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DRBEM Solution of Incompressible MHD Flow with
Magnetic Potential

B. Pekmen1,2, M. Tezer-Sezgin2,3

Abstract: The dual reciprocity boundary element method (DRBEM) formula-
tion is presented for solving incompressible magnetohydrodynamic (MHD) flow
equations. The combination of Navier-Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetics through Ohm’s law is considered in terms
of stream function, vorticity and magnetic potential in 2D. The velocity field and
the induced magnetic field can be determined through the relations with stream
function and magnetic potential, respectively. The numerical results are visual-
ized for several values of Reynolds (Re), Hartmann (Ha) and magnetic Reynolds
number (Rem) in a lid-driven cavity, and in a channel with a square cylinder. The
well-known characteristics of the fluid flow and MHD flow are exhibited. These
are the shift of the core region of the flow and the development of the main vortex
in the vorticity through the center of the cavity as Re increases. An increase in Ha
causes Hartmann layers for the flow at the bottom and top walls. Higher values of
Rem result in circulation of the magnetic potential at the center of the cavity. An
increase in Re causes symmetric vortices behind the cylinder to elongate through
the channel, and an increase in Hartmann number suppresses this elongation.

Keywords: MHD, DRBEM, lid-driven cavity, flow over a cylinder.

1 Introduction

Magnetohydrodynamics (MHD) is a branch of science dealing with the interaction
between the electrically conducting fluids and electromagnetic forces. MHD has
crucial applications such as MHD generators, plasma confinement, fusion reactors,
and designing cooling systems with liquid metals.

The lid-driven cavity flow is chosen as benchmark problem in most of the stud-
ies. It has extensive applications in the environmental fluid mechanics. Some of
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the studies for the solution of Navier-Stokes (NS) equations may be mentioned
as follows. The oldest and the most famous study utilizing the implicit multigrid
method is the work by Ghia, Ghia, and Shin (1982). Wu and Shao (2004) simulated
the incompressible lid-driven cavity flow using parallel lattice Boltzmann method
with multi-relaxation time scheme. Ghadi, Ruas, and Wakrim (2008) solved the NS
equations in terms of stream function-vorticity using piecewise linear finite element
method (FEM). As a test problem, Tsai, Young, and Hsiang (2011) applied the lo-
calized differential quadrature method to the lid-driven cavity flow with various
Reynolds numbers.

A vast amount of numerical approaches are also carried out on the combination of
NS and Maxwell’s equations in rectangular ducts. In Sterl (1990), a fast Poisson
solver is used to visualize the MHD flow in ducts. Boundary element method de-
riving a fundamental solution for the convection-diffusion type equations is applied
to steady MHD duct flow under the effect of an oblique magnetic field in Bozkaya
and Tezer-Sezgin (2007). The coupled equations in terms of velocity and magnetic
field for unsteady MHD flow through a rectangular pipe is also solved by finite
volume spectral element method in Shakeri and Dehghan (2011).

Incompressible MHD flow studies have also gained much importance in the last
decade. For the governing equations of this problem, Armero and Simo (1996)
analyzed the long-term dissipativity and unconditional non-linear stability of time
scheme algorithms using the Galerkin mixed FEM. A stabilized FEM application
is examined in 3D incompressible MHD by Salah, Soulaimani, Habashi, and Fortin
(1999). Kang and Keyes (2008) compared the approaches, which are stream func-
tion formulation and a hybrid formulation with velocity and magnetic field compo-
nents, using FEM with an implicit time scheme. Considering the magnetic pressure
as a new unknown, Codina and Silva (2006) also employed a stabilized FEM to
solve the incompressible MHD flow problem. In 2D, stabilized FEM with different
stabilization techniques are applied to solve the incompressible MHD equations
in Gerbeau (2000), and in Aydin, Neslitürk, and Tezer-Sezgin (2010). Bozkaya
and Tezer-Sezgin (2011) utilized DRBEM for the solution of incompressible MHD
equations for Hartmann number values up to 100.

Navier-Stokes equations are also solved in a channel including a square cylinder as
a test problem. The flow around an obstacle (circular/rectangular) in a channel has
become a prominent physical problem due to its various applications in engineering
such as building aerodynamics, flow meters, electronic cooling, heat exchange sys-
tems. An old, experimental and numerical investigation for flow past a rectangular
cylinder is analyzed in Davis, Moore, and Purtell (1984). In the following year,
Yoshida and Nomura (1985) solved the same test problem using FEM adopting a
unique direct time integration. Mukhopadhyay, Biswas, and Sundararajan (1992)
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also investigated the confined wakes behind a square cylinder in a channel dividing
the domain into Cartesian cells and using staggered grids. Later, Breuer, Berns-
dorf, Zeiser, and Durst (2000) used two different numerical schemes which are
lattice-Boltzmann and finite volume method (FVM) to ensure the reliability of the
computations for the flow around a square cylinder. RamŠak, Škerget, Hriberšek,
and Žunič (2005) concentrated on a subdomain BEM technique with linear mixed
elements applying it to the flow past a cylinder as a test problem. Zhang and Zhang
(2012) used the numerical manifold method based on Galerkin-weighted residuals
method for the solution of the incompressible flow over a square cylinder with low
Reynolds numbers. A parallel DRBEM solution to thermoelasticity and thermovis-
coelasticity problems is proposed in the study of Koyuncu, Ikikat, Icoz, Baranoglu,
and Yazici (2012).

In this study, incompressible MHD flow equations are solved numerically using
DRBEM. The non-dimensional governing equations in terms of stream function,
magnetic potential and vorticity provide one to satisfy the divergence free condi-
tions of velocity and induced magnetic field. DRBEM is a computationally cheap
method with respect to other domain discretization methods due to its boundary
only nature. Further, the space derivatives in convection or reaction terms and the
unknown boundary conditions of vorticity may be easily calculated by the DRBEM
coordinate matrix. Famous benchmark problems as lid-driven cavity flow and flow
past a square cylinder are chosen as test problems. Effects of the variations of the
problem parameters on the flow and magnetic potential are shown graphically.

2 Mathematical Basis

The two-dimensional, laminar, incompressible MHD flow in terms of magnetic
potential is considered. The fluid is viscous and electrically conducting. The dis-
placement and convection currents, and Hall effect are neglected.

MHD equations are a combination of Navier-Stokes and Maxwell’s equations of
fluid dynamics and electrodynamics, respectively. With the interaction of the ex-
ternal magnetic field and electrically conducting fluid, an induced current B inside
the fluid is generated.

Continuity and momentum equations for an incompressible and electrically con-
ducting fluid are [Davidson (2001)]

∇.u = 0 (1)

ν∇
2u =

∂u
∂ t

+u(∇.u)+
1
ρ0

∇P−J×B, (2)

where u is the velocity field, ν is the kinematic viscosity, P is the pressure, ρ0 is
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the reference density, B = (Bx,By) is the magnetic field and J is the current density.
The last term is the Lorentz force due to the externally applied magnetic field.

Substituting the Ampere’s law (∇×B = µmJ) instead of the current density J in the
Lorentz force term, the momentum equations for each velocity component may be
written explicitly as

ν∇
2u =

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+
1
ρ0

∂P
∂x

+
By

ρ0µm

(
∂By

∂x
− ∂Bx

∂y

)
(3)

ν∇
2v =

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+
1
ρ0

∂P
∂y
− Bx

ρ0µm

(
∂By

∂x
− ∂Bx

∂y

)
, (4)

where µm is the magnetic permeability of the fluid.

Once the curl of both sides of Ampere’s Law (∇×B = µmJ) and Ohm’s Law
(J = σ (E+u×B)) are taken using the identity ∇× (∇×B) = ∇(∇.B)−∇2B,
the following magnetic field relation is derived as

− 1
µm

∇
2B = σ(∇×E+∇× (u×B)). (5)

Using the Faraday’s Law (∇×E=−∂B/∂ t) in this relation, the magnetic induction
equations for each components may be written as

1
σ µm

∇
2Bx =

∂Bx

∂ t
+u

∂Bx

∂x
+ v

∂Bx

∂y
−Bx

∂u
∂x
−By

∂u
∂y

(6)

1
σ µm

∇
2By =

∂By

∂ t
+u

∂By

∂x
+ v

∂By

∂y
−Bx

∂v
∂x
−By

∂v
∂y

, (7)

where σ is the electrical conductivity of the fluid.

In order to satisfy the continuity condition ∇.u = 0 and the solenoidal nature of
∇.B = 0, the two-dimensional stream function ψ and magnetic potential A are de-
fined as

u =
∂ψ

∂y
, v =−∂ψ

∂x
(8)

Bx =
∂A
∂y

, By =−
∂A
∂x

. (9)

Substitution of Eq. (8) into the definition of vorticity w = ∂v/∂x−∂u/∂y gives the
stream function equation as ∇2ψ =−w. Furthermore, the vorticity transport equa-
tion is obtained by differentiating Eq.(4) with respect to x, and Eq.(3) with respect
to y, and subtracting from each other utilizing the continuity condition ∇.u = 0
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while pressure terms are eliminated. Using Eq. (9) and ∇.B = 0 in either one of the
equations (6) or (7), the magnetic potential equation is obtained as

1
σ µm

∇
2A =

∂A
∂ t

+u
∂A
∂x

+ v
∂A
∂y

. (10)

For the nondimensionalization of the equations, the dimensionless variables are
defined as

x′ =
x
L
, y′ =

y
L
, u′ =

u
U0

, v′ =
v

U0
, t ′ =

tU0

L
(11a)

w′ =
wL
U0

, ψ
′ =

ψ

UL
, A′ =

A
B0L

, B′x =
Bx

B0
, B′y =

By

B0
, (11b)

where L is the characteristic length, U0 is the characteristic velocity, B0 is the mag-
nitude of the externally applied magnetic field and t is the time. These dimen-
sionless variables are used in the stream function, vorticity transport and magnetic
potential equations, and then the prime notation is dropped. Thus, the nondimen-
sional governing equations in terms of stream function ψ , vorticity w, and magnetic
potential A are

∇
2
ψ =−w (12a)

1
Rem

∇
2A =

∂A
∂ t

+u
∂A
∂x

+ v
∂A
∂y

(12b)

1
Re

∇
2w =

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

(12c)

− Ha2

ReRem

[
Bx

∂

∂x

(
∂By

∂x
− ∂Bx

∂y

)
+By

∂

∂y

(
∂By

∂x
− ∂Bx

∂y

)]
,

where the dimensionless parameters are the Reynolds number Re = UL/ν , the
magnetic Reynolds number Rem =ULσ µm, and the Hartmann number Ha =
B0L
√

σ/µ .

3 DRBEM Application

DRBEM treats all the terms apart from the Laplacian (including nonlinearities)
as inhomogeneities, which makes possible to use fundamental solution of Laplace
equation. The key idea is to transform all the domain integrals to the corresponding
boundary integrals utilizing an approximation (formed by radial basis functions)
for inhomogeneities, and a relation between particular solution of Laplace equation
and the radial basis functions.
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Eqs.(12) are rewritten first as coupled Poisson equations

∇
2
ψ = b1(w)

∇
2A = b2(x,y, t,u,v,Ax,Ay,At) (13)

∇
2w = b3(x,y, t,u,v,wx,wy,wt ,Bx,By).

In DRBEM, an approximation for the source term b (here b1,b2 or b3) is proposed
as Partridge, Brebbia, and Wrobel (1992)

bi ≈
N+L

∑
j=1

α j fi j (14)

where N is the number of boundary nodes, L is the number of internal collocation
points, α j’s are sets of initially unknown coefficients, and the fi j’s are approximat-
ing functions which depend on radial distance ri j =

√
(xi− x j)2 +(yi− y j)2, i, j =

1,2, . . . ,N+L in which i and j correspond to the source(fixed) and the field(variable)
points, respectively.

For each source node i, the following integral equation is obtained by applying
DRBEM [Partridge, Brebbia, and Wrobel (1992)]

ciϕi+
∫

Γ

ϕ
∂u∗

∂n
dΓ−

∫
Γ

∂ϕ

∂n
u∗dΓ=

N+L

∑
j=1

α j

(
ciûi j +

∫
Γ

û j
∂u∗

∂n
dΓ−

∫
Γ

q̂ ju∗dΓ

)
(15)

where ϕ denotes either ψ,A or w, u∗ = 1
2π

ln
(1

r

)
is the fundamental solution of

Laplace equation, ci = 0.5 if the boundary Γ is a straight line, and ci = 1 when node
i is inside. The relation between the particular solution û j and the approximating
function f j (for axi-symmetric case) is

1
r

∂

∂ r

(
r

∂ ûi j

∂ r

)
= ∇

2ûi j = fi j, i, j = 1,2, . . . ,N +L. (16)

Matrix-vector equations resulting from the discretization of these boundary inte-
grals using linear boundary elements corresponding to stream function, magnetic
potential and vorticity equations may be expressed as

Hϕ−Gϕq =
(
HÛ−GQ̂

)
α, (17)

where H and G are BEM matrices containing the boundary integrals of u∗ and
q∗ = ∂u∗/∂n evaluated at the nodes, respectively, the vectors ϕq = ∂ϕ/∂n contain
the known and unknown information at the nodes about normal derivatives of ψ,A
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or w. Û and Q̂ are constructed from û j and then q̂ j = ∂ û j/∂n columnwise, and are
matrices of size (N +L)× (N +L). The vector α is deduced from the Eq.(14) as
α = F−1b, where F is the (N +L)× (N +L) coordinate matrix containing radial
basis functions f j’s as columns evaluated at N +L points.

By using coordinate matrix F for evaluating the space derivatives in b and the
backward-Euler formula for the time derivatives, the iteration with respect to time
is carried between the system of equations for ψ,A and w as

Hψ
m+1−Gψ

m+1
q =−Swm (18)

um+1 = Dyψ
m+1, vm+1 =−Dxψ

m+1 (19)(
H− Rem

∆t
S−RemSM

)
Am+1−GAm+1

q =−Rem
∆t

SAm (20)

Bm+1
x = DyAm+1, Bm+1

y =−DxAm+1 (21)(
H− Re

∆t
S−ReSM

)
wm+1−Gwm+1

q =−Re
∆t

Swm (22)

− Ha2

Rem
S
[
{Bx}m+1

d Dxξ +{By}m+1
d Dyξ

]
where

S =
(

HÛ−GQ̂
)

F−1, Dx =
∂F
∂x

F−1, Dy =
∂F
∂y

F−1

M = {u}m+1
d Dx +{v}m+1

d Dy, ξ =
(
DxBm+1

y −DyBm+1
x
)
,

and {u}d ,{v}d ,{Bx}d ,{By}d enter into the system as diagonal matrices of size (N+
L)× (N +L). Once the shuffling of known and unknown nodal values is done, the
reduced systems of the form Cx = b are solved by Gaussian elimination with partial
pivoting.

Initially, w0 and A0 are taken as zero everywhere except on the boundary. Stream
function Eq. (18) is solved using m-th time level values of vorticity w. The veloc-
ity components are computed by Eq. (19), and then their boundary conditions are
inserted. The magnetic potential at (m+ 1)-th time level is found using Eq. (20).
Then, the induced magnetic field components are obtained by Eq. (21), and the in-
sertion of their boundary conditions is carried out. Vorticity boundary conditions
are found by using the definition of vorticity with the help of coordinate matrix F

w = ∇×u = Dxv−Dyu =
∂F
∂x

F−1v− ∂F
∂y

F−1u. (23)

Using these boundary conditions for w, vorticity equation (22) is solved at (m+1)-
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th time level. Iteration continues in this way until the criterion∥∥ψm+1−ψm
∥∥

∞

‖ψm+1‖
∞

+

∥∥Am+1−Am
∥∥

∞

‖Am+1‖
∞

+

∥∥wm+1−wm
∥∥

∞

‖wm+1‖
∞

< ε (24)

is satisfied where ε = 1e−4 is the tolerance for the steady-state solution ψ, A and
w, respectively. Transient level solution can also be obtained at any time value
tm = m∆t.

4 Numerical Results

In the computations, the radial basis functions are chosen as f = 1+ r. Further,
16−point Gaussian quadrature is used for the integrals in H and G matrices. In
order to validate the present method, the |ψmin| values for an incompressible flow in
a lid-driven cavity are given in Tab. 1. As can be seen, the results using considerably
small number of grid points are in good agreement with the results in Ghia, Ghia,
and Shin (1982).

Table 1: |ψmin| values of streamlines of Navier-Stokes flow in a lid-driven cavity.
Present Ghia, Ghia, and Shin (1982)

Re Mesh pts. |ψmin| Mesh pts. |ψmin|
100 17×17 0.1034 129×129 0.1034
400 41×41 0.1135 257×257 0.1139
1000 55×55 0.1140 129×129 0.1179

4.1 Case 1. Lid-Driven Cavity Flow

The electrically conducting fluid is moving down the channel with a pressure gra-
dient and an imposed magnetic fields is in the +y-direction which is also perpen-
dicular to the axis of the channel (z-axis). The flow is fully developed, thus the
cross-section of the channel is taken as the domain of the problem (lid-driven cav-
ity).

The problem geometry is given in Fig. 1. Stream function and velocity component v
are all zero on the walls, and the top wall is moving with a velocity u = 1. Magnetic
potential is A = −x+ k on the walls due to the y-component of external magnetic
field B0 = (0,1), and the constant k is taken as zero similar to the stream function on
the boundary. In general, 120 linear boundary elements and 841 interior points are
used for this case. Since implicit time integration scheme is used, time increment
∆t can be taken not too small.
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Figure 1: Configuration of the Lid-Driven Cavity Flow.
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Figure 2: Rem = 100, Ha = 10, ∆t = 0.25.
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Figure 3: Re = 100, Ha = 10, ∆t = 0.1.

The center of streamlines which is in the direction of moving lid for small Re num-
bers shifts through the center of the cavity forming new eddies at the lower corners
of the cavity as Re increases. The circulation of vorticity is pronounced for large
values of Re. These are the expected behaviors for a lid-driven cavity MHD flow
for fixed Rem and Ha as can be seen from Fig.2. Magnetic potential lines are not
affected much with the variation of Re.

The variation in magnetic Reynolds number causes the magnetic potential lines to
circulate inside the cavity due to the dominance of convection terms in magnetic
potential equation as Rem gets larger. Not much alteration occurs in streamlines
and vorticity (Fig.3).

Vorticity becomes stagnant at the center clustering through the walls as Ha in-
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creases (Fig.4). Thin boundary layers (side layers) and Hartmann layers, respec-
tively, on perpendicular and parallel walls to the direction of B0, are well observed
with an increase in Ha in streamlines. Magnetic potential lines become perpen-
dicular to the top and bottom walls pointing to the decrease in convection terms of
magnetic potential equation due to the decrease in velocities, and also, they obey
the direction of the externally applied magnetic field as Ha increases. Since the re-
action term dominates in vorticity transport equation for large value of Ha = 100,
a relaxation parameter 0 < γ = 0.1 < 1 is used as wm+1 = γwm+1 +(1− γ)wm to
accelerate the convergence of vorticity.

Magnetic PotentialVorticity
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 5

Streamlines

H
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=
 5

0
H

a 
=

 1
00

Figure 4: Re = Rem = 100, ∆t = 0.5,0.2,0.1, for Ha = 5,50,100.

The magnitude of the velocity of the fluid decreases due to the retarding effect of
Lorentz force in the presence of high magnetic field intensity B0. This is confirmed
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by the centerline velocity components as Ha increases in Fig.5. This is the well-
known flattening tendency of the MHD flow [Shercliff (1965)].
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Figure 6: Configuration of the MHD flow past a square cylinder.

4.2 Case 2. Flow over a Square Cylinder

In this case, the MHD flow around a square cylinder confined in a channel between
parallel walls is considered. The inlet velocity profile is uniform, and the flow in
the far field is also assumed to be a uniform flow (u = 1). The behaviors of the
flow and magnetic potential are investigated around the square cylinder under the
influence of an externally applied magnetic field which is in +y-direction.
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Figure 7: Streamlines at steady-state, Rem = 10, Ha = 5.

The problem configuration is given in Fig. 6. The boundary conditions which are
also seen on the figure may be written as follows. At the inlet ψ = y− 0.5, w =
0, u = 1, v = 0, A = 0; at the exit ∂ψ/∂n = 0, ∂w/∂n = 0, A =−4; on the square
cylinder u = v = ψ = 0, A = −x, the distance of the left bottom corner of the
square cylinder to both the inlet and the bottom wall is 0.25, and ls = 0.5. In the
computations, N = 280 boundary elements with L = 1380 interior points are used.

In Figures 7, 8 and 9, streamline variations with respect to Reynolds and Hartmann
numbers, and magnetic potential variation with respect to magnetic Reynolds num-
ber are illustrated, respectively. With the increase in Re (Fig. 7), symmetric vortices
emerge behind the cylinder, and they elongate through +x-direction. The increase
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in Hartmann number suppress this elongation of vortices behind the cylinder as is
seen in Fig. 8. As expected, magnetic potential lines are perturbed in +x-direction
as Rem is increased since external magnetic field is perpendicular to the channel
walls where the boundary layers start to develop (Fig. 9).
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Figure 8: Streamlines at steady-state, Re = 100, Rem = 10.
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Figure 9: Magnetic potential lines at steady-state, Re = 100, Ha = 5.
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Figure 10: Streamlines at transient levels, Re = 300, Rem = 10, Ha = 5.

In Figs. 10-11, the vortex changes in the streamlines behind the square cylinder at
transient levels are reported. As can be seen, the symmetric vortices are shrunk and
a periodic behavior of the flow is observed as time passes. As the fluid move away
behind the square cylinder, the periodic behavior diminishes and the flow becomes
uniform at the exit of the channel. This may be due to the uniform flow field on the
channel walls.

5 Conclusion

This study presents the DRBEM solution of incompressible MHD flow in terms
of stream function, magnetic potential and vorticity satisfying the divergence free
conditions for the velocity and induced magnetic field. The results are visualized
as contour maps with respect to varying dimensionless parameters Reynolds, Hart-
mann and magnetic Reynolds numbers. In lid-driven cavity flow, the increase in
Hartmann numbers forms boundary layers through the top and bottom walls, and
slows down the fluid motion. Further, magnetic potential lines are enforced to take
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Figure 11: Streamlines at transient levels, Re = 300, Rem = 10, Ha = 5.

the direction of the applied magnetic field as the intensity of external magnetic
field is increased. In flow past a square cylinder, even though the vortices behind
the cylinder elongate with the increase in Re, the retarding effect of Lorentz force
causes the symmetric vortices to become smaller, and almost disappear behind the
cylinder. Magnetic Reynolds number affects only the magnetic potential lines in
both of the test problems.
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