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Operational Matrix Method for Solving Variable Order
Fractional Integro-differential Equations

Mingxu Yi1, Jun Huang1 and Lifeng Wang1

Abstract: In this paper, operational matrix method based upon the Bernstein
polynomials is proposed to solve the variable order fractional integro-differential
equations in the Caputo derivative sense. We derive the Bernstein polynomials
operational matrix of fractional order integration and introduce the product op-
erational matrix of Bernstein polynomials. A truncated the Bernstein polynomi-
als series together with the polynomials operational matrix are utilized to reduce
the variable order fractional integro-differential equations to a system of algebraic
equations. Only a small number of Bernstein polynomials are needed to obtain a
satisfactory result. Some examples are included to demonstrate the validity and
applicability of the method.

Keywords: Bernstein polynomials, variable order fractional, operational matrix,
numerical solution.

1 Introduction

In recent years, the research of fractional calculus has attracted much attention[Wei,
Chen, Li and Yi (2012); Zhou, Wang, Wang and Liu (2011); Yi and Chen (2012)]
and successfully introduced to a variety of engineering applications, such as chaos
systems [Li and Peng (2004)], viscous-elasticity [Schiessel, Metzler and Blumen
(1995)], control system design [Chen and Moore (2002)] and anomalous diffusion
processes [Bao (2003)]. Generally speaking, the notion of fractional calculus is to
enlarge integer order to fractional order in numerical representations. To character-
ize anomalous diffusion phenomena, constant order fractional diffusion equations
are introduced and have received tremendous success. However, it has been found
that the constant order fractional diffusion equations are not capable of character-
izing some complex diffusion processes. To solve this problem, the variable order
fractional derivative and variable order fractional diffusion equation models have
been suggested for use [Sun, Chen, Sheng, Chen (2010); Chen, Sun, Zhang (2010)].
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The work of variable order operator can be traced to Samko et al. by introducing
the variable order integration and Riemann-Liouville derivative in 1993 [Samko
and Ross (1993); Samko (1995)]. It has been recognized as a powerful model-
ing approach in the fields of viscoelasticity viscous fluid, viscoelastic deformation
anomalous diffusion, etc.

During the last decade, the variable order fractional differential equations have been
solved by means of the numerical methods such as the explicit difference scheme,
the implicit difference scheme, the Crank-Nicholson difference scheme and so on
[Lin, Liu and Anh (2009); Chen, Liu, Anh (2010); Chen, Liu, Anh (2011); Zhuang,
Liu and Anh (2009); Soon, Coimbra and Kobayashi (2005); Coimbra (2003)]. On
the other hand, Bhatti and Bracken [Bhatti and Bracken (2007)] solved the differen-
tial equations by using the Galerkin method based on Bernstein polynomials basis.
Yousefi and Behroozifar [Yousefi and Behroozifar (2010)] presented an operational
matrix method based on Bernstein polynomials for the differential equations. Man-
dal and Bhattacharya [Mandal, and Bhattacharya (2007)] applied Bernstein poly-
nomials to solve the numerical solution of some classes of integral equations. Chen
and Yi et al. [Chen, Yi, Chen, Yu (2012)] used Bernstein polynomials method to
solve a class of fractional convection- diffusion equation with variable coefficients.
In this study, our purpose is to propose a method based on Bernstein polynomials
to solve the variable order fractional integro-differential equations. The variable
order fractional derivative is considered in the Caputo sense.

2 Definitions and properties of variable order operator

There are several definitions of the variable order differential operator [Coimbra
(2003)]. Here we adopt the definition of the variable order differential operator
suggested by Coimbra

Dα(t)
t y(t) =

1
Γ(1−α(t))

∫ t

0+

y′(τ)
(t− τ)α(t)

dτ +
( f (0+)− f (0−))t−α(t)

Γ(1−α(t))
, 0 < α(t)< 1

(1)

if α(t) is a constant, it can be reduced to the constant order Caputo definition. We
assume the property of function y(t) at t = 0 is good enough, then we can state the
following Caputo type definition

Dα(t)
t y(t) =

1
Γ(1−α(t))

∫ t

0

y′(τ)
(t− τ)α(t)

dτ, 0 < α(t)< 1 (2)
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The definition of variable order integration proposed by Samko is presented as
below

Iα(t)
t y(t) =

1
Γ(α(t))

∫ t

0
(t− τ)α(t)−1y(τ)dτ, Re(α(t))> 0 (3)

Then we present following properties for the operator Iα(t)
t (·) which will be used in

this paper.

Property 1: Iα(t)
t (tβ ) = Γ(β+1)

Γ(α(t)+β+1) t
α(t)+β .

Proof. By using the definition of the operator Iα(t)
t (·), we can get

Iα(t)
t (tβ ) =

1
Γ(α(t))

∫ t

0
(t− τ)α(t)−1

τ
β dτ,

Let τ = εt, according to the definition of beta function, we have

Iα(t)
t (tβ ) =

tα(t)+β

Γ(α(t))

∫ 1

0
(1− ε)α(t)−1

ε
β dε =

tα(t)+β

Γ(α(t))
B(β +1,α(t))

=
Γ(β +1)

Γ(α(t)+β +1)
tα(t)+β

,

where B is the beta function which is defined as follows

B(m,n) =
∫ 1

0
τ

m−1(1− τ)n−1dτ, Re(m)> 0, Re(n)> 0.

Property 2: Iα(t)
t

(
Dα(t)

t y(t)
)
= y(t)− y(0).

Proof. By using the property of Caputo type definition, we can obtain

Iα(t)
t

(
Dα(t)

t y(t)
)
= Iα(t)

t

(
I1−α(t)
t y′(t)

)
=
∫ t

0
y′(τ)dτ = y(t)− y(0).

3 Bernstein polynomials and their some properties

3.1 The definition of Bernstein polynomials basis [Maleknejad, Basirat, and
Hashe-mizadeh]

The Bernstein basis polynomials of degree nare defined by

Bi,n(t) =
(

n
i

)
t i(1− t)n−i, t ∈ [0,1] (4)
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By using the binomial expansion of (1− t)n−i

(1− t)n−i =
n−i

∑
k=0

(−1)k
(

n− i
k

)
tk (5)

They can be written as

Bi,n(t) =
n−i

∑
k=0

(−1)k
(

n
i

)(
n− i

k

)
t i+k, t ∈ [0,1] (6)

Also, the Bernstein basis polynomials of degree nin [0,R]are given as follows

Bk,n(t) =
(

n
k

)
tk(R− t)n−k

Rn (7)

By substituting the binomial expansion

(R− t)n−k =
n−k

∑
i=0

(−1)i
(

n− k
i

)
Rn−k−it i.

Then we have the formula

Bk,n(t) =
n−k

∑
i=0

(−1)i
(

n
k

)(
n− k

i

)
tk+i

Rk+i , t ∈ [0,R] (8)

The Bernstein basis polynomials given by Eq.(6) can be expressed in the matrix
form

ΦΦΦ(t) = [B0,n(t),B1,n(t), · · · ,Bn,n(t)]T = AAAn∆∆∆n(t) (9)

where

AAAn =



(−1)0
(

n
0

)
(−1)1

(
n
0

)(
n−0

1

)
· · · (−1)n−0

(
n
0

)(
n−0
n−0

)
. . .

...

0 (−1)0
(

n
i

)
· · · (−1)n−i

(
n
i

)(
n− i
n− i

)
...

. . . . . .
...

0 · · · 0 (−1)0
(

n
n

)


(10)

∆∆∆n(t) = [1, t, · · · , tn]T (11)
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3.2 Function approximation

A function y(t) ∈ L2(0,1) can be expressed in terms of the Bernstein basis. In
practice, only the first (n+1) term of Bernstein polynomials are considered. Hence

y(t)∼=
n

∑
i=0

ciBi,n(t) = cccT
ΦΦΦ(t) (12)

where ccc = [c0,c1, · · · ,cn]
T , ci (i = 0,1,2, · · · ,n) are called Bernstein coefficients.

We can obtain them by

ccc = QQQ−1( f ,ΦΦΦ(t)) (13)

where

QQQ =
∫ 1

0
ΦΦΦ(t)ΦΦΦT (t)dt =

∫ 1

0
(AAAn∆∆∆n(t))(AAAn∆∆∆n(t))T dt = AAAnHHHAAAT

n (14)

and HHH =


1 1/

2 · · · 1/
n+1

1/
2

1/
3 · · · 1/

n+2
...

...
. . .

...
1/

n+1
1/

n+2 · · · 1/
2n+1

.

We can also approximate the function u(x, t)as following:

u(x, t)∼=
n

∑
i=0

n

∑
j=0

ui jBi,n(x)B j,n(t) = ΦΦΦ
T (x)UUUΦΦΦ(t) (15)

where UUU = [ui j](n+1)×(n+1).

3.3 Convergence analysis

Suppose that the function f : [x0,1]→ R is m+1 times continuously differentiable,
f ∈ Cm+1[0,1], and Y = Span{B0,n,B1,n,B2,n · · · ,Bn,n}. If cT Φ(x) is the best ap-
proximation of f out of Y , then the mean error bound is presented as follows:

∥∥ f − cccT
ΦΦΦ
∥∥

2 ≤
MSm+1

(m+1)!
(16)

where M = max
x∈[0,1]

∣∣ f (m+1)(x)
∣∣ , S = max{1− x0,x0}.

Proof. Considering the Taylor polynomials, we have

f1(x) = f (x0)+ f ′(x0)(x− x0)+ f ′′(x0)
(x− x0)

2

2!
· · ·+ f (m)(x0)

(x− x0)
m

m!
(17)
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which we know

| f (x)− f1(x)| ≤
∣∣∣ f (m+1)(ε)

∣∣∣ (x− x0)
m+1

(m+1)!
(18)

whereε ∈ (0,1). Since cT Φ(x)is the best approximation of f , then we get

∥∥ f − cccT
ΦΦΦ
∥∥2

2 ≤ ‖ f − f1‖2
2 =

∫ 1

0
( f (x)− f1(x))2dx

≤
∫ 1

0

(∣∣∣ f (m+1)(ε)
∣∣∣ (x− x0)

m+1

(m+1)!

)2

dx

≤ M2

[(m+1)!]2

∫ 1

0
(x− x0)

2m+2dx

≤ M2S2m+2

[(m+1)!]2

,

Therefore∥∥ f − cccT
ΦΦΦ
∥∥

2 ≤
MSm+1

(m+1)!
.

4 Operational matrix of the fractional integration

Now, we derive the Bernstein polynomials operational matrix of fractional order
integration. Let

Iα(t)
t (ΦΦΦ(t))∼= PPPα(t)

ΦΦΦ(t) (19)

where matrix Pα(t) is called Bernstein polynomials operational matrix of fractional
order integration.

For this purpose, we use Eq.(9) and the property 1, as following

Iα(t)
t (ΦΦΦ(t)) = Iα(t)

t (AAAn∆∆∆n(t)) = AAAnIα(t)
t (∆∆∆n(t)) = AAAnΨΨΨ(t)∆∆∆n(t) (20)

where ΨΨΨ(t) =



Γ(1)tα(t)

Γ(α(t)+1) 0 0 · · · 0

0 Γ(2)tα(t)

Γ(α(t)+2) 0 · · · 0

0 0 Γ(3)tα(t)

Γ(α(t)+3) · · · 0
...

...
...

. . .
...

0 0 0 · · · Γ(n+1)tα(t)

Γ(α(t)+n+1)


.
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Eq.(20) can be written as

Iα(t)
t (ΦΦΦ(t)) = AAAnΨΨΨ(t)AAA−1

n AAAn∆∆∆n(t) = AAAnΨΨΨ(t)AAA−1
n ΦΦΦ(t) (21)

From Eq.(19) and Eq.(21), the Bernstein polynomials operational matrix of frac-
tional order integration PPPα(t)is given by

PPPα(t) = AAAnΨΨΨ(t)AAA−1
n (22)

In particular, for n = 2 the Bernstein polynomials operational matrix of fractional
order integration PPPα(t) is given by

PPPα(t) =


Γ(1)tα(t)

Γ(1+α(t))
Γ(1)tα(t)

Γ(1+α(t)) −
Γ(2)tα(t)

Γ(2+α(t))
Γ(1)tα(t)

Γ(1+α(t)) −
2Γ(2)tα(t)

Γ(2+α(t)) +
Γ(3)tα(t)

Γ(3+α(t))

0 Γ(2)tα(t)

Γ(2+α(t))
2Γ(2)tα(t)

Γ(2+α(t)) −
2Γ(3)tα(t)

Γ(3+α(t))

0 0 Γ(3)tα(t)

Γ(3+α(t))

 .
It should be noted that the operational matrix PPPα(t) is upper triangular matrix. This
phenomena makes calculations fast, and it also reduces the memory space.

5 The operational matrix of integration

We frequently encounter the integration of the vector Φ(t)defined in Eq.(9) by∫ t

0
ΦΦΦ(x)dx∼= PPPΦΦΦ(t) (23)

where PPP is the (n+1)× (n+1)operational matrix of integration and is given as∫ t

0
ΦΦΦ(x)dx =

∫ t

0
AAAn∆∆∆n(x)dx = AAAn

∫ t

0
∆∆∆n(x)dx = BBBTTT (24)

where BBB is an (n+1)× (n+1) matrix:

BBB = AAAn


1 0 · · · 0
0 1/2 · · · 0
...

...
. . .

...
0 0 · · · 1/(n+1)

 and TTT = [t, t2, . . . , tn+1]T .

Now, we approximate the elements of vector XXX in terms of ΦΦΦ(t). By Eq.(9), we
have ∆∆∆n(t) = AAA−1

n ΦΦΦ(t), then for k = 0,1, . . . ,n,

tk = AAA−1
[k+1]ΦΦΦ(t) (25)
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where AAA−1
[k+1] is the k+1th row of AAA−1

n for k = 0,1, . . . ,n. We just need to approxi-
mate tn+1 = cccT

n+1ΦΦΦ(t), by using Eq. (12) and Eq. (13), we have

cccn+1 = QQQ−1
∫ 1

0
tn+1

ΦΦΦ(t)dt

= QQQ−1 [ ∫ 1
0 tn+1B0,n(t)dt

∫ 1
0 tn+1B0,n(t)dt · · ·

∫ 1
0 tn+1B0,n(t)dt

]T
=

QQQ−1

2n+2


 n

0


 2n+1

n+1



 n
1


 2n+1

n+2

 · · ·

 n
n


 2n+1

2n+1




T

Let EEE = [AAA−1
[2] ,AAA

−1
[3] , . . .AAA

−1
[n+1],ccc

T
n+1]

T , then, TTT ∼= EEEΦΦΦ(t). Therefore we have the
operational matrix of integration PPP = BBBEEE.

6 The product operational matrix

It is always necessary to compute the product of ΦΦΦ(t) and ΦΦΦ(t)T , which is called
the product matrix the Bernstein polynomials. Let

ΠΠΠ(t) = ΦΦΦ(t)ΦΦΦ(t)T (26)

then multiplying the matrix ΠΠΠ(t) with the vector c which is defined in Eq.(12) we
obtain

cccT
ΠΠΠ(t) = ΦΦΦ(t)TĈCC (27)

where ĈCC is an (n+1)× (n+1) matrix and is called the coefficient matrix. Then we
get

cccT
ΠΠΠ(t) = cccT

ΦΦΦ(t)ΦΦΦ(t)T = cccT
ΦΦΦ(t)(∆∆∆T

n (t)AAA
T
n )

= [cccT
ΦΦΦ(t), t(cccT

ΦΦΦ(t)), . . . , tn(cccT
ΦΦΦ(t))]AAAT

n

=

[
n

∑
i=0

ciBi,n(t),
n

∑
i=0

citBi,n(t), . . . ,
n

∑
i=0

citnBi,n(t)

]
AAAT

n

(28)

Now, we approximate all functions tkBi,n(t) in terms of ΦΦΦ(t). Let

ek,i = [ek,i
0 ,ek,i

1 , . . . ,ek,i
n ]T (29)

By Eq.(12), we have

tkBi,n(t)∼= eeeT
k,iΦΦΦ(t), i,k = 0,1,2, . . . ,n (30)
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By using Eq.(13) for i,k = 0,1,2, . . . ,n, we obtain

eeek,i = QQQ−1
∫ 1

0
tkBi,n(t)ΦΦΦ(t)dt

= QQQ−1 [ ∫ 1
0 tkBi,n(t)B0,n(t)dt

∫ 1
0 tkBi,n(t)B1,n(t)dt · · ·

∫ 1
0 tkBi,n(t)Bn,n(t)dt

]T
=

QQQ−1
(

n
i

)
2n+ k+1


 n

0


 2n+ k

i+ k



 n
1


 2n+ k

i+ k+1

 · · ·

 n
n


 2n+ k

i+ k+n




T

(31)

Thus we get finally

n

∑
i=0

citkBi,n(t)∼=
n

∑
i=0

ci

(
n

∑
j=0

ek,i
j B j,n(t)

)
=

n

∑
j=0

B j,n(t)

(
n

∑
i=0

cie
k,i
j

)

= ΦΦΦ(t)T
[

n
∑

i=0
cie

k,i
0

n
∑

i=0
cie

k,i
1 · · ·

n
∑

i=0
cie

k,i
n

]T

= ΦΦΦ(t)T [eeek,0,eeek,1, . . . ,eeek,n]ccc

= ΦΦΦ(t)T EEEk+1ccc

(32)

where EEEk+1 is an (n+ 1)× (n+ 1) matrix. Then we define ẼEEk+1 = EEEk+1ccc. If we
choose an (n+ 1)× (n+ 1) matrix C̃CC = [ẼEE1, ẼEE2, . . . , ẼEEn+1], then by Eq. (29) and
Eq. (33) we have

cccT
ΠΠΠ(t) =

[
n

∑
i=0

ciBi,n(t),
n

∑
i=0

citBi,n(t), . . . ,
n

∑
i=0

citnBi,n(t)

]
AAAT

n

∼= ΦΦΦ(t)TC̃CCAAAT
n

(33)

and therefore we have the coefficient matrix, as

ĈCC = C̃CCAAAT
n (34)

7 Numerical solution of variable order fractional integro-differential equa-
tions

Consider the following equations

Dα(t)
t y(t) = λ1

∫ t

0
k1(t,s)y(s)ds+λ2

∫ 1

0
k2(t,s)y(s)ds+ f (t) (35)
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with initial condition

y(0) = b (36)

where 0 < α(t) < 1 and Dα(t)
t denotes the variable order fractional derivative de-

fined by Coimabra. k1(t,s),k2(t,s), f (t) are the known functions. λ1,λ2,b are the
real constants.

By previous section, the function Dα(t)
t y(t) of the Eq.(35) can be approximated as:

Dα(t)
t y(t)∼= cccT

ΦΦΦ(t) (37)

Using the property 2, we have

y(t) = Iα(t)
t

(
Dα(t)

t y(t)
)
+ y(0)∼= cccT PPPα(t)

ΦΦΦ(t)+uuuT
ΦΦΦ(t)

= [cccT PPPα(t)+uuuT ]ΦΦΦ(t) = vvvT
ΦΦΦ(t)

(38)

where vvvT = cccT PPPα(t)+uuuT and y(0)∼= uuuT ΦΦΦ(t).

The functions approximating k1(t,s) and k2(t,s) by Bernstein polynomials can be
given as

k1(t,s) = ΦΦΦ
T (t)KKK1ΦΦΦ(s), k2(t,s) = ΦΦΦ

T (t)KKK2ΦΦΦ(s) (39)

where KKK1 and are defined in Eq.(15). Using Eq.(39), Eq.(38), Eq.(27) and Eq.(23)
we can write the Volterra part of Eq.(35) as∫ t

0
k1(t,s)y(s)ds∼=

∫ t

0
ΦΦΦ

T (t)KKK1ΦΦΦ(s)ΦΦΦ(s)T vvvds

= ΦΦΦ
T (t)KKK1

∫ t

0
ΠΠΠ(s)T vvvds

= ΦΦΦ
T (t)KKK1V̂VV

T
∫ t

0
ΦΦΦ(s)ds

= ΦΦΦ
T (t)KKK1V̂VV

T
PPPΦΦΦ(t)

(40)

and making use of Eq.(39) and Eq.(38) we have the Fredholm part of Eq.(35) as
follows:∫ 1

0
k2(t,s)y(s)ds∼=

∫ 1

0
ΦΦΦ

T (t)KKK2ΦΦΦ(s)ΦΦΦ(s)T vvvds

= ΦΦΦ
T (t)KKK2

∫ 1

0
ΦΦΦ(s)ΦΦΦ(s)T dsvvv

= ΦΦΦ
T (t)KKK2QQQvvv

(41)
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Also the right hand side of Eq.(35) can be written as

f (t)∼= fff T
ΦΦΦ(t) (42)

where f = [ f0, f1, · · · , fn]
T .

Substituting Eq.(37), Eq.(40), Eq(41) and Eq.(42) into Eq.(35), we get

cccT
ΦΦΦ(t) = λ1ΦΦΦ

T (t)KKK1V̂VV
T

PPPΦΦΦ(t)+λ2ΦΦΦ
T (t)KKK2QQQvvv+ fff T

ΦΦΦ(t) (43)

Dispersing Eq.(43) at the points ti = i
n+1 , i= 0,1,2, · · · ,n, we obtain a linear system

of algebraic equations. By solving this system we may obtain the approximate
solution of Eq.(35) according to Eq.(38).

8 Error analysis

In this section, we will present the error analysis of the method for the variable
order fractional integro-differential equations. Using Eq.(43), for t ∈ [0,1), the
error function Rn(t) is defined as

Rn(t) =
∣∣∣cccT

ΦΦΦ(t)−λ1ΦΦΦ
T (t)KKK1V̂VV

T
PPPΦΦΦ(t)−λ2ΦΦΦ

T (t)KKK2QQQvvv− fff T
ΦΦΦ(t)

∣∣∣ (44)

Since the truncated Bernstein polynomials series is an approximate solution of
Eq.(35), we should have Rn(t) ∼= 0. In the error function, the larger the value of
n, the more accurate the approximation solution of equation. The optimum value
of n is determined by the prescribed accuracy.

Set t = ti, where ti, i = 0,1,2, · · · ,n are the discrete points from [0,1). Then our
aim is to have Rn(ti)≤ 10−ri , where ri is any positive integer. Let Max{ri}= r, we
can increase n as long as the following inequality holds at each point ti

Rn(ti)≤ 10−r (45)

in other words, by increasing n the error function Rn(ti) approaches zero. If Rn(t)→
0 when n is sufficiently large enough, then the error decreases.

9 Numerical examples

In this section, we will use the Bernstein polynomials operational matrix of frac-
tional order integration to analyze the variable order fractional integro-differential
equations.

Example 1. Consider the following variable order fractional integro-differential
equation

Dα(t)
t y(t) =

∫ x

0
(t + s)y(s)ds+

∫ 1

0
(t− s)y(s)ds+ f (t),
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with initial condition y(0) = 1, and

f (t) =
Γ(2)

Γ
(5+t

3

) t
2+t

3 +
Γ(3)

Γ
(8+t

3

) t
5+t

3 − 11
6

t− 3
2

t2− 5
6

t3− 7
12

t4 +
13
12

.

The exact solution of this equation is y(t) = 1+ t + t2. In this problem, α(t) = 1−t
3 .

Figs. 1-3 show the numerical solutions for n = 2, n = 4, n = 6.

From Figs. 1-3 we can see that the numerical solutions are very good agreement
with the exact solution when nincreases. The calculating results show that com-
bining with the Bernstein polynomials operational matrix of fractional order inte-
gration, the method in this paper can be effectively used in numerical calculus for
variable order fractional integro-differential equations.

Figure 1: The comparison between approximate and exact solutions for n = 2.

Example 2. Consider this equation

D
t
2
t y(t) =

1
10

∫ t

0
tsy(s)ds+

1
3

∫ 1

0
(t + s)y(s)ds+ f (t),

such that y(0) = 0 and f (t) = Γ(7)
Γ(7− t

2 )
+ Γ(8)

Γ(8− t
2 )
− t9

80−
t10

90 −
5t
56−

17
216 . We applied the

Bernstein polynomials approach to solve this problem for various values of n. The
exact solution is y(t) = t6 + t7. The absolute errors for n = 4, n = 5, n = 6, n = 7
are shown in Table 1.
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Figure 2: The comparison between approximate and exact solutions for n = 4.

Figure 3: The comparison between approximate and exact solutions for n = 6.
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Table 1: The absolute errors of different nfor Example 2.

t n = 4 n = 5 n = 6 n = 7
0 0 0 0 0

0.1 1.211436e-002 2.884210e-003 2.894806e-004 2.107654e-006
0.2 9.994910e-004 5.582717e-004 9.768165e-005 7.584658e-007
0.3 4.246281e-003 4.727489e-004 2.687613e-005 5.452959e-006
0.4 3.793182e-004 5.698137e-005 1.022243e-005 5.800553e-006
0.5 4.905035e-003 1.126630e-004 3.214812e-005 3.502632e-006
0.6 3.367787e-003 2.214333e-003 1.553171e-003 1.525140e-004
0.7 3.148376e-003 2.014514e-003 1.358878e-003 5.296317e-004
0.8 9.898867e-003 7.310422e-003 5.538599e-003 1.558219e-003
0.9 1.053979e-001 4.933938e-002 4.088800e-002 4.035161e-002

From the Table 1, we find that the numerical solutions are more and more close
to the exact solution when nbecomes large. That is to say, the numerical solutions
converge to the exact solution with increasing the value of n.

Example 3. Consider the below variable order fractional integro-differential equa-
tion

Dt
ty(t) =

∫ t

0
(t− s)y(s)ds+

∫ 1

0
ssin t · y(s)ds+ f (t),

where f (t) = Γ(23/4)t
19
4 −t

Γ(23/4−t) + Γ(36/5)t
31
5 −t

Γ(36/5−t) −
16

621 t
27
4 − 25

1476 t
41
5 − 299

1107 sin t, with this sup-
plementary condition y(0) = 0. Fig. 4 shows the numerical solutions for n = 4,
n = 5, n = 6 with the exact solution y(t) = t

19
4 + t

31
5 . The absolute errors for differ-

ent values n are also shown in Table 2.

From Fig.4 and Table 2, we can see clearly that the numerical solutions are very
good coincidence with the exact solution and the absolute errors become more and
more small. They demonstrate the simplicity, and powerfulness of the proposed
method. What’s more, the method in this paper is easy to implementation.

10 Conclusion

We derive the Bernstein polynomials operational matrix of fractional order integra-
tion, and use it to solve the variable order fractional integro-differential equations.
The matrix, operational matrix of integration PPP, product matrix ΠΠΠ and coefficient
matrix ĈCC for the Bernstein polynomials have been used for transforming the initial
problem into a linear algebraic system equations that can be solved easily. The
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Figure 4: The comparison between approximate and exact solutions for different n.

Table 2: The absolute errors of different nfor Example 3.

t n = 4 n = 5 n = 6 n = 7
0 0 0 0 0

0.1 1.847813e-002 3.170885e-003 1.312325e-003 8.246755e-004
0.2 2.970928e-003 2.544115e-004 1.488098e-005 8.785142e-006
0.3 3.790940e-003 4.382297e-004 1.280260e-004 9.112653e-005
0.4 9.028638e-005 3.395943e-004 8.417671e-005 6.645263e-005
0.5 7.835446e-003 3.330079e-003 3.725454e-003 1.256150e-003
0.6 1.631390e-002 1.294155e-002 1.080649e-002 9.275812e-003
0.7 3.355224e-002 3.032422e-002 2.646955e-002 9.578623e-003
0.8 8.508671e-002 8.232376e-002 7.040846e-002 6.632365e-003
0.9 2.204358e-001 2.025485e-001 1.815759e-001 8.658236e-002

solution is convergent, even though the size of increment may be large. Several
examples are given to demonstrate the powerfulness of the proposed method.
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