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Abstract: Orthogonal polynomial approach has been used to deal with the wave
propagation in structures that have finite dimension in only one direction, such as
horizontally infinite flat plates, axially infinite hollow cylinders. In order to solve
wave propagation in two-dimensional piezoelectric rod with rectangular cross sec-
tion, i.e. the piezoelectric plate with finite dimensions in two directions, an extend-
ed orthogonal polynomial approach is proposed in this paper. For validation and
illustration purposes, the proposed approach is applied to solving the wave propa-
gation in a square steel rod. The results obtained are in good agreement with the
results from the semi-analytical finite element method. The dispersion curves and
displacement and electric potential distributions of various rectangular piezoelec-
tric rods are calculated, and the effects of the different width to height ratio, ma-
terial parameters and different polarizing directions on the dispersion curves and
displacement and electric potential distributions are discussed.

Keywords: rectangular rod, piezoelectric materials, orthogonal polynomial, wave
propagation, dispersion curves, displacement profiles.

1 Introduction

Piezoelectric materials possess the important property of linear coupling between
mechanical and electrical fields, which renders them useful in many areas of mod-
ern technology. In recent years, piezoelectric materials have been integrated with
the structural systems to form a class of smart structures and embedded as layers or
fibers into multifunctional composites. Advanced structures with intelligent self-
monitoring and self-control capabilities are increasing due to rapid development for
smart space systems and micro-electromechanical structures. Piezoelectric mate-
rials having electromechanical coupling effects, have found extensive applications
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in such smart devices. The behavior of the wave mode selected directly affects the
performance of the device. Thus, it is significant to study the wave characteristics
in piezoelectric materials.

Theoretical studies on wave propagation in piezoelectric materials have attracted
considerable attention. Some are listed here. Paul [Paul et al. (1987)] obtained the
frequency equation for a piezoelectric solid cylinder of arbitrary cross section us-
ing the Fourier expansion collocation method. Liu [Liu et al. (2003)] analyzed the
dispersion of waves and characteristic wave surfaces in plates of functionally grad-
ed piezoelectric material with an inhomogeneous layer element method. Ebenez-
er [Ebenezer et al. (2003)] investigated axially polarized piezoelectric cylinders
with arbitrary boundary conditions on the flat surfaces by applying the Bessel se-
ries. Chakraborty [Chakraborty (2009)] investigated the propagating nature of the
elastic and electric wave in bone and porous piezoelectric media, and solved the
governing partial differential equations in the frequency domain by transforming
equations into a polynomial eigenvalue structure. Han [Han et al. (2005)] analyzed
the dispersion and characteristic surface of waves in a hybrid multilayered piezo-
electric plate with an analytical-numerical method. Many researches have studied
wave propagation behavior in layered piezoelectric structures with different meth-
ods, such as the extended Durbin method [Ing et al. (2013)], the layer element
method [Xi et al. (2002); Han et al. (2004)], the reverberation-ray matrix method
[Guo et al. (2009)], the transfer matrix method [Cai et al. (2001)], the orthogonal
polynomial series method [Yu et al. (2012)] and so on.

To analyze free guided waves in piezoelectric structures, some investigations made
a theory using an orthonormal basis set for the expansion of field quantities. It was
first applied to line acoustic waves guided in homogeneous semi-infinite wedges
and ridges [Maradudin et al. (1972); Sharon et al. (1974)], to surface acoustic
waves in layered [Datta et al. (1978); Kim et al. (1990)] and inhomogeneous
[Gubernatis et al. (1987)] semi-infinite structures. Later on, by applying Legendre
polynomial expansions, the method has been extended to obtain, for ?nite-thickness
structures, the mode spectrum such as Lamb-like waves in multilayered structures
[Lefebvre et al. (1999); Yu et al. (2013)] and functionally graded material struc-
tures [Lefebvre et al. (2001)]. The polynomial approach has also been applied
to piezoelectric-piezomagnetic composites to study the magneto-electric coupling
effect in cylinders [Yu et al. (2008)] and plates [Wu et al. (2009)] and spherical
curved plates [Yu et al. (2010)].

Although the polynomial approach is versatile in solving wave problem, so far,
it can only deal with the wave propagation in one dimension structure, i.e. these
structures have finite dimension only in one direction, such as horizontally infinite
flat plates, axially infinite hollow cylinders. But in practical applications, many
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piezoelectric elements have limited dimensions in two directions. In this paper,
an extension of the orthogonal polynomial approach is proposed to solve wave
propagation in 2D piezoelectric structures, i.e. piezoelectric rods with rectangular
cross sections. Through numerical comparisons with the available result, the val-
idation of the extended polynomial approach is illustrated. Dispersion curves and
displacement profiles of various rectangular rods are shown. The effects of the dif-
ferent width to height ratio, material parameters and different polarizing directions
on the dispersion curves and displacement and electric potential distributions are
also discussed. In this paper, traction free and open circuit boundary conditions are
assumed.

2 Mathematics and formulation of the problem

Let us consider an orthotropic rectangular piezoelectric rod of width d and hight h.
It is infinite in wave propagating direction (x-axis), as shown in Figure 1. Assume
that the origin of the Cartesian coordinate system is located at a corner of the rect-
angular section and the rod lies in in the positive y− z region , where the medium
occupies the region 0 ≤ z ≤ h and 0 ≤ y ≤ d. The body forces and electric charge
are assumed to be zero in this paper.

Figure 1: Schematic diagram of a piezoelectric rod with rectangular cross section.
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The dynamic equation for the rectangular piezoelectric rod is governed by
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where Ti j, ui and Di are the stress, elastic displacement and electric displacement,
respectively; ρ is the density of the material.

The relationship between the general strain and general displacement can be ex-
pressed as
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where εi j, Ei and φ are the strain, electric field and electric potential, respectively.

By introducing the function I(y,z), defined as follows,

I(y,z) =
{

1, 0≤ y≤ d and 0≤ z≤ h
0, elsewhere

(3)

the traction free and open circuit boundary conditions (Tzz = Txz = Tyz = Tyy =
Txy = Dz = Dy = 0 at the four boundaries) are automatically incorporated in the
constitutive relations. Then, the constitutive equations can be expressed as:
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where Ci j, ei j and ∈i j are the elastic, piezoelectric and dielectric coefficients re-
spectively.

For the free harmonic plane wave propagating in x direction in a rectangular rod,
we assume the displacement components to be of the form

ux(x,y,z, t) = exp(ikx− iωt)U(y,z) (5a)

uy(x,y,z, t) = exp(ikx− iωt)V (y,z) (5b)

uz(x,y,z, t) = exp(ikx− iωt)W (y,z) (5c)

φ(x,y,z, t) = exp(ikx− iωt)X(y,z) (5d)

where U(y,z), V (y,z), W (y,z) represent the wave amplitudes in x, y and z directions
respectively, and X(y,z) represents the electric potential amplitude. ω is the angular
frequency and k is the magnitude of the wave vector in the propagation direction.

Substituting equations (2)-(5) into equation (1), the governing differential equations
in terms of displacement and electric potential components, gives:

[C55U ,zz− k2C11U +C66U ,yy + ik(C12 +C66)V ,y + ik(C13 +C55)W ,z

+ ik(e31 + e15)X ,z] · I(y,z)+C55 (U ,z + ikW + ike15X) I(y,z),z
+C66 (U ,y + ikV ) I(y,z),y =−ρω
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(6a)
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[C33W ,zz− k2C55W +C44V ,yy + ik(C13 +C55)U ,z +(C23 +C44)W ,yz

− k2e15X + e33X ,zz + e24X ,yy]I(y,z)
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+C44 (V ,z +W ,y + e24X ,y) I(y,z),y =−ρω
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[ik(e31 + e15)U ,z + ik(e24 + e32)V ,yz + e33W ,zz + e24W ,yy− k2e15W

−∈33X ,zz + k2∈11X−∈22X ,yy]I(y,z)

+(ike31U + e32V ,y + e33W ,z−∈33X ,z) I(y,z),z
+(e24V ,z + e24W ,y−∈22X ,y) I(y,z),y = 0

(6d)

To solve the coupled wave equation (6), U(y,z), V (y,z), W (y,z) and X(y,z) are all
expanded to products of two Legendre orthogonal polynomial series,
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where Pm and Pn represent the mth and the nth Legendre polynomial respectively.

Multiplying each equation by Q j(y) ·Ql(z) ·e− jωt with j and l running respectively
from zero to M and zero to N, and integrating over z from zero to h and y from
zero to d, and taking advantage of the orthonormality of the polynomials Qm(z)
and Qn(y), equation (6) can be reorganized into a form of the system problem:
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αβ

(α,β = 1,2,3,4) and M jlmn are the elements of a non-symmetric ma-
trix. They can be obtained according to equation (6).
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Substituting equation (10) into equations (9a), (9b) and (9c), gives:[
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So, equation (12) yields a form of the eigenvalue problem. The eigenvalue ω2 gives
the angular frequency of the guided wave; eigenvectors pi

m,n(i = 1, 2, 3) allow
the components of the particle displacement to be calculated, and p4

m,n determines
the electric potential distribution. In practice, the summation of the expressions is
truncated to some finite values M and N when higher-order terms become essen-
tially negligible. According to V ph = ω/k, the phase velocity can be obtained.
The complex matrix equation (12) can be solved numerically making use of stan-
dard computer programs for the diagonalization of non-symmetric square matrices.
3(M+1) · (N+1) eigenmodes are generated from the order M and N of the expan-
sion.

3 Numerical results

Based on the foregoing formulations, computer programs in terms of the extended
polynomial method have been written using Mathematica to calculate the disper-
sion curves and displacement distributions for the rectangular piezoelectric rods.
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The physical properties of the material used in this paper, PZT-4, are listed in Table
1.

Table 1: Material parameters of the piezoelectric material (Ci j/(1010N/m2),ei j

/(C/m2), ∈i j /(10−11F/m),ρ/(103kg/m3)).

Parameter C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT-4
13.9 7.8 7.4 13.9 7.4 11.5 2.56 2.56 3.05
e15 e24 e31 e32 e33 ∈11 ∈22 ∈33 ρ

12.7 12.7 -5.2 -5.2 15.1 650 650 560 7.5

3.1 Approach validation

To the authors’ knowledge, there are not published results on the wave propagation
for rectangular piezoelectric rods so far. In order to check the effectiveness of the
proposed approach and to validate our computer program, we calculate a square
steel rod (CL =5.85 km/s, CT =3.23km/s, h = d=5.08mm) and make a compari-
son with available results obtained from the semi-analytical finite element method
[Hayashi et al. (2003)]. Figure 2 is the corresponding dispersion curves, of which
dotted lines are from Hayashi [Hayashi et al. (2003)], and dashed lines are from the
proposed polynomial approach. As can be seen, the agreement between polynomial
approach and the available results is quite good.

Figure 2: Phase velocity dispersion curves of the square steel rod; dotted lines:
Hayashi’s results, dashed lines: authors’ results.
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3.2 Guided wave in rectangular piezoelectric rods

Figure 3 shows the dispersion curves of the PZT-4 rod and of the correspond-
ing non-piezoelectric one with d = h =1mm. It can be seen that piezoelectricity
has a significant effect on the dispersion curves. For any one specific mode, the
phase velocities of piezoelectric rod are bigger than those of the corresponding
non-piezoelectric rod, and the piezoelectric effect becomes stronger with the wave
number increasing. In micro-scale SAW devices, the wave number is usually very
big and the operating frequency is very high. So, the piezoelectric effects will be
prominent.

Figure 3: Dispersion curves of the square PZT-4 rod: (a) phase velocity spectra, (b)
frequency spectra, solid line, piezoelectric; dotted line, non-piezoelectric.

There are two symmetry axes (y and z axes) for guided wave in rectangular rods.
According to displacement distribution in wave propagating direction (displace-
ment u), the wave modes can be classified into four kinds: flexure y modes (Fy
modes: sym-y/asym-z), flexure z modes (Fz modes: asym-y/sym-z), extension
modes (E modes: sym-y/sym-z) and torsion modes (T modes: asym-z/asym-y).
The first order modes of the four modes are marked in Figure 3. Figures 4-7
give, for the square piezoelectric rod, the displacement distributions of the first
four modes at kd=2. For Fz0 mode, displacement v is sym-y/sym-z and w is asym-
y/asym-z. For Fy0 mode, displacement v is asym-y/asym-z and w is sym-y/sym-z.
For E0 mode, displacement v is asym-y/sym-z and w is sym-y/asym-z. For T0 mod-
e, displacement v is sym-y/asym-z and w is asym-y/sym-z. The symmetric cases
of the displacements for higher modes are the same as the corresponding ones for
the low modes. The electric potential of all modes have the same symmetry to the
corresponding displacement w. The case of big wavenumber is also given. Figures
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8 and 9 show the displacement and electric potential distributions of Fy0 mode and
T0 mode at kd=150, respectively. It can be seen that the symmetric cases of big
wavenumber are the same to the ones of small wavenumber, and the displacement
w and electric potential of the rod at big wavenumber always distribute around the
four boundaries.

Figure 4: Displacement and electric potential profiles of Fy0 mode at kd=2.

Figure 1 shows the dispersion curves of the rectangular PZT-4 rods with different
height to width ratios, d/h= 1/2, d/h=2 and d/h=4. It can be seen that the width to
height ratio has a significant influence on the dispersion curves. For the rectangular
piezoelectric rod, the first four wave modes have no cut-off frequencies, which is
different from that for an infinite flat plate in which only the first two modes have
no cut-off frequencies.

Figure 11 shows the dispersion curves of the first six modes of the square PZT-4
rod with polarization in x direction. In order to illustrate the effect of the polariza-
tion direction on the dispersion curves, we keep the elastic constants invariable, and
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Figure 5: Displacement and electric potential profiles of Fz0 mode at kd=2.

Figure 6: Displacement and electric potential profiles of T0 mode at kd=2.
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Figure 7: Displacement and electric potential profiles of E0 mode at kd=2.

Figure 8: Displacement and electric potential profiles of Fz0 mode at kd=150.
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Figure 9: Displacement and electric potential profiles of T0 mode at kd=150.

piezoelectric constants become e11 = 15.1, e12 = e13 =−5.2, e26 = e35 = 12.7 and
dielectric constants become ∈11=∈33= 650, ∈22= 560. It can be seen that piezo-
electricity has a significant effect on the high order modes and a very little effect
on the first three modes. The effect of the piezoelectricity becomes strong with
the order modes increasing at low frequency and becomes weak with frequency
and wave number increasing, which is different from the square PZT-4 rods with
polarization in y or z direction.

4 Conclusions

The formulation to analyze the guided wave propagation in 2D rectangular piezo-
electric rods by using the extended orthogonal polynomial approach has been p-
resented in this paper. The effectiveness of the proposed approach was checked
by calculating a square steel rod. The dispersion curves and displacement, electric
potential distributions of various rectangular piezoelectric rods are presented and
discussed. According to the numerical results, we can draw the following conclu-
sions:

• The piezoelectricity has a significant effect on the dispersion curves. The
piezoelectric constants and dielectric constants have opposite influence on
the piezoelectric effect.
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Figure 10: Phase velocity dispersion curves of the rectangular PZT-4 rods with
different height to width ratios, (a) d/h=0.5, (b) d/h=2, (c) d/h=4.

Figure 11: Dispersion curves of the square PZT-4 rod with polarization inx-
direction: (a) phase velocity spectra, (b) frequency spectra, solid line, piezoelectric;
dotted line, non-piezoelectric.
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• The width to height ratio has a significant influence on the guided wave
charateristics of piezoelectric rods with rectangular cross sections.

• The electric potential has the same symmetry to the corresponding displace-
ment w for all modes. The electric potential of the piezoelectric rod with
rectangular cross sections at big wavenumber always distribute around the
four boundaries.

• The effects of the different polarization direction on the guided wave in rect-
angular piezoelectric rods are different.

• We believe that the proposed method could be of interest in non destruc-
tive testing evaluation and also to deal with various multi-field coupled 2D
structures, such as in magneto-electro-elastic 2D structures, and deal with
inhomogeneous structures, such as multilayered and graded 2D structures.
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