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Abstract: This paper is concerned with a mathematical model of a simple axi-
symmetric silencer-like model, consisting of a hole-tone feedback system equipped
with a tailpipe. The unstable shear layer is modeled via a discrete vortex method,
based on axisymmetric vortex rings. The aeroacoustic model is based on the Powell-
Howe theory of vortex sound. Boundary integrals are discretized via the boundary
element method; but the tailpipe is represented by the exact (one-dimensional) so-
lution. It is demonstrated though numerical examples that this numerical model
can display lock-in of the self-sustained flow oscillations to the resonant acoustic
oscillations.
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1 Introduction

Expansion chambers are often used in connection with silencers in engine exhaust
systems, with the aim of attenuating the energy flow. But the gas flow through the
chamber may generate self-excited oscillations, thus becoming a sound generator
rather than a sound attenuator. Similar geometries and thus similar problems may
be found in, for example, solid propellant rocket motors, valves, and heat exchang-
ers.

A related problem is that of flow past a rectangular cavity. This, too, has connec-
tions to a number of practical applications, such as the sunroof in an automobile,
weapon and landing gear bays of aircraft, and musical instruments. Analytically,
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the two-dimensionality makes the problem attractive; accordingly is has been ex-
tensively studied and a large number of articles are available; see e.g. [Howe
(1998)].

The present work is related to a simple axisymmetric silencer model consisting of
an expansion chamber followed by a tailpipe. The aim is to contribute to the under-
standing of the interaction between oscillations of the flow field and the acoustic
field.

By oscillations of the flow field we mean the self-sustained oscillations of the jet
shear layer. The shear layer is unstable and rolls up into a large, coherent vortex (a
’smoke-ring’) which is convected downstream with the flow. It cannot pass through
the hole in the downstream plate but hits the plate, where it creates a pressure dis-
turbance. The disturbance is thrown back (with the speed of sound) to the upstream
plate, where it disturbs the shear layer. This initiates the roll-up of a new coherent
vortex. In this way an acoustic feedback loop is formed, making up one type of
flow-acoustic interaction.

These so-called hole-tone feedback oscillations may interact with the acoustic axial
and radial eigen-oscillations of the cavity and the tailpipe. It is these interactions
that we seek to understand.

Other important types of interactions are those between (i) sound and structural
vibrations (structural acoustics) and (ii) flow and structural vibrations (aeroelastic-
ity). Comprehensive reviews of classical approaches for sound-structure interac-
tion problems have been given by [Crighton (1989)] and [Junger and Feit (1986)].
Recently, a computational approach, involving a coupling between the boundary
element method (BEM) (representing the acoustic oscillations) and the finite el-
ement method (FEM) (representing the structural oscillations) was considered by
[Djojodihardjo and Safari (2013)]. A comprehensive review of classical approaches
for flow-structure interaction problems can be found in [Bisplinghoff, Ashley, and
Halfman (1955)].

Here we do not take structural vibrations into account; that is, the structural parts
are assumed to be completely rigid.

In the present paper we study the simplified configuration shown in Fig. 1. This
is the hole-tone feedback system equipped with a tailpipe. A closed expansion
chamber will be considered in a later publication.

The unstable shear layer is modeled via a discrete vortex approach, based on ax-
isymmetric vortex rings. The aeroacoustic model is based on the Powell-Howe
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Figure 1: The hole-tone feedback system with a tailpipe. The arrow indicates the
direction of the flow.

theory of vortex sound [Howe (1998, 2003)]. The boundary integrals that appear
are discretized via the boundary element method.

The present paper concentrates on the aeroacoustic analysis. A description of the
flow analysis (discrete vortex method) has been given in earlier papers [Langthjem
and Nakano (2005, 2010)]. The geometry of the problem facilitates the use of cylin-
drical polar coordinates (r,θ ,z), with the fluid flowing in the positive z-direction.
Although it is possible that non-axisymmetric modes may be excited, we will, at
this stage, consider only the axisymmetric modes (r,z).

The paper is organized as follows. The aeroacoustic model and its solution is de-
scribed in Section 2. Section 3 considers details related to the boundary element
discretization. The boundary element grid, and the representation of the tailpipe, is
discussed in Section 4. Details regarding the solution of the tailpipe problem and
the acoustic feedback model are discussed in Section 5. Numerical examples are
given and discussed in Section 6. Finally, conclusions are summarized in Section
7.

2 Aeroacoustic model

The starting point is taken in Howe’s equation for vortex sound at low Mach num-
bers [Howe (1998, 2003)]. Let u denote the flow velocity, ω = ∇×u the vorticity,
c0 the speed of sound, and ρ0 the the mean fluid density. The sound pressure p(x, t)
at the position x = (r,z) and time t is related to the vortex force (Lamb vector)
L(x, t) = ω(x, t)×u(x, t) via the non-homogeneous wave equation(

1
c2

0

∂ 2

∂ t2 −∇
2
)

p = ρ0∇ ·L, (1)
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with boundary conditions ∂ p
∂n =∇p ·n= 0 on the solid surfaces (n = normal vector),

and p→ 0 for |x| → ∞.

To solve (1) and (2) in an axisymmetric setting, use is made of the free-space time-
domain axisymmetric Green’s function G(t,τ;r,z;r∗,z∗), which is a solution to

− 1
c2

0

∂ 2G
∂ t2 +

∂ 2G
∂ r2 +

1
r

∂G
∂ r

+
∂ 2G
∂ z2 =−δ (r− r∗)

r
δ (z− z∗)δ (t− τ), (2)

where the δ ’s are Dirac delta functions. It can be shown that the solution is given
by

G(t,τ;r,z;r∗,z∗) =
c0

π

H( f+n )H( f−n )√
f+d f−d

, (3)

where

f+n = r+ r∗−
√

c2
0(t− τ)2− (z− z∗)2, f−n =

√
c2

0(t− τ)2− (z− z∗)2−|r− r∗|, (4)

and

f+d = (r+ r∗)2 +(z− z∗)2− c2
0(t− τ)2, f−d = c2

0(t− τ)2− (z− z∗)2− (r− r∗)2. (5)

Here H( f ) is the Heaviside unit function which takes the value 1 when f > 0 and
the value 0 when f < 0.

By making use of the Green’s function the pressure p(x, t) at any point x = (r,z)
can be determined as

p(t,r,z) =−ρ0

∫
τ

{∫
z∗

∫
r∗

∇yG ·Lr∗dr∗dz∗+
∫ z∗2

z∗1

(
p∗

∂G
∂ r∗
−G

∂ p∗
∂ r∗

)
2πr∗dz∗ (6)

+
∫ r∗2

r∗1

(
p∗

∂G
∂ z∗
−G

∂ p∗
∂ z∗

)
2πr∗dr∗

}
dτ,

where, in the first term, ∇y = (∂/∂ r∗,∂/∂ z∗). This (first) term represents the
‘source’ contribution ps from the vortex rings. The vorticity related to a single
ring is given by

ω j = Γ jδ (r∗− r j)δ (z∗− z j)iθ , (7)
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where iθ is a unit vector in the azimuthal direction of the cylindrical polar coordi-
nate system (r,θ ,z). Then, by making use of (3, 4), the first term in (6) takes the
form

ps =
c0

π
ρ0 ∑

j

{
sgn(r,r j)

∂

∂ r

t−d−j /c0∫
t−d+

j /c0

Γ j(τ)vz j(τ)r j√
f+d f−d

dτ (8)

−sgn(z,z j)
∂

∂ z

t−d−j /c0∫
t−d+

j /c0

Γ j(τ)vr j(τ)r j√
f+d f−d

dτ

}
,

where the subscript ‘s’ stands for ‘source term’. The summation over j refers to
summation over all free vortex rings. Note that differentiations with respect to the
source variables r j and z j have been converted into differentiations with respect to
r and z. Here care should be taken with the signs related to r j and r and to z j and z;
see (4) and (5). This is taken care of by the functions sgn(r,r j) and sgn(z,z j).

The main contributions to the τ-integrations will be at the end point singularities.
Hence the functions f+d and f−d can be approximated as

f+d ≈ 2c0d+
j

{
τ− (t−d+

j /c0)
}
, f−d ≈ 2c0d−j

{
(t−d−j /c0)− τ

}
, (9)

where

d+
j = {(r+ r j)

2 +(z− z j)
2}

1
2 , d−j = {(r− r j)

2 +(z− z j)
2}

1
2 . (10)

Let a = t−d+
j /c0 and b = t−d−j /c0. The integrals over τ in (8) then take the form

Iτ(t) =
∫ b

a

F(τ)√
(τ−a)(b− τ)

, (11)

which is a standard Gauss-Chebyshev integral. The corresponding quadrature for-
mula is given by

Iτ(t) =
I

∑
i=1

wiF(si)+RI, si =
b+a

2
+

b−a
2

ti, ti = cos
(2i−1)π

2I
, wi =

π

I
, (12)

where RI is the reminder. Using just one point, i.e. taking I = 1, corresponds to as-
suming that the vortex strengths Γ j(τ) and the corresponding velocities vr j(τ,r j,z j),
vz j(τ,r j,z j) are constant within the limits of integration over τ , and equal to their
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values at the mean retarded time t̄ = t− (d+
j + d−j ))/2c0. Applying this approxi-

mation, an evaluation of (8) gives

ps =−
ρ0

4 ∑
j

r j√
d+

j d−j

[
Γ jvz j(t̄)

{
r+ r j

(d+
j )

2 −
r− r j

(d−j )
2

}

+Γ jvr j(t̄)(z− z j)

{
1

(d+
j )

2 +
1

(d−j )
2

}
+

1
c0

∂

∂ t̄

(
Γ jvz j(t̄)

){ r+ r j

d+
j
−

r− r j

d−j

}

+
1
c0

∂

∂ t̄

(
Γ jvr j(t̄)

)
(z− z j)

{
1

d+
j
+

1
d−j

}]
.

(13)

The second and third terms of (6) make up the scattering contribution psc, due to
the solid surfaces. We use the subscript ‘sc’ to refer to ‘scattered’, and the subscript
asterisk in p∗ to refer to the surface pressure. The second term is for the horizontal
sections (integration along the z axis) while the third term is for the vertical surfaces
(integration along the r axis). By making use of the same kind of approximations
as applied to the vortex source term ps these terms can be evaluated as

psc =
π

2
δhc

∫ z∗2

z∗1

r∗√
d+
∗ d−∗

[
p∗(t̄)

{
r+ r∗
(d+
∗ )2 −

r− r∗
(d−∗ )2

}
+

1
c0

∂
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(p∗(t̄))

{
r+ r∗

d+
∗
− r− r∗

d−∗

}]
dz∗

− π

2
δvc

∫ r∗2

r∗1

r∗(z− z∗)√
d+
∗ d−∗

[
p∗(t̄)

{
1

(d+
∗ )2 +

1
(d−∗ )2

}
+

1
c0

∂

∂ t̄
(p∗(t̄))

{
1

d+
∗
+

1
d−∗

}]
dr∗

+πδho

∫ z∗2

z∗1

r∗√
d+
∗ d−∗

∂ p∗(t̄)
∂ r∗

dz∗+πδvo

∫ r∗2

r∗1

r∗√
d+
∗ d−∗

∂ p∗(t̄)
∂ z∗

dr∗.

(14)

Here δhc is 1 on horizontal closed (i.e. physical) surfaces, and 0 otherwise; δvc

is 1 on vertical closed surfaces, and 0 otherwise; δho is 1 on horizontal open (i.e.
virtual, or control) surfaces, and 0 otherwise; and δvo is 1 on vertical open surfaces,
and 0 otherwise.

The total pressure at an observation point (r,z) is now given by

ς p(t̄,r,z) = ps(t̄,r,z)+ psc(t̄,r,z). (15)

Here ς is equal to 1 when the observation point is in the acoustic medium and away
from the solid boundaries, and equal to 1

2 when the observation point is located on
a solid boundary.

3 Discretization via a Galerkin-type boundary element method

Next we employ the boundary element methodology of dividing the surface into
V elements, assuming that the pressure is constant within each element. The time
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dependence of the pressure is, within cosecutive time steps, interpolated via a cubic
polynomial. Thus, the pressure p∗ anywhere on the boundary can, at time step W ,
be expressed as

p∗(t̄,r∗,z∗) =
V

∑
v=1

W

∑
w=1

fv(r∗,z∗)gw(t̄)Pvw, (16)

where

fv(r∗,z∗) =

{
1 for (r∗,z∗) ∈ (rv,zv)

0 otherwise
, (17)

and gw(t̄) = g(t−w∆t), with

g(t) =



1+ 11
6

t
∆t +

( t
∆t

)2
+ 1

6

( t
∆t

)3 for −∆t ≤ t < 0,
1+ 1

2
t

∆t −
( t

∆t

)2− 1
2

( t
∆t

)3 for 0≤ t < ∆t,
1− 1

2
t

∆t −
( t

∆t

)2
+ 1

2

( t
∆t

)3 for ∆t ≤ t < 2∆t,
1− 11

6
t

∆t +
( t

∆t

)2− 1
6

( t
∆t

)3 for 2∆t ≤ t < 3∆t,
0 otherwise.

(18)

In the usual collocation type BEM (14) is evaluated at each of the V spatial control
points in turn, to give V equations for the V unknown element pressures (at each
time step). Here we employ the Galerkin method, where the ‘strong form’ of these
equations are exchanged with a ‘weak form’. To this end, (14) is multiplied by the
spatial shape function fu, followed by integration around the structure. Letting u
run from 1 to V , we obtain a V ×V equation system on the form

A0pW =−
W

∑
w=1

AwpW−w + fW , (19)

which is solved at each time step.

4 Boundary element grid and representation of the tailpipe

The closed surface, which is assumed when applying Green’s second identity [Kel-
logg (1929)] to convert volume integrals into surface integrals in (6), can be speci-
fied in a variety of ways. The standard, and most simple, way would be to represent
the solid surfaces by boundary elements, making two separated closed surfaces in
the present case, as shown in Fig. 2 (a). This approach has the benefit that the
terms proportional to ∂ p∗/∂ r∗ and ∂ p∗/∂ z∗ in (14) drop out. But it makes internal
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resonances possible. This will in turn imply a numerical instability that is difficult
to cure. A number of methods to circumvent this problem are available, such as the
methods known as CHIEF (Combined Helmholtz Integral Equation Formulation)
[Schenck (1967)] and CONDOR (Composite Outward Normal Derivative Overlap
Relation) [Burton and Miller (1971)]. Both of these methods were developed orig-
inally for frequency-domain formulations but can be modified to be used in the
time domain. Such modifications have been considered for the CONDOR method
by [Ergin, Shanker, and Michielssen (1999)] and [Chappell, Harris, Henwood, and
Chakrabarti (2006)] and also, very recently, for the CHIEF method by [Jang and Ih
(2013)].

We have tried to use the latter approach in connection with a grid layout as that
shown in Fig. 2 (a) but did not obtain sufficient stabilization. Accordingly, the
grid was modified to one as shown in Fig. 2 (b). Here the acoustic medium within
the whole hole-tone/pipe system is surrounded by elements; and the resonances
that can occur within the closed surface are the physical resonances that we are
interested in. Yet is was found to be difficult to stabilize the vibrations without
damping out the resonance peaks too much. On another note, it can be argued
that, since the acoustic waves in the tailpipe principally are one-dimensional, a
boundary element representation of this long, slender surface is ‘wasteful’ from a
computational point of view. These considerations, together with the mentioned
stability problems, suggest an approach as that shown in Fig. 2 (c).

Symmetry axis (a)

Symmetry axis (b)

Symmetry axis (c)

Figure 2: Possible boundary element grids. Dotted lines indicate open (pressure
relief) boundaries.

Here only the hole-tone-system part is represented by boundary elements. The pipe
is represented by the exact one-dimensional wave solution, considered as a ‘super
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element’, and the two sub-systems are coupled.

5 Pressure in the tailpipe and acoustic feedback model

Let z = z1 correspond to the upstream pipe entrance and z = z2 to the downstream
pipe exit. In the following we will use the local coordinate z̃ = z− z1. Also, let
`= z2− z1.

We will assume that the ‘driving’ disturbance at z̃ = 0 can be described in terms of
its velocity potential there, φ0 say. Next we will evaluate the velocity potential φ in
the pipe. Use of the velocity potential is convenient because once it (φ ) is known
the acoustic pressure p and particle velocity can be determined as

p = ρ0
∂φ

∂ t
, u =−∂φ

∂ z
. (20)

The numerical evaluation of φ0 is based on the pressure gradient at the BEM-pipe
interface, (∂ p/∂ z)z̃=0.

In the frequency domain, the Green’s function corresponding to a disturbance at
z̃ = 0, of unit amplitude and frequency ω , takes the form

G̃φ =
sink(`− z̃)

sink`
(21)

where k = ω/c0. The time-domain version of this equation takes the form

Gφ =
∞

∑
n=0

[
δ

(
t− z̃+2n`

c0

)
−δ

(
t +

z̃−2(n+1)`
c0

)]
, (22)

where δ is the (Dirac) delta function. Based on this Green’s function we get

φ(t, z̃) =
∞

∑
n=0

[
φ0

(
t− z̃+2n`

c0

)
−φ0

(
t +

z̃−2(n+1)`
c0

)]
. (23)

In order evaluate the acoustic particle velocity radiated from the pipe it will, for
simplicity and as a ‘first approximation’, be assumed that the one-dimensional ve-
locity field inside the pipe is radiated out in the same one-dimensional way. That is,
if z1+ is a point a little downstream from the pipe entrance at z1 the acoustic particle
velocity at value of z < z1 is evaluated as

u(z, t) = u(z1+, t− (z1+− z)/c0) (24)
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The acoustic velocity field is superimposed onto the ‘hydrodynamic’ velocity field
of the free vortex rings in the open domain between nozzle exit and end plate. That
is, (24) is evaluated at the position of any free vortex ring in this domain.

6 Numerical examples

In the numerical examples to follow the diameter of nozzle, end plate hole, and
tailpipe is d0 = 50 mm. The gap length between nozzle exit and the end plate is
also 50 mm. The diameter of the end plate is 3d0 = 150 mm. The mean jet speed
u0 = 10 m/s. The (reference) length of the tailpipe attached onto the end plate is `=
21.25d0 = 1063 mm. The corresponding (reference) pipe resonance frequencies are
fn = 160n, n = 1,2, · · · , where even values of n correspond to multiples of a full
wavelength.

The time step is chosen as ∆t = 1/(10 fmax) where the maximum frequency of inter-
est fmax is set to 1100 Hz. The number of boundary elements on a certain ‘stretch’
of length li (between two corners) is set to Ne = max[2,{nint(4li/(c0∆t))}].
Figure 3 shows the appearance and location of free vortex rings in the vicinity
of the end plate during one period of oscillation. The fundamental hole-tone fre-
quency f0 = 158 Hz, which is about 40 Hz lower than for the case without a tailpipe
[Langthjem and Nakano (2005, 2010)]. The change in f0 is due to the different flow
field that the tailpipe causes.

Figure 4 shows a number of time series plots for the pressure variation on the axis
of symmetry, in the middle of the tailpipe. It is noted that this position corresponds
to a nodal point for the even modes n = 2,4, · · · . Thus in the corresponding sound
pressure spectra (Fig. 5), only the peaks at f2n−1, n = 1,2, · · · , correspond to pipe
resonances; the peaks at f2n correspond to the hole-tone oscillations.

In both of these two figures (4 and 5) the sub-plots on the left-hand side are for
cases without acoustic feedback; those on the right-hand side are for cases with
acoustic feedback.

In the time series plot of Fig. 4 (a) the hole-tone frequency ( f0 = 158 Hz) is close to
the first (half-wave) eigenfrequency of the pipe pressure oscillations ( f1 = 160 Hz)
but not exactly equal to it. For this reason a slow beat phenomenon, with a period
of 0.5 s, is developed.

When acoustic feedback is included (Fig. 4 (b)) the hole-tone oscillations lock-in
to the pipe oscillations, and a clear resonance is developed. The pressure amplitude
grows to large values in an almost linear fashion. As a reference, it is noted that the
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End plate Nozzle

t = 0 t = 1
8 f0

t = 2
8 f0

t = 3
8 f0

t = 4
8 f0

t = 5
8 f0

t = 6
8 f0

t = 7
8 f0

t = 8
8 f0

Figure 3: Side view of the vortex rings (in terms of the points (±r j,z j)) during one
period of oscillation.

amplitude of a simple, undamped, forced one degree-of-freedom oscillator grows
linearly; so the behavior in Fig. 4 (b) appears plausible. Comparing the spectra of
Fig. 5 (a) and (b) it is seen that peaks of f2n−1 (n = 1,2, · · · ) are raised significantly
by the feedback.

The plots in Figs. 4 and 5, parts (c) and (d), are for a pipe of length ` = 22.25d0.
This gives the resonance frequencies fn = 151n, n = 1,2, · · · . The larger difference
between f0 and f1 implies faster beats, as seen from Fig. 4 (c). Inclusion of acous-
tic feedback gives, instead of the beats, again an almost linear pressure amplitude
growth (Fig. 4 (d)) - which however ‘flattens off’ at larger times.

Comparing the spectra in parts (c) and (d) of Fig. 5, it is interesting to note that
the peak at 2 f0 ≈ 320 Hz moves to 2 f0 ≈ 300 Hz≈ 2 f1 when acoustic feedback is
included. That is to say, the hole-tone frequency f0 undergoes a lock-in to the pipe
resonance frequency f1.

Figures 4 and 5, parts (e) and (f), show that lock-in of f0 to f1 happens also when
feedback is included for a pipe a bit longer, of length `= 23.25d0, with resonance
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frequencies fn = 146n. Here the pressure amplitude grows linearly only for small
values of time t; at larger times it takes an almost-constant value.

Without acoustic feedback With acoustic feedback
Pressure p/p0 Pressure p/p0
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Figure 4: Sound pressure time series. [Reference pressure p0 =
1
2 ρ0u2

0.] The obser-
vation point is on the jet axis, in the middle of the pipe. The sub-plots on the left-
hand side are for cases without acoustic feedback; those on the right-hand side are
for cases with acoustic feedback. (a, b) Pipe length `= 21.25d0. (c, d) `= 22.25d0.
(e, f) `= 23.25d0. (g, h) `= 20.25d0. (i, j) `= 19.25d0.

Shorter pipes that have resonance frequencies fn > f0 have been considered as
well (Figs. 4 and 5, parts (g)-(j)). But here the acoustic feedback does not easily
imply a lock-in of the hole-tone frequency to that of the pipe resonance. More
computational studies are needed in order to identify and understand regions (in
the parameter space) with lock-in and non-lock-in.
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Without acoustic feedback With acoustic feedback
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Figure 5: Sound pressure spectra of the time series shown in Fig. 4. [Sound pres-
sure level (SPL) in dB; reference pressure pre f = 2×10−5 N/m2.] Again, the sub-
plots on the left-hand side are for cases without acoustic feedback; those on the
right-hand side are for cases with acoustic feedback. (a, b) Pipe length `= 21.25d0.
(c, d) `= 22.25d0. (e, f) `= 23.25d0. (g, h) `= 20.25d0. (i, j) `= 19.25d0.
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It must be pointed out, lastly, that the magnitude of the feedback velocity field is
important, and that one can hardly expect the present simple approach to give the
correct magnitude. In the numerical examples presented here, an ‘amplification
factor’ (multiplier) was used to enlarge the numerical value of the velocity. For the
pipe lengths ` = 19.25d0, 20.25d0, and 21.25d0, the amplification factor was 25;
for `= 22.25d0 and 23.25d0, it was 50.

7 Summary of main conclusions

1. Use of a discrete vortex method in combination with the theory of vortex
sound and the boundary element method has proved to be an efficient and
computationally simple approach for simulation of flow-acoustic interaction
problems, like the hole-tone/pipe resonance problem considered here.

2. The employed time-domain boundary element method can be made numer-
ically stable; but (physical, pipe) resonances within the closed boundary
domain trigger instability problems. Use of the analytical solution for the
acoustic pipe oscillations cures the numerical stability problem. It also re-
duces the computational costs considerably.

3. The numerical model can display lock-in of the self-sustained flow oscilla-
tions to the resonant acoustic oscillations.

4. As to future work, inclusion of a closed cavity (silencer model) is a natural
next step. Comprehensible numerical studies are necessary for ‘mapping’
and understanding of parameter ranges with lock-in and non-lock-in. The
stability properties of the flow field, and its robustness to acoustic distur-
bances should be investigated. Finally, but most importantly, comparisons
with experiments should be made.
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