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Solution of the Inverse Radiative Transfer Problem of
Simultaneous Identification of the Optical Thickness and

Space-Dependent Albedo Using Bayesian Inference

D. C. Knupp1,2 and A. J. Silva Neto3

Abstract: Inverse radiative transfer problems in heterogeneous participating me-
dia applications include determining gas properties in combustion chambers, es-
timating environmental and atmospheric conditions, and remote sensing, among
others. In recent papers the spatially variable single scattering albedo has been es-
timated by expanding this unknown function as a series of known functions, and
then estimating the expansion coefficients with parameter estimation techniques.
In the present work we assume that there is no prior information on the functional
form of the unknown spatially variable albedo and, making use of the Bayesian
approach, we propose the development of a posterior probability density, which is
explored using the Markov Chain Monte Carlo method (MCMC) implemented with
the Metropolis-Hastings algorithm. Moreover, since the scattering and the absorp-
tion coefficients, which are in fact the primary properties that produce the single
scattering albedo, are considered unknown, then the optical thickness must also be
considered unknown. Thus, in this work, the optical thickness is simultaneously
estimated with the spatially variable single scattering albedo. Simulated experi-
mental data have been used for the inverse problem solution considering different
functional forms for the spatially variable albedo, and different optical thicknesses
of the medium. The results are critically investigated, and the good performance
observed demonstrates the feasibility of this approach.
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Nomenclature

A1, A2 External source intensities at the boundaries τ = 0 and τ = τ0, respective-
ly;

ei Computer generated pseudo-random numbers from a normal distribution
with zero mean and unitary standard deviation;

~F Vector containing the residuals between the experimental data and the mo-
del predictions;

i Points in the spatial discretization;
I Radiation intensity;
k Iteration index in the direct problem solution procedure;
m Mesh nodes in the angular domain;
Nburn−in Length of the burn-in period in the Markov chain;
Nd Total number of experimental data employed in the inverse problem solu-

tion;
NMCMC Length of the Markov chain;
q Candidate-generating density;
t Iteration counter in the Markov Chain Monte Carlo method;
U Uniform distribution;
W Inverse of the covariance matrix of the measurement errors;
~Y Vector containing the experimental data employed in the inverse problem

solution;
~Z Vector containing the parameters to be estimated in the inverse problem;

Greek letters:

ε Prescribed tolerance for the iterative procedure of the direct problem solution,
eq. (2f);

γ Regularization parameter in the smoothness prior for the space-dependent albe-
do, eq. (9a);

µ Cosine of the angle formed between the radiation beam and the positive τ axis;
µm Collocation points of the Gauss-Legendre quadrature;
π Probability distribution;
ρ1,ρ2 Diffuse reflectivities at the inner part of the boundary surfaces at τ = 0 and τ =

τ0, respectively;
σ Standard deviation of the measurement errors;
τ Optical variable;
τ0 Optical thickness of the medium;
ω Single scattering albedo;
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Subscripts & Superscripts:

post Posteriori;
pr A priori information;

1 Introduction

Direct and inverse radiative transfer problems have been calling the attention of
the research community along the last decades due to the wide range of practi-
cal applications. Just to give a few examples we cite applications in atmospheric
simulation [Buehler, Eriksson, Kuhn, von Engeln and Verdes (2005)], tomogra-
phy [Kim and Charette (2007); Carita Montero, Roberty and Silva Neto (2004);
Klose (2010)], hydrological optics [Chalhoub and Campos Velho (2001); Cortivo,
Chalhoub and Campos Velho (2012)], earth remote sensing [Weng (2009); Voss-
beck, Clerici, Kaminski, Lavergne, Pinty and Giering (2010)], analysis of thermal
damage in biological tissues [Zhou, Chen and Zhang (2007)], solar system bod-
ies research [Morishima, Salo, and Ohtsuki (2009); Mendikoa, Pérez-Hoyos, and
Sánchez-Lavega (2012)] radiative properties estimation [Nenarokomov and Titov
(2005); Hespel, Mainguy and Greffet (2003); An, Ruan and Qi (2007); Knupp,
Sacco, and Silva Neto (2009); Liu, Yan, Wang, Huang, Chi and Cen (2010); Liu
and Chang (2001); Knupp and Silva Neto (2012); Sacadura (2011)], and source
estimation [Parwani, Talukdar and Subbarao (2012); Hubenthal (2011)]

Most works deal with the radiative transfer in plane-parellel media with constant
single scattering albedo but the problem of radiative transfer with space-dependent
albedo occurs in numerous problems such as the light transmission trough the atmo-
sphere, radiation emission by high-temperature gas steams and the diffusion of neu-
trons in nuclear reactors. This issue is investigated in [Magnavacca, Spiga and Hag-
gag (1985); Cengel, and Ozisik (1985); Machalli, Haggag and Madkour (1986);
Wilson and Wan (1987); Haggag, Machali and Madkour (1988); Wu (1990); Al-
taç (2002); Altaç and Tekkalmaz (2004); Yi and Tan (2008); Vargas, Segatto and
Vilhena (2012)].

[Bokar (1999)] has solved the inverse problem of simultaneously estimating the op-
tical thickness and the spatially varying albedo by representing the unknown func-
tion as a quadratic polynomial in the optical variable. Silva Neto and co-workers
used different methodologies for estimating the space-dependent albedo consider-
ing the optical thickness is known [Silva Neto and Soeiro (2005); Silva Neto and
Soeiro (2005); Stephany, Becceneri, Souto, Campos Velho and Silva Neto (2010);
Lobato, Steffen Jr. and Silva Neto (2012)]. In most of these works the space-
dependent albedo has been estimated by expanding this unknown function as a
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series of known functions, and then estimating the expansion coefficients with pa-
rameter estimation techniques.

The contribution of the present work is to assume that there is no prior information
regarding the functional form of the unknown spatially variable albedo and simulta-
neously estimate the optical thickness of the medium. In fact, the scattering and the
absorption coefficients, which are the primary properties that produce the single-
scattering albedo, are unknown, thus, in a real application the optical thickness is
also unknown.

For the inverse problem solution we make use of the Bayesian approach [Kaipio
and Somersalo (2004)], which has been successfully used in several recent pub-
lished papers dealing with inverse heat transfer problems [Mota, Orlande, Car-
valho, Kolehmainen and Kaipio (2010); Mota, Orlande, Wellele, Kolehmainen and
Kaipio (2009); Orlande, Colaço and Dulikravich (2008); Fudym, Orlande, Bam-
ford and Batsale (2008); Wang and Zabaras (2005); Naveira-Cotta, Cotta and Or-
lande (2010); Naveira-Cotta, Orlande and Cotta (2010); Knupp, Naveira-Cotta,
Ayres, Orlande and Cotta (2010); Knupp, Naveira-Cotta, Ayres, Cotta and Orlande
(2012); Knupp, Naveira-Cotta, Ayres, Orlande and Cotta (2012)]. In this paper
we use Markov Chain Monte Carlo (MCMC) methods in order to approximate the
posterior probabilities by drawing samples from the posterior probability density
function.

2 Solution of the direct problem

Figure 1: Schematical representation of a one-dimensional medium subjected to
the incidence of radiation originated at external sources.

Consider a one-dimensional, gray, heterogeneous, isotropically scattering partici-
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pating medium of optical thickness τ0 and transparent boundary surfaces as shown
in Fig. 1. These boundaries at τ = 0 and τ = τ0 reflect diffusely the radiation
that comes from the interior of the medium and are subjected to the incidence of
radiation originated at external sources with intensities A1 and A2, respectively.
The mathematical model for the interaction of the radiation with the participating
medium is given by the linear version of the Boltzmann equation [Ozisik (1973)],
which for the case of azymuthal symmetry and a space-dependent albedo is written
in the dimensionless form as:

µ
∂ I(τ,µ)

∂τ
+ I(τ,µ) =

ω(τ)

2

1∫
−1

I(τ,µ ′)dµ
′, 0 < τ < τ0, −1≤ µ ≤ 1 (1a)

I(0,µ) = A1(µ)+2ρ1

1∫
0

I(τ,−µ
′)µ ′dµ

′, µ > 0 (1b)

I(τ0,−µ) = A2(µ)+2ρ2

1∫
0

I(τ0,µ
′)µ ′dµ

′, µ < 0 (1c)

where I represents the radiation intensity, τ is the optical variable, µ is the cosine of
the polar angle, i.e. the angle formed between the radiation beam and the positive τ

axis, ρ1 and ρ2 are the diffuse reflectivities at the inner part of the boundary surfaces
at τ = 0 and τ = τ0, respectively, and ω(τ) is the single scattering space-dependent
albedo.

Figure 2: Discretization of the polar angle domain.

When the geometry, the boundary conditions and the radiative properties are known,
problem (1) may be solved and the radiation intensity I determined for the whole
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spatial and angular domains, i.e. 0≤ τ ≤ τ0, and −1≤ µ ≤ 1. This is the so called
direct problem. In order to solve problem (1) we use Chandrasekhar’s discrete or-
dinates method [Chandrasekhar (1960)] in which the polar angle is discretized as
represented in Fig. 2, and the integral term (in-scattering) on the right hand side of
Eq. (1a) is replaced by a Gaussian quadradure. Using a forward finite difference
approximation, a forward sweep is constructed with:

Ii+ 1
2

m =
1− ∆τ

2µm

1+ ∆τ

2µm

Ii− 1
2

m +
qi

µm
∆τ

+ 1
2

, with i= 1,2, ...,N, and m= 1,2, ...,
M
2
, µ > 0 (2a)

where µm are the collocation points of the Gauss-Legendre quadrature, i indicates
the spatial discretization and mindicates the mesh nodes in the angular domain. The
boundary condition is given by:

I
1
2

m = 1, with m = 1,2, ...,
M
2

(2b)

Employing a backward finite difference approximation, a backward sweep is con-
structed with:

Ii− 1
2

m =
1+ ∆τ

2µm

1− ∆τ

2µm
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m +
qi

− µm
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+ 1
2

, with i = N,N−1, ...,1,

and m =
M
2
+1,

M
2
+2, ...,M, µ < 0

(2c)

with the boundary condition given by:

IN+ 1
2

m = 0, with m =
M
2
+1,

M
2
+2, ...,M (2d)

where

∆τ =
τ0

N
, qi =

ωi

2

M

∑
n=1

anIi
n and Ii

m =
Ii+ 1

2
m + Ii− 1

2
m

2
(2e)

where an are the weights of the Gauss-Legendre quadrature.

In order to obtain an approximation for the solution of problem (1) successive for-
ward and backward sweeps are performed until a convergence criterion is satisfied:∣∣Ii

mk+1− Ii
mk
∣∣

Ii
mk

< ε (2f)

where ε is a prescribed tolerance, and k is the iteration index.
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3 Solution of the inverse problem

The associated inverse problem consists of estimating radiative properties of the
medium from the emerging radiation intensities, Yi, measured at different positions
and polar angles. Consider that the external detectors are able to acquire N exper-
imental data, being half acquired at τ = 0, at the polar angles corresponding to µn

with n = N
2 +1, N

2 +2, · · · ,N, and half at τ = τ0, at the polar angles corresponding
to µn with n = 1,2, · · · , N

2 . It is also considered feasible to introduce internal detec-
tors, if necessary, which are able to acquire N experimental data, at the same polar
angles corresponding to µn, n = 1,2, · · · ,N. In all test cases presented in this work
it is considered that N = 20.

In the inverse analysis considered in this work we estimate the unknown optical
thickness of the medium, τ0, and the space-dependent albedo, ω(τ), which is de-
termined using a function estimation approach. The albedo is thus estimated as a
sampled function with a total of Mω discrete values.

In the statistical inversion theory, namely Bayesian approach, the inverse problem
is formulated as a problem of statistical inference and is based on the following
principles [Kaipio and Somersalo (2004)]: (i) All variables in the model are mod-
eled as random variables; (ii) The randomness describes our degree of information;
(iii) The degree of information is coded in probability distributions; (iv) The so-
lution of the inverse problem is the posterior probability distribution. Thus, in the
Bayesian approach all possible information is incorporated in the model in order to
reduce the amount of uncertainty present in the problem.

In the problems here investigated we consider that only the left boundary of the
medium at τ = 0 is subjected to the incidence of isotropic radiation originated at
an external source, whereas there is no radiation coming into the medium through
the boundary at τ = τ0, A2 = 0.0. We also consider that the diffuse reflectivities ρ1
and ρ2 are null. Thus, we can write the vector of parameters to be estimated as

~Z = {A1,τ0,ω1,ω2,ωMω
} (3)

Assuming that the prior information can be modeled as a probability density πpr(~Z),
the Bayes’ theorem of inverse problems can be expressed as [Kaipio and Somersalo
(2004)]

πpost(~Z) = π(~Z|~Y ) =
πpr(~Z)π(~Y |~Z)

π(~Y )
(4)

where πpost(~Z) is the posterior probability density, πpr(~Z) is the prior information
on the unknowns, modeled as a probability distribution, π(~Y |~Z) is the likelihood
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function and π(~Y ) is the marginal density and plays the role of a normalizing con-
stant. Considering that the measurement errors related to the data ~Y are additive,
uncorrelated, and have normal distribution, the likelihood function π(~Y |~Z), i.e. the
probability density for the occurrence of the measurements ~Y given the model pa-
rameters ~Z can be expressed as [Beck and Arnold (1977)]

π(~Y |~Z) = 1√
(2π)Nd

1√
det
(
W−1) exp

(
−1

2
~FT W~F

)
(5)

where W is the inverse of the covariance matrix of the errors related to the data ~Y ,
and ~F is the residuals vector and its elements are given by

Fi = Yi− Icalci
(A1,τ0,ω1,ω2, ...,ωMω

) , i = 1,2, · · · ,Nd (6)

where Nd is the total number of experimental data, which depends on the number
of detectors that are used and the number of measurements at different polar angles
that each detector is able to acquire. In the cases presented in this work, when
only external detectors are used we have Nd = 20, whereas in the cases with one
additional internal detector we have Nd = 40.

In this paper we use Markov Chain Monte Carlo (MCMC) methods [Kaipio and
Somersalo (2004)] in order to approximate the posterior probabilities by drawing
samples from the posterior probability density function. In order to implement
the Markov Chain we need a candidate-generating density, q(~Zt ,~Z∗), which de-
notes a source density for a candidate draw ~Z∗ given the current state ~Zt . Then the
Metropolis-Hastings algorithm [Kaipio and Somersalo (2004)], which is used in
this work to implement the MCMC method, is defined by the following steps:

Step 1: Sample a candidate ~Z∗ from the candidate-generating density q(~Zt ,~Z∗)

Step 2: Calculate

α = min

[
1,

π(~Z∗|~Y )q(~Z∗,~Zt)

π(~Zt |~Y )q(~Zt ,~Z∗)

]
(7a)

Step 3: If U(0,1)< α , then

~Zt+1 =~Z∗ (7b)

else,

~Zt+1 =~Zt (7c)

where U(0,1) is a random number from a uniform distribution between 0 and 1.
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Step 4: Return to Step 1 in order to generate the chain
{
~Z1,~Z2, ...,~ZNMCMC

}
. We

should stress that the first states of this chain must be discarded until the conver-
gence of the chain is reached. These ignored samples are called the burn-in period,
whose length will be denoted by Nburn−in.

In the present work we have used a random walk process in order to generate the
candidates, so that ~Z∗ = ~Zt +~η , where ~η follows the distribution q, which was
defined as a normal density. In this case q is symmetric and q(~Z∗,~Zt) = q(~Zt ,~Z∗),
so Step 2 is simplified and Eq. (7a) may be rewritten as:

α = min

[
1,

π(~Z∗|~Y )
π(~Zt |~Y )

]
(7d)

4 Results and discussion

In the results presented here we consider that only the left boundary of the medium
at τ = 0 is subjected to the incidence of isotropic radiation originated at an external
source, A1 = 1.0, while there is no radiation coming into the medium through the
boundary at τ = τ0, A2 = 0.0. This configuration has been intentionally chosen
in order to challenge the inverse methodology, since for increasing values of the
optical thickness the transmitted radiation becomes small, considerably affecting
the quality of the estimates obtained by means of the inverse analysis.

As real experimental data were not available, experimental data have been simu-
lated by adding noise to the values calculated for the exit radiation intensities using
the exact values of the radiative properties:

Yi = Ii(~Zexact)+σei, i = 1,2, ...,Nd (8)

where ei is a computer generated pseudo-random number drawn from a normal dis-
tribution with zero mean and unitary standard deviation and σ emulates the stan-
dard deviation of the measurement errors. In all test cases presented it has been
considered data with noise in the order of, or smaller than, 5%.

For the solution of the inverse problem with the MCMC method we have considered
a non-informative a priori for τ0, so that πpr(τ0) in Eq. (6) was chosen as an uniform
distribution between 0 and 3.5, which encompasses a large range of applications,
including sea water and cloud studies, for example. It is stressed that τ0 = 3.5
is already a high value in the problem under picture if one wants to consider the
information on the transmitted radiation for the inverse problem solution.

Since the inverse problem is ill-posed, in order to regularize its solution we have
considered the following smoothness prior [Kaipio and Somersalo (2004)] for ω(τ),
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as it is expected this function to be mostly continuous

πpr [ω(τ)] = exp
(
−γ

∥∥∥~Ω∥∥∥) (9a)

~Ω = {ω2−ω1,ω3−ω2, ...,ωMω
−ωMω−1} (9b)

where ‖ · ‖ is the Eucledian norm. An optimal choice for the parameter γ can be
difficult to adjust, but the solution is quite robust concerning this parameter, as it
will be shown in the following results.

As the strength of the external source is assumed to be accurately known, the a
priori distribution for this parameter, πpr(A1), has been modeled as a normal dis-
tribution with a high confidence on the prior information, with mean Ā1 = 1.0 and
Ā1×3% standard deviation.

In order develop the Markov Chain with the Metropolis-Hastings algorithm, as de-
scribed in Section 3, it is necessary to start the algorithm with initial values for the
elements of ~Z, which were chosen as τ0

0 = 0.5 and ω(τ)0 = const. = 0.5 in all re-
sults presented in this work. The values of the step-size in the random walk process
of the Metropolis-Hastings implementation was empirically chosen for each case
so that the acceptance ratio was of the order of 30%.

The cases examined below involved a slab with optical thickness τ0 varying from
1.0 to 3.0. For the space-dependent albedo, ω(τ), we have considered two differ-
ent functional forms, being first investigated the case of a smooth variation along
the optical variable, and then a more challenging problem, with ω(τ) presenting
an abrupt variation, approximating the case of the radiative transfer in a two-layer
medium. It has also been investigated the influence of γ , the regularization param-
eter of the smoothness a priori information, in the inverse problem solution. Table
1 summarizes the cases investigated in this work.

Figs. 3-5 show the solution of the inverse problem for the case with τ0 = 1.0 in
which the space-dependent albedo varies smoothly, in this test case only external
detectors were used and a total of NMCMC = 40000 states have been generated for
the Markov Chain, being the first Nburn−in = 8000 discarded for the computation
of the estimates. It has been considered three different values for the regularization
parameter γ = 150,700 and 1250, in Eq. (9a). A value too small may yield a
profile with large fluctuations, while the opposite may yield a flat profile. As stated
in Section 3, an optimal value for this parameter may be difficult to adjust, but
the results presented in Figs. 3-5 show a quite robust behavior of this methodology
concerning this parameter, and it can be seen that in all cases the estimated function
is very close to the exact one, used to simulate the experimental data. One may also
observe that the estimated optical thickness is very close to the exact value within
relatively narrow confidence bounds, indicating a reliable estimate.
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Figure 3: Comparison of the exact and estimated radiative properties for the param-
eter γ adjusted as γ = 150, for the case with τ0 = 1.0 and ω(τ) varying smoothly.
Simulated experimental data with noise in the order of, or smaller than, 5% have
been used.

Figure 4: Comparison of the exact and estimated radiative properties for the param-
eter γ adjusted as γ = 700, for the case with τ0 = 1.0 and ω(τ) varying smoothly.
Simulated experimental data with noise in the order of, or smaller than, 5% have
been used.
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Table 1: Summary of the cases investigated.

τ0 functional form of ω(τ) γ

τ0 = 1.0 smooth γ = 150
γ = 700
γ = 1250

τ0 = 1.0 abrupt transition γ = 150
γ = 700
γ = 1250

τ0 = 3.0 smooth γ = 700
τ0 = 2.0 abrupt transition γ = 700
τ0 = 3.0 abrupt transition γ = 700

Figure 5: Comparison of the exact and estimated radiative properties for the param-
eter γ adjusted as γ = 1250, for the case with τ0 = 1.0 and ω(τ) varying smoothly.
Simulated experimental data with noise in the order of, or smaller than, 5% have
been used.

Similar results are shown in Figs. 6-8, illustrating the test cases in which the space-
dependent albedo is represented by a step function, approximating the case of the
radiative transfer in a two-layer composite slab. Due to the increased difficulty, an
additional detector at τ = 0.5 is necessary in order to achieve reasonable results
as solution of this inverse problem. In fact, the necessity of internal detectors in
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the case of the inverse analysis in two-layer media has been already investigated
in reference [Knupp and Silva Neto (2012)] and thus such difficulty was expected.
Once again, one may observe that the estimated space-dependent albedo and op-
tical thickness are very close to the exact values and the results are quite robust
concerning the parameter γ .

 

Figure 6: Comparison of the exact and estimated radiative properties for the pa-
rameter γ adjusted as γ = 150, for the case with τ0 = 1.0 and ω(τ) with abrupt
variation. Simulated experimental data with noise in the order of, or smaller than,
5% have been used.

Figure 9 depicts the inverse problem solution for the test case with τ0 = 3.0 , which
is a more challenging case, since the transmitted radiation may become too small,
affecting the quality of the estimates obtained. In this case the space-dependent
albedo considered is a function with a smooth variation along the optical variable.
Here, the step-size in the random walk process of the Metropolis-Hastings algo-
rithm was set smaller than the previous results presented so that the acceptance ra-
tio continued approximately 30% in each case, what yielded a slower evolution of
the chain. In that case the MCMC method has been set with NMCMC = 150000 (be-
ing the first Nburn−in = 33000 neglected for the computation of the estimates) and
only external detectors were considered. From this result we observe the feasibility
of estimating a smooth space-dependent albedo function simultaneously with the
optical thickness of the medium, which in this test case has a relatively high value,
using only external detectors. For higher values of the optical thickness it might be
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Figure 7: Comparison of the exact and estimated radiative properties for the pa-
rameter γ adjusted as γ = 700, for the case with τ0 = 1.0 and ω(τ) with abrupt
variation. Simulated experimental data with noise in the order of, or smaller than,
5% have been used.

Figure 8: Comparison of the exact and estimated radiative properties for the pa-
rameter γ adjusted as γ = 1250, for the case with τ0 = 1.0 and ω(τ) with abrupt
variation. Simulated experimental data with noise in the order of, or smaller than,
5% have been used.
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Figure 9: Comparison of the exact and estimated radiative properties for the case
with τ0 = 3.0 and ω(τ) varying smoothly. The parameter γ has been adjusted as
γ = 700 and simulated experimental data with noise in the order of, or smaller than,
5% have been used.

necessary the use of internal detectors in order to achieve reliable estimates.

In Figs. 10 and 11 it is investigated the solution of the inverse problem with τ0 = 2.0
and τ0 = 3.0, being the space-dependent albedo considered to be a step function and
an internal detector was used at τ = 1.0 and τ = 1.5, for each case, respectively.
For τ0 = 2.0 the total number of states was set as NMCMC = 85000(being the first
Nburn−in = 20000 neglected for the computation of the estimates) and for the case
with τ0 = 3.0, it was set NMCMC = 150000 (being the first Nburn−in = 45000 ne-
glected for the computation of the estimates). In these results, one may observe
that even for this quite complicated case the inverse problem solution methodology
implemented in this work was able to yield good solutions for the space-dependent
albedo function and the optical thickness of the medium. Nonetheless, it should be
observed that for the case with τ0 = 3.0, even though the estimate obtained for the
optical thickness is close to the exact solution, the exact value does not lie inside the
estimated confidence interval range. For cases with abrupt variations in the albedo
value along the optical variable, and even higher values of the optical thickness, it
may be necessary to consider the use of more than one internal detector in order to
achieve reliable results.
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Figure 10: Comparison of the exact and estimated radiative properties for the case
with τ0 = 2.0 and ω(τ) with abrupt variation. The parameter γ has been adjusted
as γ = 700 and simulated experimental data with noise in the order of, or smaller
than, 5% have been used.

Figure 11: Comparison of the exact and estimated radiative properties for the case
with τ0 = 3.0 and ω(τ) with abrupt variation. The parameter γ has been adjusted
as γ = 700 and simulated experimental data with noise in the order of, or smaller
than, 5% have been used.
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5 Conclusions

The Bayesian approach by means of the MCMC method has been used to solve the
inverse problem of simultaneously estimating the optical thickness and the space-
dependent single scattering albedo of a participating medium. The main contribu-
tion of the present work was to assume that there is no prior information regarding
the functional form of the unknown spatially varying albedo and simultaneously
estimate the optical thickness of the medium. The test cases employed have been
critically investigated, and the results indicate the feasibility and robustness of the
methodology.

We have investigated two different functional forms for the space-dependent albedo,
the first one considering the case of smooth variation along the optical variable,
and then a more challenging problem, in which ω(τ) presents an abrupt vari-
ation, approximating the case of the radiative transfer in a two-layer composite
medium. Test cases with different values for the optical thickness have been im-
plemented and it has been verified the feasibility of obtaining reliable estimates for
the unknowns using only external detectors when dealing with the smooth func-
tion, whereas for the case with abrupt variation one additional internal detector was
necessary. This conclusion is in agreement with a recent work [Knupp and Silva
Neto (2012)] investigating the inverse radiative transfer problem solution in two-
layer media. The inverse methodology has also been shown to be fairly robust with
respect to the smoothness prior used to regularize the inverse problem solution.
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