0

]
û (19)

where u is the vector containing all the field nodal values at the L local nodes, I
denotes the diagonal unit matrix. Substituting the coefficients α and β from (20)
into (15), we can obtain the approximation of the field function, in terms of the
nodal values

u(x) =
〈

R(x)R−1
0

[
I−P

(
PTR−1

0 P
)−1 PTR−1

0

]
+P(x)

(
PTR−1

0 P
)−1 PTR−1

0

〉
û

=
K

∑
i=1

φi(x)ûi = ΦΦΦ(x)û

(20)

where ΦΦΦ(x) = {φ1(x),φ2(x), ...,φK(x)} is called as shape function. It is worth
noticing that the shape function depends uniquely on the distribution of scattered
nodes within the domain and has the Kronecker delta property.

4 Analytical forms of domain integrals

Consider a unit test function, i.e. ϕi(x) = 1 and the local domain is enclosed by
several straight lines as shown in Figure 2, therefore, the local integral equation (8)
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becomes∫
Γs

σi j(x)n j(x)dΓ(x) =ξ1

L

∑
l=1

nl
j

∫
Γl

σ̄i j(x)dΓ(x)

+ξ2

L

∑
l=1

nl
j∆l

∫
V

α(xi,x′, l)σ̄i j(x′)dV (x′)

(21)

where L is number of straight line for the boundary of local domain, ni
j and ∆i are

components of normal and length of segment i of the boundary of local domain.
Suppose there are M nodes both in the domain and on the boundary, M = MΩ +
MT +MD, whereMΩ indicates the number of nodes collocated in domain, MT and
MD are numbers of nodes on the traction/displacement boundaries and consider the
radial basis function interpolation in Eq.(20) and relationship between stress and
strain in Eq.(1), Eq.(8) becomes

ξ1

K

∑
k=1

u(k)1

L

∑
l=1

[
K

∑
i=1

(
E ′F1ilnl

1 +µF2ilnl
2

)
αik +

T

∑
t=1

(
E ′G1tlnl

1 +µG2tlnl
2

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

1

∫
V

[
L

∑
l=1

(
E ′φk′,1(x′)nl

1(xl)+µφk′,2(x′)nl
2(xl)

)
α(xl ,x′, l)∆l

]
dV (x′)

+ξ1

K

∑
k=1

u(k)2

L

∑
l=1

[
K

∑
i=1

(
νE ′F2ilnl

1 +µF1ilnl
2

)
αik +

T

∑
t=1

(
νE ′G2tlnl

1 +µG1tlnl
2

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

2

∫
V

[
L

∑
l=1

(
νE ′φk′,2(x′)nl

1(xl)+µφk′,1(x′)nl
2(xl)

)
α(xl ,x′, l)∆l

]
dV (x′) = 0

(22a)

ξ1

K

∑
k=1

u(k)1

L

∑
l=1

[
K

∑
i=1

(
νE ′F1ilnl

2 +µF2ilnl
1

)
αik +

T

∑
t=1

(
νE ′G1tlnl

2 +µG2tlnl
1

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

1

∫
V

[
L

∑
l=1

(
νE ′φk′,1(x′)nl

2(xl)+µφk′,2(x′)nl
1(xl)

)
α(xl ,x′, l)∆l

]
dV (x′)

+ξ1

K

∑
k=1

u(k)2

L

∑
l=1

[
K

∑
i=1

(
E ′F2ilnl

2 +µF1ilnl
1

)
αik +

T

∑
t=1

(
E ′G2tlnl

2 +µG1tlnl
1

)
βtk

]

ξ2

K′

∑
k′=1

u(k
′)

2

∫
V

[
L

∑
l=1

(
µφk′,1(x′)nl

1(xl)+E ′φk′,2(x′)nl
2(xl)

)
α(xl ,x′, l)∆l

]
dV (x′) = 0

(22b)

where k′ = 1,2, ...K′ are numbers of node in the support domain centered (x′)at
the local integral area ∆V (x′). In addition, we should introduce a grid of back-
ground as shown in Figure 2(a) to carry out domain integrals in equation (21).
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Figure 2: (a) Grid of back ground for domain integrals; (b) Local integral domain
with straight boundary lines.

For arbitrary boundary shape of the local integral domain, the collocation points
xk,k = 1,2, ...MΩ, are shown in Figure 2(b) and boundary integrals

Fjil =

sl∫
0

∂Ri

∂x j
ds, G jtl =

sl∫
0

∂Pt

∂x j
ds (23)

Consider nl
1 = sinβl,nl

2 = −cosβl , we have solutions in closed form by Wen and
Aliabadi (2013)

F1il = (r2− r1)cosβl− [(xl
a1− yi

1)sinβl− (xl
a2− yi

2)cosβl]sinβl ln
d1

d2

F2il = (r2− r1)sinβl− [(xl
a2− yi

2)cosβl− (xl
a1− yi

1)sinβl]cosβl ln
d1

d2

r1 =
√

c2 +(xl
a1− yi

1)
2 +(xl

a2− yi
2)

2

r2 =
√

c2 +(xl
b1− yi

1)
2 +(xl

b2− yi
2)

2
(24)

d1 = (xl
a1− yi

1)cosβl +(xl
a2− yi

2)sinβl + r1

d2 = (xl
b1− yi

1)cosβl +(xl
b2− yi

2)sinβl + r2

If T = 6, from Eq.(16), one has

G11l = G13l = G16l = 0

G12l = s,G14l = 2xa1s+ s2 cosβi, G15l = xa2s+
s2 sinβi

2
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G21l = G22l = G24l = 0,

G23l = s,G25l = xa1s+
s2 cosβi

2
,G26l = 2xa2s+ s2 sinβi

s =
√

(xi
b1− xi

a1)
2 +(xi

b2− xi
a2)

2.

(25)

For all domain integrals, four-point standard integral scheme is adopted in compu-
tation. Then Eqs (22a) and (22b) above are rewritten as

ξ1

K

∑
k=1

u(k)1

L

∑
l=1

[
K

∑
i=1

(
E ′F1ilnl

1 +µF2ilnl
2

)
αik +

T

∑
t=1

(
E ′G1tlnl

1 +µG2tlnl
2

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

1

V

∑
q=1

4

∑
p=1

L

∑
l=1

(
E ′φk′,1(x

′
qp)n

l
1(xl)+µφk′,2(x

′
qp)n

l
2(xl)

)
α(xl ,x

′
qp, l)∆lwp∆Vq

+ξ1

K

∑
k=1

u(k)2

L

∑
l=1

[
K

∑
i=1

(
νE ′F2ilnl

1 +µF1ilnl
2

)
αik +

T

∑
t=1

(
νE ′G2tlnl

1 +µG1tlnl
2

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

2

V

∑
q=1

4

∑
p=1

L

∑
l=1

(
νE ′φk′,2(x

′
qp)n

l
1(xl)+µφk′,1(x

′
qp)n

l
2(xl)

)
α(xl ,x

′
qp, l)∆lwp∆Vq=0

(26a)

ξ1

K

∑
k=1

u(k)1

L

∑
l=1

[
K

∑
i=1

(
νE ′F1ilnl

2 +µF2ilnl
1

)
αik +

T

∑
t=1

(
νE ′G1tlnl

2 +µG2tlnl
1

)
βtk

]

+ξ2

K′

∑
k′=1

u(k
′)

1

V

∑
q=1

4

∑
p=1

L

∑
l=1

(
νE ′φk′,1(x

′
p)n

l
2(xl)+µφk′,2(x

′
p)n

l
1(xl)

)
α(xl ,x

′
p, l)∆lwp∆Vq

+ξ1

K

∑
k=1

u(k)2

L

∑
l=1

[
K

∑
i=1

(
E ′F2ilnl

2 +µF1ilnl
1

)
αik +

T

∑
t=1

(
E ′G2tlnl

2 +µG1tlnl
1

)
βtk

]

ξ2

K′

∑
k′=1

u(k
′)

2

V

∑
q=1

4

∑
p=1

L

∑
l=1

(
µφk′,1(x

′
p)n

l
1(xl)+E ′φk′,2(x

′
p)n

l
2(xl)

)
α(xl ,x

′
p, l)∆lwp∆Vq = 0

(26b)

where V in the summation above indicates the number of total rectangular segments
of whole integral domain using a background grid, x′qp = x′q+x′p. For a rectangular
area of ∆V , one has

x
′
1 = (d1/2

√
3,d2/2

√
3), x

′
2 = (−d1/2

√
3,d2/2

√
3),

x
′
3 = (−d1/2

√
3, −d2/2

√
3), x

′
4 = (d1/2

√
3, −d2/2

√
3),

wp = 1/4, ∆Vq = d1d2

(27)
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A part from the collocation points in the domain, we need to consider the trac-
tion/displacement boundary conditions for the nodes collocated on the boundary.
For the nodes on the traction boundary, Eq.(11) should be introduced

∫
Γ−ΓT

tidΓ =−
∫
ΓT

t0
i dΓ for xk k = 1,2, ...,MT (28)

For the displacement boundary nodes, we can introduce the displacement equation
directly, i.e. ui(xk) = u0

i ,k = 1,2, ...MD. Therefore, there are 2× (MΩ + MT +
MD) linear algebraic equations in total to determine the same number unknowns of
displacements either in the domain or on the traction boundary.

To observe the accuracy and convergence of the local integral equation method,
four different shapes as shown in Figure 4 for the local integral domain, L=3, 4,
8 and 128, were studied by Wen and Aliabadi (2013). The accuracy was demon-
strated with several complicated elsato-static and elasto-dynamic problems and the
selections for free parameters such as c in the radial bases function, D local integral
domain side, r0 radius of the local support domain. In this paper, we use: c = ∆min,
D = ∆min and number of integration L = 4, where ∆min indicates the minimum
distance between the nodes in the local integral domain. The support domain is se-
lected as a circle of radius r0 centered at field point x, which is determined such that
the minimum number of nodes in the support domain K ≥ K0, here the number K0
is selected to be 12 for all examples in the following sections. In addition, a grid of
background as shown in Figure 2(a) (d1×d2) is introduced to carry out all domain
integrals in Eq.(21). For two-dimension problem, the nonlocal influence function
is selected as α(x,x′, l) = λ0 exp(−|x−x′|/l) in this paper, where λ0 = 1/2πl2,
l is the characteristic length selected according to the range and sensitivity of the
physical phenomena.

5 Nonlocal elasticity for disk

To verify the proposed method to two-dimensional nonlocal elasticity, we can com-
pare the numerical results with either the finite element method or the finite differ-
ence method. For the polar symmetric problems such as a disk (2D) or a sphere
(3D), it can be simplified to a one-dimensional problem and the solution can be
obtained accurately by using either the finite difference method or the finite inte-
gration method by Li et al (2013).

Consider a disk of outer radius rb and inner radius ra as shown in Figure 3 subjected
to pressure load pb on outer surface and pa on inner surface. As the polar symmetry,
the strains in the disk are function of radius r only and written as
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D 

Figure 3: Different shapes of local integral domain and character parameter D.

εr =
du
dr

, εθ =
u
r

(29)

and equilibrium equation is

dσr

dr
+

σr−σθ

r
= 0 (30)

The local stresses in the Cartesian coordinate system at field point x’ are

σ̄11(ρ,θ) = σ̄r(ρ)cos2
θ + σ̄θ (ρ)sin2

θ

σ̄22(ρ,θ) = σ̄r(ρ)sin2
θ + σ̄θ (ρ)cos2

θ

σ̄12(ρ,θ) = (σ̄r− σ̄θ )sinθ cosθ

(31)

Then the constitutive relation for the nonlocal elasticity theory with two dimen-
sional Eringen’s model can be written, in the case of plane stress as shown in Figure
4(b), as

σr(x) = σ11(r,0) = ξ1σ̄r(r)+ξ2

∫
V

α(x,x′, l)σ̄11(ρ,θ)dV (x′)

= ξ1E ′
(

du(x)
dr

+ν
u(x)

r

)
+ξ2E ′

∫
V

α(x,x′, l)
[(

du(x′)
dρ

+ν
u(x′)

ρ

)
cos2

θ +

(
ν

du(x′)
dρ

+
u(x′)

ρ

)
sin2

θ

]
dV (x′)

(32a)
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σθ (x) = σ22(r,0) = ξ1σ̄θ (r)+ξ2

∫
V

α(x,x′, l)σ̄22(ρ,θ)dV (x′)

= ξ1E ′
(

ν
du(x)

dr
+

u(x)
r

)
+ξ2E ′

∫
V

α(x,x′, l)
[(

du(x′)
dρ

+ν
u(x′)

ρ

)
sin2

θ +

(
ν

du(x′)
dρ

+
u(x′)

ρ

)
cos2

θ

]
dV (x′)

(32b)

and

σrθ (x) = 0. (32c)
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Figure 4: Disk ring under pressure load. (a) polar coordinate; (b) one dimension
nodal distribution.

For the influence function α(x,x′, l) = e−|x
′−x|/l/2πl2, substituting Eq.(32) into

Eq.(30) yields a one dimensional integral equation as

d2u
dr2+

1
r

du
dr
− u

r2−
ξ2

2πl3ξ1

2π∫
0

rb∫
ra

e−R/l ∂R
∂ r

[(
du
dρ

+ν
u
ρ

)
cos2

θ +

(
ν

du
dρ

+
u
ρ

)
sin2

θ

]
ρdρdθ

+
ξ2(1−ν)

2πl2ξ1r

2π∫
0

rb∫
ra

e−R/l
(

du
dρ
− u

ρ

)(
cos2

θ − sin2
θ
)

ρdρdθ = 0

(33)
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where

R =
√

r2 +ρ2−2rρ cosθ and
∂R
∂ r

=
r−ρ cosθ

R
.

By using of shape function in Eq.(20), one has

u(r) =
N

∑
i=1

φi(r)ui (34)

where ui are nodal values. Eq. (33) becomes

N

∑
i=1

(
φi,rr(r)+

φi,r(r)
r
− φi(r)

r2

)
ui

− ξ2

2πl3ξ1

N

∑
i=1

ui
2π∫
0

rb∫
ra

e−R/l r−ρ cosθ

R

[(
φi,ρ(ρ)+ν

φi(ρ)

ρ

)
cos2

θ +

(
νφi,ρ(ρ)+

φi(ρ)

ρ

)
sin2

θ

]
ρdρdθ

+
ξ2(1−ν)

2πl2ξ1r

N

∑
i=1

ui
2π∫
0

rb∫
ra

e−R/l
(

φi,ρ(ρ)−
φi(ρ)

ρ

)
ρdρdθ = 0

(35)

where the collocation point r is selected, for the uniformly distributed collocation
points in the disk, to be r = ra + k(rb− ra)/N, k = 1,2, ...,N−1 (N ≥ 2). For the
inner and outer surfaces of disk, we have σr(ra) = pa and σr(rb) = pb, i.e.

ξ1E ′
N

∑
i=1

ui
(

φi,r(r1)+ν
φi(ra)

ra

)
+ξ2E ′

N

∑
i=1

ui
2π∫
0

rb∫
ra

α(ra,x′, l)
[(

φi,ρ(ρ)+ν
φi(ρ)

ρ

)
cos2

θ+

(
νφi,ρ(ρ)+

φi(ρ)

ρ

)
sin2

θ

]
ρdρdθ = pa

(36a)

ξ1E ′
N

∑
i=1

ui
(

φi,r(r2)+ν
φi(rb)

rb

)
+ξ2E ′

N

∑
i=1

ui
2π∫
0

rb∫
ra

α(rb,x′, l)
[(

φi,ρ(ρ)+ν
φi(ρ)

ρ

)
cos2

θ+

(
νφi,ρ(ρ)+

φi(ρ)

ρ

)
sin2

θ

]
ρdρdθ = pb

(36b)

There are N+1 algebraic linear equations including (N-1) equilibrium equations
in Eq.(35) and two boundary conditions in Eq.(36) above to be used to determine
N+1 nodal displacementsui.
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6 Numerical examples

In this section, the application of the meshless local integral equation method for
two-dimensional nonlocal elasticity static problems is demonstrated by three exam-
ples. All free parameters including c, D and r0 are selected as discussed in chapter
4. A square plate subjected to uniform tensile load and uniform displacement is
observed in example 6.1. One-dimensional solutions by Li et al (2013) and two
dimensional solution of NL-FEM by Pisano et al (2009) are compared. A disk sub-
jected to inner pressure is analysed in example 6.2 and the solutions both for 2D
and 1D numerical processes are compared. Finally, a square plate with a circle hole
is considered in example 6.3 to demonstrate the application of LIEM to a general
problem.

6.1 A square plate under tensile load

First, we consider a square plate of side a = 5cm subjected to a uniformly dis-
tributed force along two sides

(
t0
1 =±σ0

)
as shown in Figure 5(a). Young’s mod-

ulus is one unit and and Poisson ratio ν = 0. In this case, the accurate solution
for one-dimension bar as observed by Li et al (2013) can be used for comparison.
The dimensionless parameter ξ1 = ξ2 = 0.5 and the characteristic length l/a = 0.1.
Two types of uniform distribution of node are considered, i.e. the number of total
node N1×N2 = 11×11 and 21×21 respectively.

To demonstrate the convergence of this method, the variation of the normalized lo-
cal stress σ̄22(x1) = Eε22/σ0 at x2 = a/2 by both the local integral equation method
(2D) and the finite integration method by Li et al (2013) (1D) are plotted in Fig-
ure 5. It is illustrated that the boundary effect for 2D nonlocal elasticity theory is
significant as same as 1D problem. As expected, the results given by LIEM are
convergent for two densities of node distribution and hence the solution for the fine
grid of node is closer to that for one dimensional case too. Both normalized solu-
tions tend to one unit at the middle of the plate/bar. However, these two solutions,
i.e. two-dimension and one-dimension, should not be expected to be the same as
the different influence functions α(x,x′, l).
Consider the same geometry of the plate above fixed along the edge at x1 = 0 and
a uniform distribution of displacement u0

1 = 0.001cm along the edge x1 = 5 (see
Pisano (2009)) as shown in Figure 4(b). In this case, Young’s modulus E = 2.1×
106N/cm2, Poisson ratio ν = 0.2, characteristic length l = 0.1cm and parameter
ξ1 = 0.5. A uniform distribution of node (21×21) is considered and all other free
parameters are the same as in example above. Figure 5 shows the distribution of
strain ε11 versus x1 at x2 = 0.019cm and x2 = 2.519cm respectively. The results by
Pisano et al (2009) using NL-FEM are presented in Figure 5 for comparison.
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Figure 5: Square plate. (a) under tensile load; (b) uniform displacement.

6.2 A disk under internal pressure load

A disk under an internal pressure load is analysed as shown in Figure 7(a). Poisson
ratio ν = 0.3 and dimensions a = 1cm and b = 2cm. Due to the symmetry, one
quarter of the disk is studied by using LIEM in this example. However, in the
domain integral in the governor equation, the contributions to the strain from the
whole disk must be taken into account as shown in Figure 10(a). The boundary
condition is described as

t0
1 =−pa cosϕ, t0

2 =−pa sinϕ for
√

x2
1 + x2

2 = 1cm;

t0
1 = 0, t0

2 = 0 for
√

x2
1 + x2

2 = 2cm;

t0
1 = 0, u0

2 = 0 for x2 = 0;

t0
2 = 0, u0

1 = 0 for x1 = 0.

(37)

The node distribution is shown in Figure 7(b), here the total number of node N =
1039. Again, all free parameters c, D and r0 are selected as same as example
above. The number of grid as shown in Figure 2(a) is selected as (41× 41). The
normalised strains Eε11(x1,0)/pa and Eε22(x1,0)/pa along the axis x are plotted
in Figures from 7 to 10 for different parameters l and ξ1. One dimensional solution
with high accuracy by using the point collocation method is reported in the same
figures for comparison. Obviously good agreement between these solutions has
been achieved.
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Figure 6: Normalised nonlocal stress σ̄22 = Eε22/σ0 at x2 = a/2 for different den-
sities of node distribution.
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load given by LIEM and NL-FEM [14].
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Figure 8: A disk under pressure load. (a): superposition for simplification; (b)
nodal distribution in a quarter of disk and boundary conditions.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1.0 1.2 1.4 1.6 1.8 2.0

Series1 Series2 Series3

Series4 Series5 Series6

ax /1  

1D PCM 

2D LIEM 

 

5.0/ =al  

2.0/ =al  
1.0/ =al  

Eε
22

/p
a 

Figure 9: Distribution of the normalized strain Eε22/pa for different parameter l/a
when the characteristic length ξ1 = 0.1.
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Figure 10: Distribution of the normalized strain Eε11/pa for different parameter
l/a when the characteristic length ξ1 = 0.1.
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Figure 12: Distribution of the normalized strain Eε11/pa for different parameter
l/a when the characteristic length ξ1 = 0.5.
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Figure 13: Square plate containing a circle hole under tensile load and quarter of
the plate with displacement boundary conditions (a) plate; (b) distribution of node.
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Figure 14: Distribution of the normalized local stresses σ11/σ0 and σ22/σ0 along
x axis.
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Figure 15: Distribution of the normalized strain Eε22/pa for different characteristic
length a when the parameter ξ1 = 0.1.
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Figure 16: Distribution of the normalized strain Eε11/pa for different characteristic
length a when the parameter ξ1 = 0.1.
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length a when the parameter ξ1 = 0.5.
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Figure 18: Distribution of the normalized strain Eε11/pa for different characteristic
length a when the parameter ξ1 = 0.5.

6.3 A square plate with a circle hole under tension

A square plate of width 2b, containing a circle hole of radius a subjected to a
uniform tension σ0 on the top and bottom is analysed (where b = 2a) as shown
in Figure 10(a). Same grid of back ground used in the example 6.2 for domain
integrals is used and the number of total node is 1364. Due to the symmetry, a
quarter of the plate is considered as shown in Figure 10(b). To observe the ac-
curacy of LIEM, the local stresses (ξ1 = 1) along the axis x1 is compared with
the boundary element method in Figure 16. Good agreement is achieved for both
normalized stress σ22/σ0 and σ11/σ0. The local (ξ1 = 1) and nonlocal elastic
solutions in terms of strain distribution Eε11(x1,0)/σ0 and Eε22(x1,0)/σ0 with dif-
ferent characteristic length (l) for different parameter ξ1 are plotted in Figures (11)
and (12) respectively. It is very clear that for larger value of characteristic length
l, the absolute value of the nonlocal strain increases rapidly when the characteris-
tic length increases. For example, from Figure 15, the value of normalized strain
Eε22(x1,0)/σ0 varies from 6.49 (nonlocal) to 35.45 (l = 0.6a) at point (a, 0), and
from -0.825 to -12.53 at point (b, 0). As expected, for small value of l, the strain is
dominated by the local stress. For the large value of l, this effect by global stresses
to strains is increased significantly (see from Figure 14).
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7 Conclusions

In this paper, the formulation for the meshless local integral equation method is
presented for the nonlocal elasticity analysis. Based on the Eringen’s model, a
weak form for a set of governing equations with a unit test function is transformed
into local integral equations. The meshless method is carried out by using the
radial basis functions. Three numerical examples are presented to demonstrate
the convergence and accuracy of the proposed method. It is concluded that the
meshless local integral equation method is of high accuracy and suitable to deal
with 2D nonlocal elasticity problems. As 2D nonlocal elasticity is linear, LIEM
can be extended to dynamic case easily using the Laplace transform domain.

References

Altan, S. B. (1989): Existence in Nonlocal Elasticity. Archive Mechanics, vol. 41,
pp. 25-36.

Atluri, S. N. (2004): The Meshless Method (MLPG) for Domain and BIE Dis-
cretizations, Forsyth, GA, USA, Tech Science Press.

Barbieri, E.; Meo, M. A. (2011): A Meshless Cohesive Segments Method For
Crack Initiation And Propagation In Composites. Applied Composite Materials,
vol. 18, pp. 45-63.

Bazant, Z. P. (1976): Instability, Ductility and Size Effect in Strain Softening Con-
crete. Journal of the Engineering Mechanics Division ASCE, vol. 12, pp. 331-344.

Bazant, Z. P.; Belytschko, T. B.; Chang, T. P. (1984): Continuum Theory for
Strain-softening. J. Engrg. Mech. Div. ASCE, vol. 110, pp. 1666-1692.

Bazant, Z. P.; Lin, F. B. (1988): Non-local Yield Degradation. Int. J. Num. Meth.
Engn., vol. 26, pp. 1805-1823.

Belytschko, T.; Lu, Y. Y.; Gu, L. (1994): Element-free Galerkin method. Int. J.
Numerical Methods in Engineering, vol. 37, pp. 229-256.

Eringen, A. C. (1983): On Differential Equations of Nonlocal Elasticity and So-
lutions of Screw Dislocation and Surface Waves. J. Appl. Phys., vol. 54, pp.
4703-4710.

Eringen, A. C. (1987): Theory of Nonlocal Elasticity and Some Applications. Res.
Mech., vol .21, pp. 313-342.

Ferronato, M.; Pini. G. (2010): Finite Element Enrichment Technique by the
Meshless Local Petrov-Galerkin method. Computer Modeling in Engineering &
Sciences, vol. 62, pp. 205-23.

Filiz, S.; Aydogdu, M. (2010): Axial Vibration of Carbon Nanotube Heterojunc-



Two Dimensional Nonlocal Elasticity Analysis 223

tions using Nonlocal Elasticity. Comp Mater Sci, vol. 49, pp. 619–27.

Hae-Soo, Oh.; Davis, C.; Kim, J-G.; Kwon, Y-H. (2011): Reproducing Polyno-
mial Particle Methods for Boundary Integral Equations. Computational Mechanics,
vol. 48, no. 1, pp. 1-19.

Hu, Y. G.; Liew, K. M.; Wang, Q.; He, X. Q.; Yakobson, B. I. (2008): Nonlocal
Shell Model for Elastic Wave Propagation in Single and Double Walled Carbon
Nanotubes. J Mech Phys Solids, vol. 56, pp. 3475–85.

Khosravifard, A.; Hematiyan, M.; Marin, L. (2011): Nonlinear Transient Heat
Conduction Analysis of Functionally Graded Materials in the Presence of Heat
Sources Using An Improved Meshless Radial Point Interpolation Method. Applied
Mathematical Modelling, vol. 35, pp. 4157-4174

Lazar, M.; Maugin, G. A.; Aifantis, E. C. (2006): On a Theory of Nonlocal
Elasticity of bi-Helmholtz Type and Some Applications. Int. J. Solids and Struct.,
vol. 43, pp. 1404-1421.

Li, L. Y.; Wen, P. H.; Aliabadi, M. H. (2011): Meshfree modelling and homoge-
nization of 3D orthogonal woven composites. Composites Science and Technology,
vol. 71, pp. 1777-1788.

Li, M.; Hon, Y. C.; Korakianitis, T.; Wen, P. H. (2013): Finite Integration
Method for Nonlocal Elastic Bar under Static and Dynamic Loads. Engineering
Analysis with Boundary Elements, vol. 37, no. 5, pp. 842-849.

Li, S.; Atluri, S. N. (2008): The MLPG mixed collocation method for material
orientation and topology optimization of anisotropic solids and structures. CMES-
Computer Modelling in Engineering & Sciences, vol. 30, pp. 37-56.

Liu, W. K.; Jun, S.; Zhang, Y. (1995): Reproducing Kernel Particle Methods. Int.
J. Numerical Methods in Engineering,vol. 20, pp. 1081-1106.

Miers, L. S.; Telles, J. C. F. (2006): On the NGF Procedure for LBIE Elastostatic
Fracture Mechanics. Computer Modeling in Engineering & Sciences, vol. 14, pp.
161-9.

Nayroles, B.; Touzot, G; Villon, P. (1992): Generalizing the Finite Element
Method: Diffuse Approximation and Diffuse Elements. Computational Mechanics,
vol. 10, pp. 307-318.

Pisano, A. A.; Sofi, A.; Fuschi, P.(2009): Nonlocal Integral Elasticity: 2D Finite
Element Based Solutions. Int. J. Solids and Struct., vol. 46, pp. 3838-3849.

Sandler, I. S. (1984): Strain-softening for Static and Dynamic Problems, in: Proc.
Symp. on Constitutive Equations; Micro, Macro and Computational Aspects (ed.
K.J. Willam), ASME, New York, pp. 217-231.

Sellountos, E. J.; Polyzos, D.; Atluri, S. N. (2012): A New and Simple Mesh less



224 Copyright © 2013 Tech Science Press CMES, vol.96, no.3, pp.199-225, 2013

LBIE-RBF Numerical Scheme in Linear Elasticity. CMES-Computer Modelling in
Engineering & Sciences, vol. 89, pp. 513-551.

Sfantos, G. K.; Aliabadi, M. H. (2007): Multi-scale boundary element modelling
of material degradation and fracture. Computer Method in Applied Mechanics and
Engineering, vol. 196, pp. 1310-1329.

Shariati, M. B.; Eslami, M. R.; Hassani, B. (2010): Meshless Analysis of
Cracked Functionally Graded Materials Under Thermal Shock. Mechanika, vol.
4, pp. 20-7.

Skouras, E. D.; Bourantas, G. C; Loukopoulos, V. C.; Nikiforidis, G. C. (2011):
Truly Meshless Localized Type Techniques For The Steady-state Heat Conduction
Problems For Isotropic And Functionally Graded Materials. Engineering Analysis
with Boundary Elements, vol. 35, pp. 452-464.

Sladek, J.; Sladek, V.; Bazant, Z. P. (2003): Non-local Boundary Integral Formu-
lation for Softening Damage. Int. J. Num. Meth. Engn., vol. 57, pp. 103-116.

Sladek, J.; Sladek, V.; Wen, P. H.; Aliabadi, M. H. (2006): Meshless Local
Petrov-Galerkin (MLPG) Method for Shear Deformable Shells Analysis. Com-
puter Modeling in Engineering & Sciences, vol. 13, pp. 103-17.

Sladek, J.; Stanak, P.; Han, Z-D. et al. (2013): Applications of the MLPG
Method in Engineering & Sciences: A Review. CMES-Computer Modelling in
Engineering & Sciences, vol. 92, pp. 423-475.

Sladek, V.; Sladek, J; Zhang, Ch. (2006): Comparative Study of Meshless Ap-
proximations in Local Integral Equation Method. CMC: Computers, Materials, &
Continua, vol. 4, pp. 177-188.

Sladek, V.; Sladek, J. (2010a): Local Integral Equations Implemented by MLS-
approximation and Analytical Integrations. Engineering Analysis with Boundary
Elements, vol. 34, pp. 904-913.

Sladek, V.; Sladek, J.; Zhang, Ch. (2010b): On Increasing Computational Effi-
ciency of Local Integral Equation Method Combined with Meshless Implementa-
tions. CMES-Computer Modeling in Engineering & Sciences, vol. 63, pp. 243-263.

Sudak, L. J. (2003): Column Buckling of Multiwalled Carbon Nanotubes using
Nonlocal Continuum Mechanics. J Appl Phys, vol. 94, pp. 7281–7.

Wang, Q.; Varadan, V. K. (2008): Application of Nonlocal Elastic Shell Theory
in Wave Propagation Analysis of Carbon Nanotubes. Smart Mater Struct, vol. 16,
pp. 178–90.

Wen, P. H.; Aliabadi, M. H. (2009): Evaluation of Mixed-mode Stress Intensity
Factors by the Mesh-free Galerkin Method: Static and Dynamic. Journal of Strain
Analysis for Engineering Design, vol. 44, pp. 273-86.



Two Dimensional Nonlocal Elasticity Analysis 225

Wen, P. H.; Aliabadi, M. H. (2007): Meshless Method with Enriched Radial Ba-
sis Functions for Fracture Mechanics. SDHM Structural Durability and Health
Monitoring, vol. 3, pp. 107-119.

Wen, P. H.; Aliabadi, M. H. (2008a): An Improved Meshless Collocation Method
for Elastostatic and Elastodynamic Problems. Communications in Numerical Meth-
ods in Engineering, vol. 24, no. 8, pp. 635-651.

Wen, P. H.; Aliabadi, M. H. (2010): Elastic Moduli of Woven Fabric Compos-
ite by Meshless Local Petrov-Galerkin (MLPG) Method. Computer Modeling in
Engineering & Sciences, vol. 61, pp. 133-54.

Wen, P. H.; Aliabadi, M. H. (2011): A Variational Approach for Evaluation of
Stress Intensity Factors using the Element Free Galerkin method. International
Journal of Solids and Structures, vol. 48, pp. 1171-1179.

Wen, P. H.; Aliabadi, M. H. (2012): Damage mechanics analysis of plain woven
fabric composite micromechanical model for mesh-free simulations. J. Composite
Materials, vol. 46, pp. 2239-2253.

Wen, P. H.; Aliabadi, M. H. (2013): Analytical Formulation of Meshless Local
Integral Equation Method. Applied Mathematical Modelling, vol. 37, no. 4, pp.
2115-2126.

Wen, P. H.; Aliabadi, M. H.; Liu, Y. (2008b): Meshless Method for Crack Anal-
ysis in Functionally Graded Materials with Enriched Radial Base Functions. Com-
puter Modeling in Engineering & Sciences, vol. 30, pp. 133-47.

Xiaolin, Li.; Shuling, L. (2011): A Meshless Method for Nonhomogeneous Poly-
harmonic Problems Using Method of Fundamental Solution Coupled With Quasi-
interpolation Technique. Applied Mathematical Modelling, vol. 35, pp. 3698-3709.

Zhang, J.; Yao, Z.; Tanaka, M. (2003): The Meshless Regular Hybrid Bound-
ary Node Method for 2D Linear Elasticity. Engineering Analysis with Boundary
Elements, vol. 27, pp. 259-68.

Zhang, X; Yao, Z.; Zhang, Z.(2006): Application of MLPG in Large Deformation
Analysis. Acta Mechanica Sinica (English Series), vol. 22, pp. 331-40.




