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Fuzzy Analysis of Structures with Imprecisely Defined
Properties

Diptiranjan Behera1 and Snehashish Chakraverty2

Abstract: This paper targets to analyse the static response of structures with
fuzzy parameters using fuzzy finite element method. Here the material, geomet-
rical properties and external load applied to the structures are taken as uncertain.
Uncertainties presents in the parameters are modelled through convex normalised
fuzzy sets. Fuzzy finite element method converts the problem into fuzzy or fully
fuzzy system of linear equations for static analysis. As such here, two new methods
are proposed to solve the fuzzy and fully fuzzy system of linear equations. Numer-
ical examples for structures with uncertain system parameters that are in term of
triangular fuzzy number are presented to illustrate the computational aspects of the
proposed methods. The results obtained are depicted in term of plots.

Keywords: Stepped bar, beam, triangular fuzzy number, fuzzy system of linear
equations, fuzzy finite element method.

1 Introduction

In the last few decades for various scientific and engineering problems finite ele-
ment method has become a more powerful tool for solving the complex systems. In
this method the complicated structures/domains are discretized into small finite el-
ements, giving the element wise behavior. Assembling together for all the elements
and applying the respective conditions, it gives the output. The system parameters
involved in the traditional finite element method such as mass, geometry, material
properties, external loads, or boundary conditions are considered as crisp or defined
exactly. But, rather than the particular value we may have only the vague, impre-
cise and incomplete information about the variables and parameters being a result
of errors in measurement, observations, experiment, applying different operating
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conditions or it may be maintenance induced error, etc. which are uncertain in na-
ture. Basically these uncertainties can be modeled through probabilistic approach,
interval analysis and fuzzy theory.

In probabilistic practice, the variables of uncertain nature are assumed as random
variables with joint probability density functions. If the structural parameters and
the external load are modeled as random variables with known probability density
functions, the response of the structure can be predicted using the theory of prob-
ability and stochastic processes in Elishakoff (1983). Also the probabilistic con-
cept is already well established for the extension of the deterministic finite element
method towards uncertain assessment. This has led to a number of probabilistic and
stochastic finite element procedures [Holder and Mohadevan (2000); Antonio and
Hoff Bauer (2010)]. Unfortunately, probabilistic methods are not able to deliver
reliable results at the required precision without sufficient experimental data. It
may be due to the probability density functions involved in it. As such in the recent
decades, interval analysis and fuzzy theory are becoming powerful tools for many
real life applications. In these approaches, the uncertain variables and parameters
are represented by interval and fuzzy numbers, vectors or matrices.

Various aspects of interval analysis along with applications are explained by Moore
(1979). If only incomplete information is available, it is possible to establish the
minimum and maximum favorable response of the structures using interval anal-
ysis or convex models [Ben-Haim and Elishakoff (1990); Ganzerli and Pantelides
(2000)]. Moreover structural analysis with interval parameters using interval based
approach has been studied by various authors [Rao and Berke (1997); Muhanna
and Mullen (2001); Qui et al. (2006)].

Fuzzy set theoretical concept was developed by Zadeh (1965) which is further used
in the uncertain analysis of structures in a wide range. As discussed above, if
the structural parameters and the external loads are described in imprecise terms,
then fuzzy theory can be applied. As such Behera and Chakraverty (2013a)
proposed a solution method to study the uncertain behavior of an electric cir-
cuit. Fuzzy diferential equations are solved by [Fatullayev and Köroglu (2012);
Tapaswini and Chakraverty (2012); Tapaswini and Chakraverty (2013a); Tapaswini
and Chakraverty (2013b)]. Valliappan and Pham (1995) used fuzzy logic for the
numerical modeling of engineering problems. An optimization algorithm is devel-
oped by Munck et al. (2008) for fuzzy properties based on response surface for
the calculation of fuzzy envelope and fuzzy response functions of models. Fuzzy
structural analysis using α−level optimization is excellently studied by [Moller et
al. (2000)]. The transformation method has been applied for the simulation and
analysis of systems with uncertain parameters by Hanss (2002). Also an impor-
tant book is written by Hanss (2005) in which applications of fuzzy arithmetic into
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engineering problems are described. Fuzzy behavior of mechanical systems with
uncertain boundary conditions is investigated by Chekri et al. (2000). Nonlinear
membership function for fuzzy optimization of mechanical and structural systems
is discussed in Dhingra et al. (1992). When the Finite Element Method (FEM)
is described with fuzzy theory it is then known as Fuzzy Finite Element Method
(FFEM).

Recently various generalized model of uncertainty have been applied to finite el-
ement method to solve the structural problems with fuzzy parameters. Although
FEM for structural problems [Zienkiewicz (1979)] is well known and there exits
large number of papers related to this. As such few papers that are related to fuzzy
FEM are discussed here. Fuzzy finite element approach is applied to describe struc-
tural systems with imprecisely defined parameters in an excellent way by Rao and
Sawyer (1995). Verhaeghe et al. (2010) discussed the fuzzy finite element analysis
technique to describe the static analysis of structures which is based on interval
computation. Both fuzzy static and dynamic analysis of structures is explained
by Akpan et al. (2001a) using fuzzy finite element approach. Vertex method and
VAST software is used in it for the fuzzy finite element analysis. Also Akpan, et
al. (2001b) derived fuzzy finite element method for smart structures. Fuzzy finite
element method is formulated by Muhanna and Mullen (1999) for mechanics prob-
lems. Hanss and Willner (2000) used fuzzy arithmetical approach for the solution
of finite element problems with fuzzy parameters. Very recently [Balu and Rao
(2011a); Balu and Rao (2011b)] investigated the structural problems with fuzzy
parameters. They have used an interesting approach viz. High Dimensional Model
Representation (HDMR) along with FEM is for the analysis. Also Balu and Rao
(2012) explained both static and dynamic responses of structures using FFEM with
HDMR.

The design and analysis of many engineering problems require the solution of linear
systems of equations. For example, the finite element formulation of equilibrium
and steady state problems lead to a set of simultaneous algebraic linear equations.
Accordingly FFEM converts the problem to a Fuzzy System of Linear Equations
(FSLE) [Friedman et al. (1998); Guo and Gong (2010); Behera and Chakraverty
(2012); Chakraverty and Behera (2013); Amrahov and Askerzade (2011); Be-
hera and Chakraverty (2013d)] or Fully Fuzzy System of Linear Equations (FF-
SLE) [Senthilkumar and Rajendran (2011); Dehghan and Hashemi (2006); Das
and Chakraverty (2012)] for the static analysis of structural problems. There is a
difference between fuzzy linear system and fully fuzzy linear system. The coef-
ficient matrix is treated as crisp in the fuzzy linear system, but in the fully fuzzy
linear system all the parameters and variables are considered to be fuzzy numbers.
Various solution methods have been proposed for the solution of FFSLE by Skalna
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et al. (2008) and applied in structural mechanics problems. Behera et al. (2011)
developed a method to find finite element solution of a stepped rectangular bar in
presence of fuzziness in material properties. Recently [Behera and Chakraverty
(2013b), Behera and Chakraverty (2013c)] studied the uncertain static behavior of
structures using fuzzy finite element method when applied forces are considered as
fuzzy.

As such it is an important issue to develop mathematical models and numerical
techniques that would appropriately treat the general fuzzy or fully fuzzy linear
systems because subtraction and division of fuzzy numbers are not the inverse op-
erations of addition and multiplication respectively. So, this is an important area of
research in the recent years. This paper targets to propose new methods for fuzzy
and fully fuzzy system of linear equations and applied those methods to the analy-
sis of structural problems using FFEM. In the following sections first preliminaries
is discussed. Then, solution methods are explained for fuzzy and fully fuzzy sys-
tem of linear equations. Next, numerical examples of bar and beam with various
effects of uncertain parameters are discussed using fuzzy finite element method to
find fuzzy static responses. Lastly conclusions are drawn.

2 Preliminaries

In the following paragraph some definitions related to the present work are given
[Ross (2004); Zimmermann (2001)].

Definition 2.1 Fuzzy number

A fuzzy number Ũ is convex normalised fuzzy set Ũ of the real line R such that

{µŨ(x) : R→ [0, 1], ∀ x ∈ R}

where, µŨ is called the membership function of the fuzzy set and it is piecewise
continuous.

Definition 2.2 Triangular fuzzy number (TFN)

A triangular fuzzy number Ũ is a convex normalized fuzzy set Ũ of the real line R
such that

• There exists exactly one x0 ∈ R with µŨ(x0) = 1 (x0 is called the mean value
of Ũ), where µŨ is called the membership function of the fuzzy set.

• µŨ(x) is piecewise continuous.

Let us consider an arbitrary triangular fuzzy number Ũ = (a,b,c) as depicted in
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Fig. 1. The membership function µŨ of Ũmay be define as follows

µŨ(x) =



0, x≤ a
x−a
b−a

, a≤ x≤ b

c− x
c−b

, b≤ x≤ c

0, x≥ c.

The triangular fuzzy number Ũ =(a,b,c) can be represented with an ordered pair of
functions through α−cut approach as [u(α), ū(α)] = [(b−a)α +a, −(c−b)α +c]
where, α ∈ [0,1]. This satisfies the following requirements

• u(α) is a bounded left continuous non-decreasing function over [0, 1].

• ū(α) is a bounded right continuous non-increasing function over [0, 1].

• u(α)≤ ū(α), 0≤ α ≤ 1.

Figure 1: Triangular fuzzy number

Definition 2.3 Fuzzy arithmetic

As discussed above, fuzzy numbers may be transformed into an interval through
α−cut approach. So, for any arbitrary fuzzy number x̃ = [x(α), x̄(α)], ỹ =
[y(α), ȳ(α)] and scalar k, we have the interval based fuzzy arithmetic as

• x̃ = ỹ if and only if x(α) = y(α) and x̄(α) = ȳ(α)
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• x̃+ ỹ = [x(α)+ y(α), x̄(α)+ ȳ(α)]

• x̃− ỹ = [x(α)− ȳ(α), x̄(α)− y(α)]

• x̃× ỹ = [min (S), max (S)],

where S = {x(α)× y(α), x(α)× ȳ(α), x̄(α)× y(α), x̄(α)× ȳ(α)}

• kx̃ =
{

[kx̄(α),k(α)] ,k < 0,
[k(α),kx̄(α)] ,k ≥ 0.

As discussed above, for the static analysis of structures the finite element equations
reduced to system of linear equations, hence for fuzzy parameters of the structures
the equation of motion obtained by FFEM reduces to fuzzy or fully system of linear
equations. As such here, solution method for fuzzy and fully fuzzy system of linear
equations is presented as follows to find the fuzzy static response of the structures.

3 Fuzzy System of linear Equations

The n×n fuzzy system of linear equations may be written as

a11x̃1 +a12x̃2 + · · ·+a1nx̃n = b̃1

a21x̃1 +a22x̃2 + · · ·+a2nx̃n = b̃2

...

an1x̃1 +an2x̃2 + · · ·+annx̃n = b̃n

(1)

In matrix notation the above system may be written as [A]{X̃} = {b̃}, where the
coefficient matrix [A] = (ak j), 1≤ k ≤ n, j ≤ n is a crisp real n×n matrix, {b̃}=
{b̃k}, 1 ≤ k is a column vector of fuzzy number and {X̃} = {x̃ j} is the vector of
fuzzy unknown.

The above system, [A]{X̃}= {b̃}, can be written as

n

∑
j=1

ak jx̃ j = b̃k, for k = 1,2, · · · ,n. (2)

As per the parametric form we may write the real fuzzy unknown and the right hand
real fuzzy number vector as x̃ j = [x j(α), x̄ j(α)] and b̃k = [bk(α), b̄k(α)]. Substi-
tuting these expressions in Eq. (2), we have

n

∑
j=1

ak j[x j(α), x̄ j(α)] = [bk(α), b̄k(α)], for k = 1,2, · · · ,n. (3)
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Now Eq. (3) can equivalently be written as the following two equations Eqs. (4)
and (5)

∑
ak j≥0

ak jx j(α)+ ∑
ak j<0

ak jx̄ j(α) = bk(α) (4)

and

∑
ak j≥0

ak jx̄ j(α)+ ∑
ak j<0

ak jx j(α) = bk(α). (5)

In the following section a new method is proposed for solving the fuzzy system of
linear equations as defined in Eq. (1).

3.1 Proposed method for solving fuzzy real system of linear equations

In this section we proposed a new method to solve fuzzy real system of linear equa-
tions. Before discussing the method, a related theorem is first stated and proved in
the following paragraphs.

Theorem 1 If [A]{X̃} = {b̃} then {X + X̄} is the solution vector of the system
[A]{X + X̄}= {b+ b̄}.
Proof. Now one may write [A]{X + X̄} as

n

∑
j=1

ak j{x j(α)+ x̄ j(α)}, for k = 1,2, · · · ,n .

This can be written as

∑
ak j≥0

ak j{x j(α)+ x̄ j(α)}+ ∑
ak j<0

ak j{x j(α)+ x̄ j(α)}.

It is equivalent to

∑
ak j≥0

ak jx j(α)+ ∑
ak j≥0

ak jx̄ j(α)+ ∑
ak j<0

ak jx j(α)+ ∑
ak j<0

ak jx̄ j(α).

Using Eqs. (4) and (5), the above expression can be written as {bk(α)+ b̄k(α)}=
{b+ b̄}. Accordingly, one may conclude [A]{X + X̄} = {b+ b̄}. This proves that
{X + X̄} is the solution vector of the system [A]{X + X̄}= {b+ b̄}.
Now using Theorem 1 one can find the solution vector {X + X̄} of [A]{X + X̄} =
{b+ b̄}. Let us consider the solution vector {X + X̄} as {P} = {Pj(α)}. So, this
can be written as {x j(α)+ x̄ j(α)}= {Pj(α)}. The lower and upper bounds of the
solution vector may be obtained as {x j(α)} = {Pj(α)}−{x̄ j(α)} and {x̄ j(α)} =
{Pj(α)}−{x j(α)} respectively.
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Theorem 2 The monotonic increasing solution vector {x j(α)} can be obtained by
replacing {x̄ j(α)} in terms of {x j(α)} and {Pj(α)} in Eq. (3).

Proof. As Eq. (3) converts into two crisp systems (4) and (5), so substitut-
ing {x̄ j(α)} = {Pj(α)}− {x j(α)} in any one equation and solving we may find
{x j(α)}. So this proves the theorem.

Theorem 3 Crisp linear systems (viz. Eqs. 4 and 5) give exactly same {x j(α)}
when the upper bound of the fuzzy variable {x̄ j(α)}is replaced by {Pj(α)} −
{x j(α)}in Eq. (3).

Proof. Let us first consider Eq. (4),

∑
ak j≥0

ak jx j(α)+ ∑
ak j<0

ak jx̄ j(α) = bk(α).

Now substituting {x̄ j(α)}= {Pj(α)}−{x j(α)} in the above equation we have

∑
ak j≥0

ak jx j(α)+ ∑
ak j<0

ak j
[
{Pj(α)}−{x j(α)}

]
= bk(α).

The above expression may equivalently be written as

∑
ak j≥0

ak jx j(α)+ ∑
ak j<0

ak j{Pj(α)}− ∑
ak j<0

ak j{x j(α)}= bk(α). (6)

Eq. (6) now be represented as

∑
ak j≥0

ak jx j(α)+ ∑
ak j<0

ak j{Pj(α)}= bk(α). (7)

But, the fuzzy system[A]{X + X̄}= {b+ b̄} is written as

n

∑
j=1

ak j{x j(α)+ x̄ j(α)}= {bk(α)+ b̄k(α)}.

Above is now equivalently expressed as

∑
ak j≥0

ak j{x j(α)+ x̄ j(α)}+ ∑
ak j<0

ak j{x j(α)+ x̄ j(α)}= {bk(α)+ b̄k(α)}

and it may reduce the following as

∑
ak j≥0

ak j{Pj(α)}+ ∑
ak j<0

ak j{Pj(α)}= {bk(α)+ b̄k(α)}.
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This is similar to

∑
ak j<0

ak j{Pj(α)}= {bk(α)+ b̄k(α)}− ∑
ak j≥0

ak j{Pj(α)}.

Substituting this in Eq. (7) we have

∑
ak j≥0

ak jx j(α) = ∑
ak j≥0

ak j{Pj(α)}− b̄k(α). (8)

From this one may conclude that Eq. (4) is equivalent to Eq. (8). Similarly one
may prove that Eq. (5) is equivalent to Eq. (8). Hence, it may be concluded that
Eqs. (4) and (5) are exactly same. Thus Theorem 3 is proved.

Theorem 4 The monotonic decreasing solution vector {x̄ j(α)} can be obtained by
replacing {x j(α)} in terms of {x̄ j(α)} and {Pj(α)} in Eq. (3).

Proof .The proof is straight forward as Theorem 2.

Theorem 5 Crisp linear systems (viz. Eqs. 4 and 5) give exactly same {x̄ j(α)}
when the lower bound of the fuzzy variable {x j(α)}is replaced by {Pj(α)} −
{x̄ j(α)}.
Proof. The proof is straight forward as Theorem 3.

4 Fully Fuzzy System of Linear Equations

The n×n fully fuzzy system of linear equations may be written as

ã11x̃1 + ã12x̃2 + · · ·+ ã1nx̃n = b̃1

ã21x̃1 + ã22x̃2 + · · ·+ ã2nx̃n = b̃2

...

ãn1x̃1 + ãn2x̃2 + · · ·+ ãnnx̃n = b̃n

(9)

In matrix notation the above system may be written as [Ã]{X̃} = {b̃},where the
coefficient matrix [Ã] = (ãk j), 1 ≤ k ≤ n, j ≤ n is a fuzzy n× n matrix, {b̃} =
{b̃k}, 1 ≤ k is a column vector of fuzzy number and {X̃} = {x̃ j} is the vector of
fuzzy unknown.

The above system (9), [Ã]{X̃}= {b̃} can be written as
n

∑
j=1

ãk jx̃ j = b̃k, for k = 1,2, · · · ,n. . (10)

As per the parametric form we may write the fuzzy coefficient matrix, real fuzzy un-
known and the right hand real fuzzy number vector as ãk j = [ak j(α), āk j(α)], x̃ j =

[x j(α), x̄ j(α)] and b̃k = [bk(α), b̄k(α)].
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Substituting the above expressions in Eq. (10), one may have
n

∑
j=1

[ak j(α), āk j(α)][x j(α), x̄ j(α)] = [bk(α), b̄k(α)]. (11)

Here we will obtain a non-negative solution of the fully fuzzy linear system (11)
where, {X̃} ≥ 0 as follows.

4.1 Proposed method for solving fully fuzzy system of linear equations

Eq. (11) can equivalently be written as the following two Eqs. (12) and (13) by
applying fuzzy arithmetic as

∑
ak j(α)≥0

ak j(α)x j(α)+ ∑
ak j(α)<0

ak j(α)x̄ j(α) = bk(α) (12)

and

∑
āk j(α)≥0

āk j(α)x̄ j(α)+ ∑
āk j(α)<0

āk j(α)x j(α) = b̄k(α). (13)

One may write explicitly the combined form of Eqs. (12) and (13) as follows

a11(α) a12(α) · · · a1n(α) −(a11(α))−(a12(α)) · · · −(a1n(α))
a21(α) a22(α) · · · a2n(α) −(a21(α))−(a22(α)) · · · −(a2n(α))

...
... · · ·

...
...

... · · ·
...

an1(α) an2(α) · · · ann(α) −(an1(α))−(an2(α)) · · · −(ann(α))
−(ā11(α))−(ā12(α)) · · · −(ā1n(α)) ā11(α) ā12(α) · · · ā1n(α)
−(ā21(α))−(ā22(α)) · · · −(ā2n(α)) ā21(α) ā22(α) · · · ā2n(α)

...
...

...
...

...
... · · ·

...
−(ān1(α))−(ān2(α)) · · · −(ānn(α)) ān1(α) ān2(α) · · · ānn(α)





x1(α)
x2(α)

...
xn(α)
x̄1(α)
x̄2(α)

...
x̄n(α)



=



b1(α)
b2(α)

...
bn(α)
b̄1(α)
b̄2(α)

...
b̄n(α)


.

(14)

Now solving the above crisp system of linear equations one may get the lower and
upper bound of the fuzzy solution vector. Also the negative solution of the fully
fuzzy system of linear equations may be obtained in the similar manner.
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5 Numerical Examples and Results

Example 1 Let us consider a 2×2 real fuzzy system as

x̃1− x̃2 = [α, 2−α]

x̃1 +3x̃2 = [4+α, 7−2α]. (15)

According to Theorem 1 the solution vector is
[

x1(α)+ x̄1(α)
x2(α)+ x̄2(α)

]
=

[ 17
4 −

1
4 α

9
4 −

1
4 α

]
.

Now using Theorems 2 and 4 this we have x1(α) = 11
8 + 5

8 α, x̄1(α) = 23
8 −

7
8 α,x2(α) = 7

8 +
1
8 α and x̄2(α) = 11

8 −
3
8 α.

Finally we may write in standard form x̃1 =
[11

8 + 5
8 α, 23

8 −
7
8 α
]

and x̃2 =[7
8 +

1
8 α, 11

8 −
3
8 α
]
. Plots for x̃1 and x̃2 are given in Figs. 2 (a) and 2(b) respec-

tively.

Figure 2(a): Plot of x̃1 (Example 1)

Example 2 (Three stepped bar) Here we have considered a three stepped bar as
shown in Fig. 3. This was previously considered by (Balu and Rao 2012). Similar
type of study has been reported in (Akpan et al. 2001a, Rao and Sawyer 1995).
For the uncertain static response, three different cases have been considered here.
The input variables for all the cases are shown in Table 1. In Case A only the
load P3is fuzzy. In Case B the load (P3) as well as the Young’s modulus (Ei) is
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Figure 2(b): Plot of x̃2 (Example 1)

having fuzziness and in Case C all the properties viz., cross sectional areas (Ai),
lengths (Li) ,Young’s modulus for the bar elements and the load applied at free end
are taken as fuzzy variables. Here i varies from 1 to 3. All the fuzzy variables are
assumed as triangular fuzzy number viz. (a,b,c) . Through α− cut approach this
can be represented as [(b−a)α +a, −(c−b)α +c] where α ∈ [0, 1]. This defines
a triangular membership function, where a and c are the lower and upper bounds
of the fuzzy number at α = 0 and b is the exact or crisp value at α = 1.

Using the proposed methodologies obtained fuzzy translational displacement at
nodes 2, 3 and 4 are depicted in Figs. 4, 5 and 6 respectively for all the cases.
From Figs. 4 and 6 one can observe that the larger width is obtained for both the
figures when fuzziness appears only in the applied external load viz. for Case A.
The spread in the fuzzy displacements are gradually decreases when we have in-
troduced fuzziness in the stiffness matrix viz. for Cases B and C respectively. But
in Fig. 5 the translational displacement at node 3 represents weak fuzzy responses
as obtained for all the cases. Fig. 5 demonstrates the opposite behavior from Figs.
4 and 6 that is the spread of the fuzzy responses are gradually increasing when we
introduce fuzziness in the stiffness matrix. It also gives the smaller width for Case
A that is when only fuzziness appears in the external load. Fuzzy displacements
obtained at the free end gives similar behavior as the observations reported in [Rao
and Sawyer (1995)]. Case A demonstrates the proposed method for fuzzy system
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of linear equations and Cases B and C use proposed method for fully fuzzy sys-
tem of linear equations. Moreover the proposed solution methods estimate narrow
bounds for the structural responses.

Figure 3: Discretization of a stepped bar into three elements with force applied at
the free end

Figure 4: Fuzzy translational displacement at node 2 of three stepped bar (Example
2)
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Figure 5: Fuzzy translational displacement at node 3 of three stepped bar (Example
2)

Figure 6: Fuzzy translational displacement at node 4 of three stepped bar (Example
2)
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Table 1: Data of three-stepped bar with triangular fuzzy number (Example 2)
Parameters Case A Case B Case C
A1 (in.2) 3.00 3.00 (2.99,3.00,3.01)
A2 (in.2) 2.00 2.00 (1.99,2.00,2.01)
A3 (in.2) 1.00 1.00 (0.99,1.00,1.01)
L1 (in.) 12.00 12.00 (11.95,12.00,12.05)
L2 (in.) 10.00 10.00 (9.95,10.00,10.05)
L3 (in.) 6.00 6.00 (5.95,6.00,6.05)

E1,E2,E3 (psi) 3.0e7 (2.8e7,3.0e7,3.1e7) (2.8e7,3.0e7,3.1e7)
P1, P2 (lb) 0.0 0.0 0.0

P3 (lb) (7500,10000,12500) (7500,10000,12500) (7500,10000,12500)

Example 3 (Fixed-Fixed beam)

In this example a fixed-fixed beam has been considered to compute fuzzy static re-
sponse as shown in Fig. 7 using the proposed methodologies. It was studied earlier
in Rao and Swayer (1995). Later on [Akpan et al. (2001a); Balu and Rao (2012)]
also investigated the same problem. Three cases have been considered for the anal-
ysis. In Case A only the load is considered as fuzzy and the load is represented by
the triplet (360,400,440). In Case B the modulus of elasticity represented by triplet
(2.94e7, 3.0e7, 3.06e7) is considered as the only fuzzy variable. In Case C both the
load and the modulus of elasticity were considered as in Cases A and B. The model
parameters for each case are listed in the form of triangular fuzzy numbers in the
Table 2. Two elements were used in each case.

Figure 7: Configuration of fixed-fixed beam

Using the proposed methods obtained fuzzy vertical displacements and angle of
rotations at the mid-span of the beam are shown in Figs. 8 and 9 respectively for
all the cases. The results obtained by the proposed methods agree well with Balu
and Rao (2012). Observing Fig. 8 it may be seen that spread of the fuzzy vertical
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Figure 8: Fuzzy vertical displacement at the mid span of fixed-fixed beam (Example
3)

Figure 9: Fuzzy angle of rotation at the mid span of fixed-fixed beam (Example 3)
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Table 2: Data for beam examples as triangular fuzzy numbers (Example 3)

Parameters Case A Case B Case C
L (in.) 400 400 400
I (in.4) 3.0e3 3.0e3 3.0e3
E (psi) 3.0e7 (2.94e7,3.0e7,3.06e7) (2.94e7,3.0e7,3.06e7)

P (lb/in.) (360,400,440) 400 (360,400,440)

displacements for Case B is smaller where as for Case A it is larger. The spread for
Case C is smaller than Case A but greater than Case B. Similar observations may
be made for fuzzy angle of rotations obtained by the proposed methods which is
depicted in Fig. (9). In this case smaller width is obtained for Case C and the larger
width is seen for Case A. Here width of Case B is smaller than Case A but greater
than Case C.

6 Conclusion

In this paper solution methods for fuzzy and fully fuzzy system of linear equa-
tions have been proposed to analyze the fuzzy structural response when fuzziness
appears in the properties. The proposed methodologies are straight forward and
easy to handle. It involves interval based computations in parametric form of fuzzy
numbers. Stepped bar and fix ended beam have been considered for the present
analysis. The uncertainties present in the geometry, material properties and ex-
ternal loads are represented by triangular fuzzy number. The results obtained by
the proposed methods are compared with the existing results and are found to be
in good agreement. The methods are based on analytic approach hence the errors
arising in these procedures are minimum. Obtained results are depicted in term of
plots to show the efficiency of the proposed methods.
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