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Efficient BEM Stress Analysis of 3D Generally Anisotropic
Elastic Solids With Stress Concentrations and Cracks

Y.C. Shiah1, C.L. Tan2 and Y.H. Chen3

Abstract: The present authors have recently proposed an efficient, alternative ap-
proach to numerically evaluate the fundamental solution and its derivatives for 3D
general anisotropic elasticity. It is based on a double Fourier series representation
of the exact, explicit form of the Green’s function derived by Ting and Lee (1997).
This paper reports on the successful implementation of the fundamental solution
and its derivatives based on this Fourier series scheme in the boundary element
method (BEM) for 3D general anisotropic elastostatics. Some numerical examples
of stress concentration problems and a crack problem are presented to demonstrate
the veracity of the implementation. The results of the BEM analysis of these prob-
lems show excellent agreement with those obtained using the commercial finite
element code ANSYS and with known analytical solutions in all cases.

Keywords: Anisotropic elasticity, Green’s function, Fourier series, stress con-
centrations, fracture mechanics.

1 Introduction

The boundary element method (BEM) is well established as an efficient compu-
tational tool for three-dimensional (3D) linear elastic stress analysis of isotropic
bodies. It is, however, significantly less so for treating 3D generally anisotropic
elastic solids. The primary reason lies in the relatively slow progress made over the
years for an efficient means to numerically evaluate the fundamental solution (or
Green’s function) and its derivatives for this class of problems. These quantities are
necessary items in the development of the boundary integral equation (BIE) which
is the analytical basis of the BEM.
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The Green’s function, U(x), for a 3D anisotropic medium as first derived by Lifs-
chitz and Rosenzweig (1947) is expressed as a line integral around a unit circle with
the integrand containing the Christoffel matrix defined in terms of elastic constants.
Since then, there have been numerous efforts to reformulate it into simpler or more
explicit analytical forms, including those carried out in the context of BEM devel-
opment [see, e.g. Synge (1957); Barnett (1972); Nakamura and Tanuma (1997);
Wang (1997); Pan and Yuan (2000); Tonon and Pan (2001)]. In the pioneering
work of Wilson and Cruse (1978), a large database of the fundamental solution is
generated in advance for a given material from direct numerical computations of
the Lifschitz and Rozentsweig’s solution, and an interpolation scheme is used in
their BEM implementation. The efficiency and accuracy of this scheme have been
called into question for highly anisotropic materials and various other schemes to
this end have been proposed for use in BEM [see, e.g. Sales and Gray (1998); Phan
et al (2004); Wang and Denda (2007)].

Of significance to note here is that Ting and Lee (1997) have derived a fully alge-
braic, explicit form of the 3D anisotropic Green’s function, expressed in terms of
Stroh’s eigenvalues. Lee (2003, 2009) further showed how its derivatives could be
obtained; the complete explicit expressions for the derivatives for general anisotropy
were, however, derived and presented only by the present authors and their co-
workers in Shiah et al (2008) and Shiah et al (2010). They were also implemented
in Tan et al (2009) to analyse some benchmark problems by the BEM. Also, Shiah
and Tan (2011) have analytically derived the higher-order derivatives, expressed
as explicit closed-forms. In their attempts to develop less elaborate forms of this
U(x) and its derivatives to facilitate efficient numerical evaluation of these quan-
tities, the present lead authors have very recently [Shiah et al (2012a)] proposed
that advantage can be taken of the periodic nature of the spherical angles if U(x)
is expressed in spherical coordinates. This allows the Green’s function to be rep-
resented by a double Fourier series and its derivatives can also be obtained in a
straightforward manner by direct differentiation of the series. Not only are the re-
sulting formulations significantly more concise, a very important advantage is that
the evaluation of the coefficients of the Fourier series is performed only once, re-
gardless of the number of field points involved in the BEM analysis. This makes the
scheme very efficient indeed without any sacrifice in accuracy. To further enhance
the computational efficiency, the authors [Shiah et al (2012b) and Tan et al (2013)]
reformulated the scheme by organizing and simplifying the terms, and taking ad-
vantage of some of the characteristics of the Fourier series, so that less number of
terms needs to be summed. This has implications for the efficiency of the numeri-
cal algorithm in the BEM analysis, noting too that slightly more refined meshes are
typically needed when treating, for example, 3D stress concentration and cracked
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problems of anisotropic bodies than of isotropic ones. The reformulated Fourier
series scheme for U(x) and its derivatives have been implemented into an existing
BEM code for 3D general anisotropic elasticity. Some examples involving stress
concentrations and a crack problem is presented in this paper to demonstrate this
and the accuracy of the solutions obtained. Before this, a review of the approach is
in order.

2 BIE and fundamental solutions of 3D anisotropic elastic bodies

The boundary integral equation (BIE) that relates the displacements, ui, to the trac-
tions, ti, on the surface S of the domain can be expressed in indicial notation as

Ci j ui(P)+ ∫
S

ui(Q)Ti j(P,Q)dS = ∫
S

ti(Q)Ui j(P,Q)dS (1)

In Eq.(1), Ui j(P,Q)≡ U(x) and Ti j(P,Q) represent the fundamental solutions of
displacements and tractions, respectively, in the xi-direction at the field point Q
due to a unit load in the x j-direction at P in a homogeneous infinite body; also,
Ci j(P) depends on the geometry of the surface at P. The numerical evaluation of
U(x) for generally anisotropic materials proposed by Ting and Lee (1997) has been
discussed by Shiah et al (2008). Nevertheless, it is useful to first provide a brief
review.

With reference to Fig.1, let n and m be two mutually perpendicular unit vectors on
the oblique plane at Q normal to the position vector x; the vectors [n, m, x/r] forms
a right-angle triad.

By considering a spherical coordinate system as shown, the explicit form of the
Green’s function can be expressed as

U(x)=
1

4πr
1
|κκκ|

4

∑
n=0

qnΓ̂ΓΓ
(n)

, (2)

where r represents the radial distance between the source point P and the field point
Q; qn, Γ̂ΓΓ

(n)
, and κκκ are given by [Shiah et al (2008)]

qn=


−1

2β1β2β3

[
Re
{

3
∑

t=1

pn
t

(pt−p̄t+1)(pt−p̄t+2)

}
−δn2

]
f orn =0,1,2,

1
2β1β2β3

Re
{

3
∑

t=1

pn−2
t p̄t+1p̄t+2

(pt−p̄t+1)(pt−p̄t+2)

}
f orn =3, 4,

(3a)

Γ̂
(n)
ij = Γ̃

(n)
(i+1)( j+1)(i+2)( j+2)− Γ̃

(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1, 2, 3) (3b)

κik=Cijksmjms, m = (−sinθ , cosθ , 0) (3c)
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Figure 1: Vectors definitions in the spherical coordinate system.

In Eq.(3a), the Stroh eigenvalues, pi, are the roots of the sextic equation, obtained
by setting |κκκ| equal null and βi are the positive imaginary parts of pi; in Eq.(3b), Γ̃ΓΓ

are defined as follows:

Γ̃
(4)
pqrs = κpqκrs, Γ̃

(3)
pqrs = Vpqκrs+κpqVrs,

Γ̃
(2)
pqrs = κpqWrs+κrsWpq+VpqVrs,

Γ̃
(1)
pqrs = VpqWrs+VrsWpq, Γ̃

(0)
pqrs = WpqWrs,

(4)

where W, V are given by

Wik=Cijksnjns,Vik=(Cijks+Ckjis)njms (5)

In the above equations, Cijks are the stiffness coefficients of the anisotropic ma-
terial. It has already been shown [Shiah et al (2008); Tan et al (2009)] that the
direct computation of Eq.(2) for U(x) is relatively straightforward and very effi-
cient indeed. Lee (2003) and Shiah et al (2008) have also obtained the analytical
expressions for the derivatives of U(x). They are in terms of some very high order
tensors and although direct to evaluate, is found to be the best form for compu-
tations. This is re-examined by Lee (2009), who showed that the very high order
tensors can be avoided by differentiating U(x) with respect to spherical coordinates
as an intermediate step, separating the terms associated with the radial distance,
and then using the usual chain rule. This approached was followed in Shiah et al
(2010), where explicit expressions for the 1st and 2nd derivatives of U(x) in general



Efficient BEM Stress Analysis 247

anisotropy are obtained and implemented in the BEM. Although relatively more
efficient to compute, their implementation is somewhat tedious because of their
lengthy forms.

As an alternative approach for the numerical evaluation of U(x), the present au-
thors very recently [Shiah et al (2012a)] proposed a Fourier series representation of
U(x) and its derivatives in terms of the spherical coordinates. This scheme yields
significantly more concise expressions that can be easily implemented in BEM pro-
gramming and was shown to be computationally very much more efficient for the
evaluation of the Green’s function and its derivatives. The Green’s function can be
expressed in the spherical coordinates as

Uuv(r,θ ,φ) =
Huv(θ ,φ)

4πr
, (u, v = 1, 2, 3) (6)

By virtue of its periodical nature, one may further rewrite the Huv in Eq.(6) into a
Fourier series, viz.

Huv(θ ,φ) =
α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ), (7)

where α is an appropriately large integer for convergence of the series and the
unknown Fourier coefficients λ

(m,n)
uv are given by

λ
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Huv (θ ,φ) e−i(mθ+nφ)dθ dφ . (8)

Equation (8) can be numerically determined by, for example the Gaussian quadra-
ture scheme as follows,

λ
(m,n)
uv =

1
4

k

∑
p=1

k

∑
q=1

wpwq f (m,n)
uv (π ξp, π ξq) , (9)

where f (m,n)
uv represents the integrand in Eq.(8); k is the number of the Gauss ab-

scissa, ξp, and wp is the corresponding weight. It should be noted that the compu-
tation of the Fourier coefficients is performed only once, irrespective of the number
of nodes and elements in the BEM mesh; the CPU time for this evaluation is trivial
indeed in a complete BEM analysis. To reduce the number of terms truly required
in the series for the computations, Tan et al (2013) separated λ

(m,n)
uv into its real part

R(m,n)
uv and imaginary part I(m,n)

uv as follows,

λ
(m,n)
uv = R(m,n)

uv + i I(m,n)
uv . (10)
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and expressed the Green’s function as

Uuv =
1

2πr


α

∑
m=1

α

∑
n=1

 (
R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ

)
cosnφ

−
(

R̂(m,n)
uv sinmθ + Î(m,n)

uv cosmθ

)
sinnφ


+

α

∑
m=1

(
R(0,m)

uv cosmφ − I(0,m)
uv sinmφ

+R(m,0)
uv cosmθ − I(m,0)

uv sinmθ

)
+ R(0,0)

uv
2


, (11)

where R̃(m,n)
uv , R̂(m,n)

uv , Ĩ(m,n)
uv , and Î(m,n)

uv are given by

R̃(m,n)
uv = R(m,n)

uv +R(m,−n)
uv , R̂(m,n)

uv = R(m,n)
uv −R(m,−n)

uv ,

Ĩ(m,n)
uv = I(m,n)

uv + I(m,−n)
uv , Î(m,n)

uv = I(m,n)
uv − I(m,−n)

uv .
(12)

Since no operations of complex numbers are involved and the number of terms
in the series is minimized, the numerical computations are very efficient indeed.
The derivatives of Eq.(6) can be obtained in a straightforward manner by simply
differentiating the Fourier series of Uuv as follows,

Uuv,l =
∂Uuv

∂ r
∂ r
∂xl

+
∂Uuv

∂θ

∂θ

∂xl
+

∂Uuv

∂φ

∂φ

∂xl
. (13)

This can be shown [Tan et al (2013)] to result in the following form:

Uuv,l =
−1

2πr2 {ωl(θ ,φ)[
α

∑
m=1

α

∑
n=1

(Γ̄
(m,n)
uv (θ)cosnφ−Γ

(m,n)
uv (θ)sinnφ)

+
α

∑
m=1

(γm
uv(θ)+ γ

m
uv(φ))+

R(0,0)
uv

2

+ω
′
l(θ ,φ)[

α

∑
m=1

α

∑
n=1

m(Γ̃
(m,n)
uv (θ)cosnφ + Γ̂

(m,n)
uv (θ)sinnφ)+

α

∑
m=1

m · γ̃m
uv(θ)]

+ω
′′
l(θ ,φ)[

α

∑
m=1

α

∑
n=1

n(Γ(m,n)
uv (θ)sinnφ +Γ

(m,n)
uv (θ)cosnφ)+

α

∑
m=1

m · γ̂m
uv(φ)]}

(14)
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where

Γ
(m,n)
uv (θ) = R̃(m,n)

uv cosmθ − Ĩ(m,n)
uv sinmθ ,

Γ
(m,n)
uv (θ) = R̂(m,n)

uv sinmθ + Î(m,n)
uv cosmθ ,

Γ̃
(m,n)
uv (θ) = R̃(m,n)

uv sinmθ + Ĩ(m,n)
uv cosmθ ,

Γ̂
(m,n)
uv (θ) = R̂(m,n)

uv cosmθ − Î(m,n)
uv sinmθ ,

γ
m
uv(θ) = R(m,0)

uv cosmθ − I(m,0)
uv sinmθ ,

γ
m
uv(φ) = R(0,m)

uv cosmφ − I(0,m)
uv sinmφ ,

γ̃
m
uv(θ) = R(m,0)

uv sinmθ + I(m,0)
uv cosmθ ,

γ̂
m
uv(φ) = R(0,m)

uv sinmφ + I(0,m)
uv cosmφ ,

ωl(θ ,φ) = sinφ cosθ , ω
′
l (θ ,φ) =−sinθ/sinφ ,

ω
′′
l (θ ,φ) = cosφ cosθ for l = 1,

ωl(θ ,φ) = sinφ sinθ , ω
′
l (θ ,φ) = cosθ/sinφ ,

ω
′′
l (θ ,φ) = cosφ sinθ for l = 2,

ωl(θ ,φ) = cosφ , ω
′
l (θ ,φ) = 0,

ω
′′
l (θ ,φ) =− sinφ for l = 3.

(15)

Compared to the previous exact analytical forms, the above is even simpler to im-
plement into an existing BEM computer code. However, it should be noted that in
the above expressions, there is numerical singularity when φ=0 or π . This is due to
the multi-valued definition of θ when φ=0 or π . The details of this are discussed
in Tan et al (2013) and the problem may be easily resolved by re-definition of the
coordinates. Once the 1st-order derivatives of U(x) are computed, the fundamental
solution of tractions can be determined by

Ti j =Cikmn (Um j,n +Un j,m)Nk/2, (16)

where Nk denotes the components of the unit outward normal vector at the field
point. In a similar manner, the derivatives of higher orders may also be derived, but
they are not of concern for the study in this paper.

3 Numerical examples

In this section, three example cases are investigated for the study of stress con-
centrations and fracture by the Fourier series approach. For the present analyses,
the series number α=16 and 64 Gauss integration points for computing the Fourier
coefficients were used for all the three cases. More
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The first example, shown in Fig. 2, is a sphere containing a solid spherical rigid
inclusion (R2/R1=2). It is subjected to uniform hydrostatic tensile P on its outer
surface while the innner surface is fully constrained to the rigid inclusion. An
alpha-quartz single crystal is chosen as the material, whose stiffness coefficients,
denoted by C∗, are given by [Huntington (1958)]:

C∗ =



87.6 6.07 13.3 17.3 0.0 0.0
6.07 87.6 13.3 −17.3 0.0 0.0
13.3 13.3 106.8 0.0 0.0 0.0
17.3 −17.3 0.0 57.2 0.0 0.0
0.0 0.0 0.0 0.0 57.2 17.3
0.0 0.0 0.0 0.0 17.3 40.765

 GPa. (17)
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R2 

 

x1 

x2 

x3 

φ

θ

Figure 2: A sphere with a solid conclusion- Example 1

For demonstrating the capability of the approach in dealing with general anisotropy,
the material principal axes are arbitrarily rotated with respect to the x1-, x2- and
x3-axis by -20◦, 55◦, and 145◦, respectively, with positive rotation angles being
defines in the conterclockwise direction. This results in the material stiffness matrix
defined in the global Cartesian coordinates as

C =



102.22 10.90 −1.16 −3.39 −7.76 20.08
10.90 114.23 −4.39 13.87 −3.57 −11.79
−1.16 −4.39 120.20 −0.19 17.52 −0.01
−3.39 13.87 −0.19 37.77 2.88 −1.42
−7.76 −3.57 17.52 2.88 37.95 0.19
20.08 −11.79 −0.01 −1.42 0.19 52.12

 GPa. (18)



Efficient BEM Stress Analysis 251

For the BEM analysis, 240 quadratic isoparametric elements with 644 nodes were
employed. For verification, the problem was also analysed by ANSYS, using 61440
SOLID186 elements with 70092 nodes. Figure 3 shows the mesh discretisations of
the BEM full model and a partial (one-eighth) ANSYS FEM model for the sake of
clarity.

 
Figure 3: Mesh discretisations of the BEM and ANSYS- Example 1

The computed variations of the normalised hoop and meridional stress, σθθ /σ0 and
σφφ /σ0, at the inner and outer radius around the equator in the x1− x2 plane are
shown in Figure 4. It can be seen that the BEM results are in excellent agreement
with those obtained from the FEM analysis by ANSYS. As expected, the fluctua-
tions of the stress concentrations are more evident on the inner surface. Both analy-
ses were carried out and clocked on a PC-based computer equipped with quad-core
Intel CPU; the runs recorded 43.96 seconds and 27 minutes for the BEM and AN-
SYS operations, respectively.

The second example considered is an ellipsoidal cavity in a cylindrical bar, as
shown in Figure 5. Three values of the aspect ratio, R2/R1, as defined in the figure,
are considered, namely, 1.0, 2.0, and 3.0. The radius of the cylindrical bar R0=10R1
is taken and its length is 2R0. The bar is subjected to axial tension σ0 at one end and
is fully constrained at the other. The same material properties as in the previous ex-
ample are used again for the analysis. Also shown in Fig.5 is the BEM full model,
where 216 quadratic elements were employed. For verification, the problem was
also analysed by ANSYS, using 216934 SOLID187 elements.

Due to the relatively large dimension of the cylinder as compared with the size of
the ellipsoid, this case actually approximates an infinite anisotropic domain with
an ellipsoidal cavity when it is subjected to a remote uniaxial tension. The vari-
ations of calculated stress concentration factor (SCF), defined by σ33/σ0, around
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Figure 4: Normalized hoop stresses along the equator on the x1− x2 plane
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Figure 5: An ellipsoidal cavity in a cylinder subjected to uniaxial tension- Example
2

the surface of the ellipsoidal cavity at x3=0 are shown in Fig.6, where again, excel-
lent agreement between the two sets of results from the BEM and FEM analyses
is achieved. The cpu times recorded for the BEM and ANSY analysis were 32.65
seconds and 26 minutes, respectively.

The last example treated here is a penny-shaped crack in an infinite transversely
isotropic medium; it is a special case of anisotropy. It has also been has been stud-
ied using BEM by Tan el al (2010), and the exact solutions for the stress intensity
factors (SIFs) under different load conditions are available. More fracture prob-
lems treating cracks with different degrees of complexity can be referred to Dong
and Atluri (2013a, 2013b), where the SGBEM-FEM alternating method was em-
ployed. For the material of the present problem, a graphite-epoxy composite with
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Figure 6: Stress concentration on the equator surface of the ellipsoid

the following stiffness coefficients [Saez et al (1997)] is considered:

C11 = 13.92 MPa, C12 = 6.92 MPa, C13 = 6.44 MPa,
C33 = 160.7 MPa, C44 = 7.07 MPa.

(19)

Two load cases are treated, namely, (i) remote uniform tension of σ33 = σo and (ii)
remote shear stress σ23= τo, applied at the top and bottom faces of the cube mod-
elled. For the BEM analysis, the body is modelled as a cube with side lengths ten
times the diameter, 2a, of the crack which lies on the mid-plane; this is shown in
Fig.7. Although advantage can be taken of the planes of symmetry, the full prob-
lem was modelled as the mesh will be used for more general case of loading and
anisotropy in other studies. Special O(r−1/2) traction-singular crack-front elements
are employed and the SIFs are obtained using the computed traction coefficients
at the crack-front nodes using the well-established “traction-formula” [Luichi and
Rizzuti (1987)], as follows:

(KI)A = (t∗3)A
√

πl , (KII)A = (t∗1)A
√

πl , (KIII)A = (t∗2)A
√

πl , (20)

In Eq.(20), (t∗i )A are the traction coefficients computed at the crack-front node A of
the traction-singular element and l is the width of this element. The width of the
crack-front element for this case was set to bel/a = 0.15.

For case (i), the exact solution for the normalized stress intensity factor, KI/σo
√

πa,
is 0.637. The BEM result computed using the traction formula is 0.638, with an
error less than 1%. For load case (ii), the exact normalized SIFs for the material
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exterior surface sub-region interface 
Figure 7: BEM mesh for Example 3; 216 elements, 604 nodes

Table 1: Computed normalised SIFs at various angular positions for Example 3

θ (Deg.)
KII/τo

√
πa KIII/τo

√
πa

Exact BEM |Error %| Exact BEM |Error %|
0 0.0000 0.0000 N/A 0.4617 0.4566 1.10
15 0.2100 0.2097 0.03 0.4459 0.4422 0.83
30 0.4057 0.4042 0.15 0.3999 0.3954 1.12
45 0.5738 0.5740 0.02 0.3264 0.3237 0.83
60 0.7016 0.7004 0.17 0.2309 0.2284 1.08
75 0.7838 0.7842 0.05 0.1194 0.1185 0.75
90 0.8115 0.8087 0.35 0.0000 0.0000 N/A

properties used in the analysis are [KII/τo
√

πa = 0.8115 sin θ , KIII/τo
√

πa =
0.4617 cos θ ]; the angle θ here is the angular position measured from the x1-axis.
Table 1 lists all computed SIFs of case (ii) for various angular positions

It can be seen that the SIFs calculated by the BEM using the Fourier approach agree
with the exact solutions with the maximum error of 1.12%.

4 Conclusions

The efficient evaluation of the fundamental solutions is critical to the success of the
BEM as a numerical tool for treating three-dimensional generally anisotropic bod-
ies. Very recently, the lead authors (2012) presented an efficient scheme to compute
the fundamental solutions, where the Green’s function and its derivatives are repre-
sented by a Fourier series; a modification to the scheme was also very recently [Tan
et al (2013)] developed to reduce the number of calculations required in the series
summation. This revised Fourier series scheme for the evaluation of the Green’s
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function has been implemented into a BEM code for three-dimensional anisotropic
elasticity. The success of this implementation has been demonstrated in this paper
by two examples in stress concentrations where the results are compared with those
obtained by FEM. Excellent agreement of the results have been obtained while re-
quiring significantly less computational effort. A fracture problem has also been
presented and the BEM results when compared with the exact analytical solutions
again showed very good agreement indeed.
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